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Sampling and Estimation From Multiple List Frames
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ABSTRACT

Many economic and agricultural surveys are multi-purpose. It would be convenient if one could stratify the target
population of such a survey in a number of different ways to satisfy a number of different purposes and then combine the
samples for enumeration. We explore four different sampling methods that select similar samples across all stratifications
thereby reducing the overall sample size. Data from an agriculture survey is used to evaluate the effectiveness of these
alternative sampling strategies. We then show how a calibration (i.e., reweighted) estimator can increase statistical efficiency
by capturing what is known about the original stratum sizes in the estimation. Raking, which has been suggested in the

literature for this purpose, is simply one method of calibration.
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proportional to size sampling.

1. INTRODUCTION

Many of the list frame surveys conducted by the National
Agricultural Statistics Service (NASS) are integrated in the
sense that data on a range of heterogenous items, such as
planted crop acres and grain stock inventories, are collected
in a single survey rather than through a number of indepen-
dent surveys. Bankier (1986), Skinner (1991), and Skinner,
Holmes and Holt (1994) have shown how an old method of
combining independently drawn stratified simple random
samples — where each sample comes from a (list) frame
with a different stratification scheme — can be made more
efficient; that is, the variances resulting from such a
combined estimation strategy would not be as large as those
from the independent surveys summarized by themselves.

Even more appealing for many applications would be a
sampling design that tends to select the same units from
every frame, thereby reducing both the cost and respondent
burden of an integrated survey. This paper explores several
such designs. Three make use of permanent random
numbers. The fourth uses a variation of systematic proba-
bility proportional to size sampling. The goal for each is to
meet or exceed — at least on average — a particular set of
sample size targets.

The paper shows how a calibration (i.e., reweighted)
estimator can provide relative efficiency by capturing what
we know about the original stratum sizes in the estimation.
A final section points out that the use of a calibration tech-
nique can do more than simply reflect original stratum sizes.

An alternative strategy for burden reduction is to use
separate instruments for different survey targets and to
select distinct samples for each instrument. This increases
the number of units selected over all, but reduces the burden
per selected unit. NASS is using that approach in its
Agricultural Resources Management Study (see Kott and
Fetter 1997), but it is not the approach to be discussed here.
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2. INDEPENDENT SAMPLING AND UNBIASED
ESTIMATION

Suppose we have F’ independent frames; for example, a
sorghum frame, an oats frame, and a general grain stocks
frame. Each frame is stratified independently, and without
replacement simple random samples are drawn from each
stratum of every frame. Frame f (say, the oats frame)
contains Hj strata; stratum /4 (large oats operations) in
frame /" has NV, population units, out of which 7, units are
selected. The union of the F frames must cover the entire
(list) population, but no single frame need be complete.
The frames may overlap.

One unbiased estimator for a population total 7=, _,, ¥,
is the simple multiplicity estimator suggested by Skinner
(1991):

Iy = EieP yin(,.)/E[n(i)], ey

here P denotes the entire population, and 7,y is the number
of times unit 7 is selected for the sample from any frame.
Observe that n,, =0 for the population units not in the
sample. In the great majority of applications, n;, will be
one for most sampled units, but ;) > 1 is a possibility with
this design.

The expected number of times unit ¢ will be selected for
the sample is E[n,,\] = Y p;r, where P, is the probability of
selecting unit i in t e stratified simple random sample from
frame F; thatis, p i = INg,» where unit  is in stratum 4 of
frame f.

There is also a Horvitz-Thompson estimator for T’ under
the design, namely #,. =Y . »,/m,, where S denotes the
sample and m =1-(1-p,)(1-p)(-p. See
Bankier (1986) for further discussion of this approach.
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3. SAMPLING STRATEGIES USING
PERMANENT RANDOM NUMBERS

The sampling design discussed above is independent
across frames. For many surveys, however, it would be
convenient if the design were not independent across
frames. This is because all units in the combined sample
are given the same survey instrument, and many units are in
anumber of frames. Therefore, given frame/stratum sample-
size targets, a design with a tendency towards selecting the
same unit in every frame should result in a smaller overall
number of contacts (and consequently survey costs) than
independent sampling across frames.

To this end, suppose each unit has been given a target Py
in each frame to meet or exceed. This target value 1s
constant for all units in stratum % of frame f. We will
withhold judgement on the policy of focussing on target Dy
values — or equivalently on target », values — until the
concluding section. Suffice it to say that many statistical
agencies, including NASS, have such a policy.

One potential sampling design assigns each unit in the
population a permanent random number (PRN) drawn from
the uniform distribution on the interval [0, 1). Unit { is
selected for the frame f sample when its PRN is less than
Pir-
lfThe result is a Poisson sample where the probability of
selecting unit 7 for the sample is 7, = max, {p }, which is
clearly at least as large as each individual py for a given
unit. An unbiased Horvitz-Thompson estimator for 7'
‘under this design is ¢ = Zlesy,/max {pl }.

Under Poisson sampling, sample size is random. One
way to reduce the variance of the sample size is with a
variant of this sample design. In collocated PRN sampling,
each population unit is assigned a unique PRN from among
the members of the set {e/N, (1 +e)/N,(2 +e)/N, ...,

(N - 1 + e)/N}, where e is a uniform random variable drawn
from the interval [0, 1). To this end, one can first draw
provisional PRN’s for each unit followed by a value for e.
The unit with the smallest provisional PRN is assigned a
collocated PRN of e/N, the units with the second smallest
provisional PRN is assigned (1 +e)/V, and so on until
(N-1+e)/N is assigned to the unit with the largest
provisional PRN. The estimator ¢, remains unbiased under
collocated sampling.

Due to random nature of the sample sizes resulting from
Poisson and collocated sampling, frame/stratum sample size
targets may not be met when a particular sample is drawn.
A third PRN design begins with target n, values and
removes this possibility. In this design, the units in stratum
h of frame f'with the n,, smallest PRN’s are selected for the
sample (this is very similar to sequential Poisson sampling
in Ohlsson 1995). A Horvitz-Thompson estimator under
this fixed-sample-size PRN design requires one to compute
the selection probabilities of the sampled units — a difficult
task which may have to be approximated by simulation.
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4. A SYSTEMATIC PROBABILITY
PROPORTIONAL TO SIZE DESIGN

Another sampling design with the same selection
probabilities as the Poisson (and collocated) sampling
scheme described in the last section consists of the follow-
ing steps:

0) When necessary, create an additional “stratum” for each
frame consisting of those units not in any design
stratum.

1) Divide up the population into mutually exclusive cells
by cross-classifying the strata from the various frames.
A pair of units in a particular cell will then be in the
same stratum of each frame (e.g., the large oats stratum,
the medium grain stocks stratum, and the no sorghum
stratum).

2) Randomly order the population units in each cell and
then sort the cells themselves in any order. This results
in a list of all population units.

3) Draw a systematic probability proportional to “size”
(PPS) sample from this list using the =, described in the
discussion of Poisson sampling as the measures of size
(the word *“size” is in quotes because the =, are not
really size measures in a conventional sense). This
ensures that a unit’s selection probability equals =,.

The systematic PPS sampling design introduced above
will always result in a sample of size close to Z:EP n,. In
fact, if ) _,m is an integer, then the sample size will
exactly equal that sum. Otherwise, the sample size will be
one of the two integers closest to ), ,7,. Similarly, the
expected number of sampled units in a cell, C, will be
Ycc™;» while the actual sample size will either be ), m,
or one of the two integers closest to it.

Consider now a particular stratum # in a particular frame
J with target sample size ng,. For a unit j in this stratum,
T, > ng/Ny, by design. Let P(fh) denote the set of
population units in stratum fh. The expected number of
sampled units in fh is Yiepm W 2 1y There is no
guarantee that the realized sample size in the stratum will
be greater than or equal to n,. Nevertheless, given the
above inequality and the lower bounds on the sample sizes
of the cells within f#, the sample size in stratum fh will
never be far below 7, .

The advantages of this design over Poisson and
collocated sampling is that it produces a more stable size
and a greater likelihood of meeting frame/stratum require-
ments. Fixed-sample-size PRN, by contrast, will always
meet frame/stratum requirements, but it does so at a cost:
the design has a less stable overall sample size, and
selection probabilities can be very difficult to determine.
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5. EVALUATION OF THE ALTERNATIVE
SAMPLING TECHNIQUES

To evaluate these sampling techniques empirically, we
selected three states that conduct NASS’s Vegetable
Chemical Use Survey and replicated the three PRN tech-
niques, the systematic PPS method, and independent
sampling across frames 100 times. The assigned PRN’s
were maintained across the three PRN techniques within
each replicate. A separate frame was constructed for each
commodity of interest within a state (the number of frames
ranged from two in Minnesota to 23 in California). Popula-
tion units were allocated to one of four strata in each frame;
two probability strata, one take-all stratum, and one zero
stratum were used in each frame. Stratum boundaries were
determined using a modified Lavallée and Hidiroglou
(1988) method, and units were assigned to strata based on
a cum®¥f(x) rule (Sweet and Sigman 1995). This
stratification was chosen to mimic what might be a
reasonable or reasonably common univariate sample design.

A target sample size of one-third the population was
selected from each of the probability strata. Table 1
compares the overall sample sizes realized from each of the
sampling techniques. As expected, the independent frame
approach realized the largest sample sizes. The three PRN
techniques realized sample sizes of similar size with the
Poisson method experiencing the highest standard devia-
tions in each of 3 trials (states). The PPS method appears
to be the most stable.

Table 1
Mean realized sample sizes (over 100 replications)

Independent Fixed Poisson  Collocated Systematic
State Frame Sample Size PRN PRN PPS
Method Method Method Method Method
CA 496 388 375 374 373
(8.8) (9.6) (1L.1) (5.6) 14
MI 658 513 504 501 502
9.3) 9.2) (13.6) 6.0) (48)
NJ 563 359 343 344 343

8.1) (8.6) (13.8) 4.6) 17

Population sizes are: CA-775; MI-1041; NJ-785.
Standard deviations are in parentheses.

Table 2 shows the percentage of strata-level Poisson and
PPS samples that fell short of their target sample sizes. One
reason more shortfalls were not observed in the Poisson
methods’ realized sample sizes is the occurrence of what we
call “visitors”. A visitor is a sample unit that was not chosen
within a specific commodity’s frame, but ends up in the
sample because it was selected in another commodity’s
frame. The existence of visitors tend to cause frame-level
sample sizes to be larger, on average, than the targeted sizes.

Figure 1 shows cumulative distributions of differences
between realized and desired sample sizes as percents of the
desired sample sizes for the sampled strata. That is, the
cumulative distribution of (realized — desired)/desired at the
probability stratum level. For example, Michigan had 13
commodity frames each with two probability strata.
Sampling from these frames was replicated 100 times so
that the cumulative distribution function (CDF) for each
technique utilized 2600 points. The two Poisson methods
are shown as a single line since they coincide. The Poisson
methods do not over-sample as much as the fixed-sample-
size and independent frame methods, but at the risk of
under-sampling as we saw in Table 2. The fixed-sample-
size techniques (with dependent and independent frames)
do not experience under-sampling, but do experience more
over-sampling than the Poisson and PPS methods. The PPS
method experiences some under-sampling but not to the
extent of the Poisson methods. The PPS design also shows
the steepest gradient of all the CDF’s, indicating that it
realizes less over-sampling.

Table 2
Percentage of probability strata for which the realized
sample size fell short of the target (in 100 replications)

State Poisson PRN Collocated Systematic
Method PRN Method  PPS Method
CA 11% 11% 6.3%
MI 12% 12% 6.3%
NJ 11% 8% 1.4%

Under the Poisson and collocated techniques, the
probability of selection for unit i is &, = max (p,) where h
corresponds to the stratum in which i belongs for frame f.
The same probability of selection is used for the PPS
technique. By contrast, the probabilities of selection under
the fixed-sample-size PRN method are difficult to
determine and may need to be simulated.

Such a simulation was conducted using the California
data. The fixed-sample-size technique was run 10,000
times. Since all probability strata were sampled at a rate of
1/3, the simulated probabilities (i.e., relative frequencies)
can be compared to 1/3. The mean simulated probabilities
of selection over the 10,000 trials are shown in Figure 2 as
a function of the number of frames in which the unit is
contained within a probability stratum. There were 19
commodities of interest in this state, but no units existed in
probability strata in exactly 16 or 19 frames. A unit’s
probability of selection tends to increase with the number
probability strata containing it. This selection probability
is 1/3 only when the unit is in exactly one such stratum.
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Figure 1. Comparison of realized and desried sample sizes for sampled strata. Top - MI;
middle - CA; bottom - NJ.
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Simulated Probabilities of Selection
For Fixed Sample Size Method
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Figure 2. Simulated probabilities of selection for the fixed-sample-
size method-California

6. CALIBRATION

The problem with both ¢, and ¢, (or #,;) is that they are
often not very good estimators for T in term of precision
(variance). One of the properties of single-frame, stratified
simple random sampling is that the conventional expansion
estimator estimates the stratum population size perfectly
(i.e., with zero variance). In our multiple frame set up,
however, neither ¢, nor ¢, will estimate the N perfectly
in most apphcatlons

Let us define w = n(;y/E[n;] as the original samplmg
weight of unit i in ¢,,. Similarly, w;” = l/maxf{p }in ¢,
and 1/m, more generally fora Horv1tz-Thompson estlmator
Bankier (1986) proposed raking to create a set of adjusted
weights such that

c
w;, =N,
% Z @

for each stratum / in every frame f, where S, is that part of
the sample that is in stratum 4 of frame fregardless of the
frame(s) from which the units were selected.

Deville and Sérndal (1992) call (2) a calibration equa-
tion. They point out that there are a number of ways to
compute the calibration wezghts the wFt, so that equa-
tion (2) is satisfied and w C/ w? is in some sense close to 1
for all i. One method is rakmg as suggested by Bankier
(1986). Another method, discussed at length by Deville and
Sarndal (1992), uses least squares. Either way, the resulting

estimator
_ c
o= Does Wi Vo

where S denotes the entire sample, will be nearly design
. c, 0. .
unbiased because w, /w; is closeto 1 forall i.
The estimator . is also unbiased under the model:

F
=Bo+z

1

M\m

:h Bﬂ, 3

>
n

where the dummy variable, d 4o 18 1 when unit 7 is in
stratum A of frame f (sampled or not) and zero otherwise,
while €, is a random variable with a mean of zero. The
and the B, are unknown constants (3, represents the mean
y-value for a unit in the first stratum of every frame; that is
why the second sum excludes 4 = 1). The same djs, values
apply to every survey item (y) of interest, while the [
values change with the survey item. For many survey items,
B,, values will be zero when frame f (say, grain stocks) is
irrelevant to the item (say, planted oat acres).

Isaki and Fuller (1982) call the model expectation of the
design mean squared error of #- the “anticipated mean
squared error” of the estimator. This value is of most use at
the planning stage of a sample survey.

If the model in equation (3) holds, and the €, are uncor-
related, then the anticipated mean squared error of /. is

EIMSER(t)] = ELE, Y, w, v, -3, »)1)
= Ep{E I, w, v, -2 ¥}
EfE I, w, € -2 €)1)
=Ep (Y, (0,97 - 2w, V(D)) + Y E(€))
= E (Y [(Um)? - 2m)E(eD)} + Y., E(€])
=Y, (m - DELE), @)

since w,.c = I/n,. It is of some interest to note that using
Poisson, collocated, and systematic PPS sampling result in
estimators with approximately equal anticipated mean
squared errors asymptoticaily. This surprising result is in
part due to the nature of a calibrated estimator, but it is also
a repercussion of the fact that when we take the design
expectation of the approximate model variance in the last
line of equation (4), we average over all possible samples
and remove the biggest source of variation among the three
sampling designs.

Now suppose we had used stratified simple random
sampling and selected unit / with probability p; <=,
where fis the frame relevant to y. It is not hard to show
that the anticipated variance of the 51mp1e expansion
estimator would have been ZP (Ip,.— DE, (e ), which is
at least as large as the right hand side of equation (4). Thus,
there are gains — in large samples, at least — from
“integrating” the samples from various frames as we have
effectively done. How large the samples must be in practice
for the asymptotic results to be relevant is unclear. At the
very least, the sample size must be many times the number
of model parameters in equation (3).

A few words on mean squared error estimation for ¢ are
in order. The mean squared error estimator advocated by
Deville and S#rndal (1992) — an estimator with both good
design and model-based properties —can not be implemented
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unless the joint selection probability (n,.j) for every pair of
sample units (7 and ;) is known. Among the designs we
have discussed, these probabilities are easily calculated
only for the Poisson variant of PRN (where &, = ninj).

As we have observed in equation (4), the anticipated
mean squared error of the calibration estimator is the same
under Poisson PRN, collocated PRN, and systematic PPS
sampling. This suggests that the Poisson mean squared
error estimator may be reasonable under each of the three
designs. A stronger model-driven argument exists for this
contention, but will not be made here.

7. DISCUSSION

In the last section, it was pointed out that if calibration
weights were designed to satisfy equation (2), the resulting
estimator would be unbiased under the model in equa-
tion (3). In many applications, there may be a more
appropriate model on which to base calibration than the one
in equation (3). For example, if there was a continuous
control variable used to stratify a particular frame, it makes
more sense to use that variable directly in the model rather
than indirectly through frame/stratum identifiers.

Raking is a form of calibration under a particular model.
With that in mind, it makes sense to use the most reasonable
model available. Least squares has the advantage over
raking that it can easily be applied to continuous control
variables. Singh and Mohl (1996) provide an extensive
review of alternative calibration algorithms including an
extension of raking to continuous variables. An intriguing
least-squares variant missed by Singh and Mohl (1996) can
be found in Brewer (1994).

Many economic and agricultural surveys employ rotating
sample designs. This has proved an effective way to
balance cost and burden considerations. Although our
empirical findings demonstrated an advantage of the sys-
tematic PPS methodology in terms of meeting target sample
sizes, the three PRN designs are much more conducive to
sample rotation. See, for example, Ohlsson (1995) on this
topic. Moreover, with the PRN methods, one can integrate
different frames at different times of the year (with systema-
tic PPS there is no easy way to allocate the sample back to
the frame of origin). This is a particularly useful property

-for agricultural surveys because different crops have
different growing seasons.

In summary, the fixed-sample-size PRN sample design
is excellent for meeting target sample sizes but is hard to
use in practice because selection probabilities are usually
unknown and must be simulated. The systematic PPS
design is very good at meeting target sample sizes but is
difficult to incorporate into a sample rotation scheme.
Moreover, mean squared error estimation requires invoca-
tion of model assumptions. Our empirical example shows
that collocated sampling may only be slightly better than
Poisson at meeting target sample sizes. It should be recog-
nized, however, that other configurations of the frames,

strata, and sampling fractions may produce different results.
Moreover, collocated sampling is conducive to rotation
schemes, like Poisson sampling. On the other hand, like
PPS sampling, it requires the assumption of a model to
estimate mean squared error.

Finally, setting p i OF 71, targets is a popular, but indirect,
means of controlling the variance of the estimator 7.
associated with each frame. These targets lead to our ad hoc
decision to set m; equal to max {p,}. A more direct
strategy would be to set (asymptotic) anticipated variance
targets for each frame estimator using equation (4) and
postulated values for the E_ (€2). One could then choose,
say, the set of m; that minimizes the expected sample size
yet satisfy these variance targets. A similar approach is
taken by Amrhein, Fleming, and Bailey (1997) who use
Chromy’s algorithm in a manner analogous to Sigman and
Monsour (1995). Poisson PRN, collocated PRN, and
systematic PPS sampling remain three viable alternatives
for selecting the sample once optimal «; are determined.
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