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Can the Jackknife Be Used With a Two-Phase Sample?

PHILLIP S. KOTT and DIANA M. STUKEL'

ABSTRACT

The jackknife variance estimator has been shown to have desirable properties when used with smooth estimators based on
stratified multi-stage samples. This paper focuses on the use of the jackknife given a particular two-phase sampling design:
a stratified with-replacement probability cluster sample is drawn, elements from sampled clusters are then restratified, and
simple random subsamples are selected within each second-phase stratum. It turns out that the jackknife can behave
reasonably well as an estimator for the variance for one common “expansion” estimator but not for another. Extensions
to more complex estimation strategies are then discussed. A Monte Carlo study supports our principal findings.

KEY WORDS: Stratified; Reweighted expansion estimator; Double expansion estimator; Asymptotic.

1. INTRODUCTION

Krewski and Rao (1981) and Rao and Wu (1985)
explore the design-based properties of the jackknife
variance estimator given a stratified multi-stage sample
incorporating with-replacement sampling in the first stage.
Their results, although fairly general, cannot be directly
applied to many multi-phase sampling designs. See also
Wolter (1985; Chapter 4.5).

In this paper, we consider a simple example of two-phase
sampling. A stratified with-replacement probability cluster
sample is selected in a first phase of sampling. The
elements in sampled clusters are then restratified, perhaps
using information gathered from the first-phase sample, and
a stratified simple random subsample is drawn without
replacement.

One can estimate a total without auxiliary information in
one of two ways. In the double expansion estimator — called
“the m* estimator” in Sirndal, Swensson, and Wretman
(1992, p. 347) — the value of each subsampled element is
simply multiplied by the product of its expansion factor at
each phase (i.e., the inverses of its first-phase and second-
phase selection probabilities) and then summed.

Although the double expansion estimator is more easily
located in text books, the reweighted expansion estimator
may be more common in practice, especially when element
nonresponse is treated as a second phase of sampling, as in
the weighting class estimator of Oh and Scheuren (1983,
p. 150). An estimator for the population size of each
second-phase stratum is computed by summing the first-
phase expansion factors of all the elements in the second-
phase stratum before subsampling. This value is then
multiplied by the estimated second-phase stratum mean
based on the subsample to yield an estimated stratum total.
The second-phase estimated stratum totals are finally added
together to produce the reweighted expansion estimator for
the population total.

We are more concerned here with real two-phase
sampling, rather than the artifice of treating nonresponse as

an additional sampling phase. The National Agricultural
Statistics Service (NASS) presently uses the double
expansion estimator in its Quarterly Agricultural Surveys
(QAS). A stratified area cluster sample is enumerated in
June. Farms identified in the June survey are restratified
based on their June responses and then subsampled for
enumeration in September, December, and March.

NASS uses a two-phase design and the reweighted
expansion estimator for its on-farm chemical use surveys.
The first phase of sampling identifies farms with specific
crops, and the second phase measures pesticide use on
those crops.

This paper shows that although the jackknife may be
used to estimate the variance of the reweighted expansion
estimator under certain conditions, it is not generally
effective as a variance estimator for the double expansion
estimator. Section 2 introduces the reweighted expansion
estimator and discusses its mean squared error. Section 3
shows that the jackknife variance estimator can be nearly
unbiased for the reweighted variance estimator, while
Section 4 addresses the jackknife’s failings as a variance
estimator for the double expansion estimator. Section 5
describes a simulation study that appears to confirm the
main assertions of the previous sections. Section 6
discusses extensions of the reweighted expansion estimator,
and Section 7 offers some concluding remarks. An
appendix provides an outline of our assumed asymptotic
framework and some proofs.

2. THE REWEIGHTED EXPANSION
ESTIMATOR

2.1 The Estimator

Let A(=1,...,H) denote the first-phase strata of a
stratified with-replacement probability cluster sample, 7,
the number of sampled clusters in stratum 4, and F, the set
of those clusters. Let g(=1,..., G) be the second-phase
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strata from which a stratified simple random subsample is
drawn without replacement. An element in a cluster
sampled p times in the first phase is treated as p distinct
elements for the subsample. Let A, be the number of
elements in g before subsampling and »_ the number of
subsampled elements in g. In practice, the G second-phase
strata are often not defined until after the first-phase sample
has been drawn.

Let S, be the set of elements in g before subsampling, s,
the set of subsampled elements in g, s the entire set of
subsampled elements, and m =) _m_ the subsample size.
Finally, let y, be the value of interest for element 7, and w,
the first-phase expansion factor for i (i.e., the inverse of the
selection probability for the cluster containing 7).

The estimator for the population total, 7, one would use
if all the elements in the first-phase sample were
enumerated can be written as
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An alternative expression for £, is
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is the adjusted weight for element i. Equation (3) is what
gives the reweighted expansion estimator its name.

2.2 Its Mean Squared Error (Some Theory)

Now ¢, is not, in general, an unbiased estimator of T.
Nevertheless, under certain mild conditions specified in the
appendix, it is a design consistent estimator for 75 that is,
plim___(¢,- T)/T=0 (Isaki and Fuller 1982). For the
exposition in the text, it suffices to say that the m, are
assumed to be large.

Observe that
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where the subscripts on Var and £ denote the phase of

sampling.  Since the m, are assumed to be large,
E[t,t,-tD] =t,E,(t,-£)=0. Also, E(,-T)=
E|[E,(t,- I)] =0, and the mean squared error of 7, is

effectively its (asymptotic) variance.
Since first phase of sampling was conducted with
replacement, Var, (¢,) can, in principle, be estimated by
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where U, is the set the elements in sampled cluster j of

first-phase stratum 4. The subscript L denotes “lineari-

zation” for historical reasons although there is nothing to

linearize in this context. Note that when there is a second

phase of sampling, it will generally not be possible to

compute v, , in practice.
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Observe that equation (6) does not ignore the finite
population corrections from the second phase of sampling.

3. THE JACKKNIFE VARIANCE ESTIMATOR

3.1 The Variance Estimator

We are now ready to discuss the jackknife. Forje F,,
define the jackknife replicate £, as

G E whﬂy i

i€sy
w ) 7
(hj)2 ‘; Z; B, L E Whji ()
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where
wn,/(n, - 1) when ieU,, and j'#j
Wi = 0 when ieU,
and A’ #h.
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Similarly, we define

G
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Following Rust (1985), the jackknife variance estimator,
A Jf(f =1 or 2), is defined here simply as

H
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This form is labeled v® in Krewski and Rao (1981,
equation (2.4)). It is easy to show that v, =v,,.

3.2 Why it Works (More Theory)

We will soon see that v,, provides a nearly unbiased
estimator for the variance of the reweighted expansion
estimator in equation (2). Rao and Shao (1992) indirectly
make the same claim (our equation (2) is the expectation of
their estimator in Section 3.3, pp. 818-819). Their work,
however, treats nonresponse as an additional phase of
sample selection in which Poisson sampling (Sérndal et al.
1992, p. 85) is used in place of stratified simple random
sampling. Each first-phase sample element in the Rao
and Shao (1992) setup is effectively a second-phase
stratum. Consequently, the near unbiasedness of v,
reduces to a special case of a result in Krewski and Rao
(Rao and Shao 1992, p. 821).

What we have called the second-phase strata are
reweighting classes in the Rao and Shao (1992) setup.
Elements in the same class are assumed to have the same
unknown probability of selection/response. Conditional on
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the realized subsample sizes within reweighting classes,
Poisson sampling is equivalent to stratified simple random
sampling. Rao and Shao’s (1992) treatment, however, is
unconditional.

Returning to the problem at hand, observe that
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Under mild conditions (see equations (A2) and (A3) in
the appendix), we have the following analogue to equation

(5):
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Let e, =M, /m, be the second-phase expansion factor
for i € S,. Observe that ¢, is arandom variable with E(c)) =
mglM, and E(c;cp) = (m /M) (m, - D/, - 1) for
keSS, i+k

g
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E,

(E w,-z,-) 2]:(}: w,yf)2 + ¥ (e;- Dowr)?

ieUy, i€l €Uy,

G
- Y
g=1 i,keS,n U,
izk

[a- mg/Mg)/mg]w,.riwkrk. (12)

Similarly, letting F, be the set of elements from selected
clusters in the first-phase stratum 4 before subsampling, we

have
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In the appendix, it is argued that under mild conditions that
the last term in both equations (12) and (13) is negligible.
As aresult,

H
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which in turn implies that v, is a nearly unbiased estimator
for E[(t, - T)*.

4. THE DOUBLE EXPANSION ESTIMATOR

An alternative to ¢,, the double expansion estimator, has
the form:

G
t, = 2 Y. M im)wy,
g= iesg
The definition of a jackknife replicate for ¢ is unclear. One
simple possibility is

G
fops = 2 2o Wy (M m)y,
g=1 ies,

Another, perhaps more in the spirit of “replication”, is

(15)
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where M, is the number of elements in the first-phase
sample (i.e., in a cluster in the first-phase sample) that are
in S, but not U, . Similarly, m,. is the number of
g . ghi .

elements in the second-phase sample that are in s _ but not
U, Through counter-examples given in the appendix, we
show that neither version of the replicate produces a
jackknife variance estimator (v,; from equation (8)) that is
asymptotically unbiased in general.

5. A MONTE CARLO SIMULATION STUDY

5.1 Design of the Study

The results given so far in the text are asymptotic. In
order to assess the accuracy of the jackknife as a variance
estimator for the reweighted expansion estimator in a finite
world, we undertook a Monte Carlo simulation study. At
the same time, we assessed the accuracy of the two
jackknife estimators suggested for the double expansion
estimator in Section 4.

We used December 1990 Canadian Labour Force Survey
(LFS) sample data for the province of Newfoundland to
simulate a finite population, from which repeated samples
were drawn. The LFS is the largest ongoing household
sample survey conducted by Statistics Canada. Monthly
data relating to the labour market is collected using a
complex multi-stage sampling design with several levels of
stratification. The details of the design of the survey prior
to the 1991 redesign can be found in Singh, Drew,
Gambino and Mayda (1990) and Stukel and Boyer (1992).
In general, provinces are stratified into “economic regions”,
which are large areas of similar economic structure;
Newfoundland has four such economic regions. The
economic regions are further substratified into lower level
substrata. The lowest level of stratification in
Newfoundland yielded 45 strata, each of which contained
less than 6 clusters or primary sampling units (PSU’s),
which was an insufficient number from which to sample for
the purposes of the simulation. Thus, the 45 strata were
collapsed down to 18, each containing between 6 and 18
PSU’s. In collapsing the strata, economic regions were kept
intact, as were the Census Metropolitan Areas of St. John’s
and Cornerbrook.

For the Monte Carlo study, R = 4,000 samples were
drawn from the Newfoundland “population” (which was
9,152 individuals), according to the following two-phase
design: within each first-phase stratum, two PSU’s were
selected at the first phase using simple random sampling
(SRS) with replacement. This yielded a total of 36 PSU’s.
All households within selected first-phase PSU’s (as well
as individuals within those households) were selected,
resulting in a single-stage take-all cluster sample. At the
second phase, all selected first-phase elements (individuals,
treating each person in a PSU selected twice as two separate
individuals) were restratified according to five age
categories (< = 14, 15-24, 25-44, 45-64, > = 65), and
second-phase sample elements (i.e., individuals) were
drawn using SRS without replacement sampling within
each of the five second-phase strata.
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We varied the second-phase stratum sample size to take
on values m g™ 5, 10, 20, and 50 yielding overall second-
phase sample sizes of m = 25, 50, 100, and 250. When the
number of first-phase-sampled individuals in a second-
phase stratum was less than our target m, value, we
planned to set m, = M, but that event never occurred.

A popular rule of thumb for a “separate ratio estimator”
such as the reweighted expansion estimator in equation (2)
is that there should be at least 20 individuals within each
second-phase stratum (see, for example, Sdrndal, Swensson
and Wretman 1992, p. 270). By allowing m_ to be as small
as 5 and 10, we are checking whether this rule is really
necessary.

We considered two parameters of interest: T, the total
number of employed, and 7' y/ T the employmentrate. Here
Ty =Y uY;» Where y, =1 when individual i is employed;
0’otherwise. Similarly, T = ZieUzi, where z, =1 when
individual 7 is in the labour force (i.e., either employed or
unemployed); O otherwise. For each of the R = 4,000
samples, we calculated the reweighted expansion estimator
(REE), t,, given by equation (2), the double expansion
estimator (DEE), #,, given by equation (15), and the full
first-phase expansion estimator (FFPE), t, given by
equation (1). Although these estimators are defined for
totals (applicable for total number of employed), it is a
simple matter to extend them to ratios of totals (applicable
for employment rate).

For each of the R = 4,000 second-phase samples, we
calculated the jackknife variance corresponding to the
reweighted expansion estimator and the double expansion
estimator, given by equation (8) with /=2 and f=3
respectively. In the case of the double expansion estimator,
we attempted both the replicates defined in equations (16)
and (17), which we will refer to as variant 1 and 2,
respectively.

For each of the R = 4,000 first-phase samples, we also
calculated the jackknife variance corresponding to the full
first-phase estimator for comparison purposes. This is
given by equation (8) with f= 1.

For all of the above estimators and their corresponding
jackknife variances, a number of frequentist properties were
investigated. These are given below. For simplicity, they
are expressed only in terms of estimates of the total number
of employed.

The percent relative bias of the estimated number of
employed with respect to the population value is estimated
by

PRB(t") = {[E,,(t *)/Ty] -1} x 100, (18)

where
4,000
E, (t") =(1/4,000) Y ¢,
r=1

is the Monte Carlo expectation of the point estimator ¢~
taken over the 4,000 samples. Here ¢* can be either 7, 2,,
or t,, and ¢, is the value of ¢* for sample 7.

The percent relative bias of the jackknife variance
estimator with respect to the true mean squared error is
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estimated by
PRB[v, ()] =

({Epfv,(t )] - MSE,, }/MSE,,,) x 100, (19)
where
4,000

E\ v, (t D] = (1/4,000) 3 v, ("),
r=1

4,000
MSE,,, = (1/4,000) Y, (¢, - T,)%,
r=1

and v W (t7) is the value of v, (¢ *) for sample r.
The (percent) coefficient of variation of the jackknife
variance with respect to the true MSE is estimated by:

CV[v, (¢ )] =
({(1/4,000)Y [V, (¢ ")~ MSE,, '} /MSE,,)x 100; (20)

that is, the estimated root mean squared error of the
variance estimator divided by the estimated true MSE,
expressed as a percentage.

5.2 Results of the Study

Table 1A gives the estimated percent relative biases of
the three point estimates for the total number of employed
using equation (18), and Table 1B gives the same for the
employment rate. All biases are less than 1% in absolute
value.

Table 1A
Percent Relative Bias of the Point Estimates
for Total Number of Employed

Estimator mg=Mg mg:SO mg=20 mg=10 mg=5
REE - 0.14 -0.3 -0.29 -0.56
DEE - 0.16 -0.01 0.03 0.115
FFPE 0.04 - - - -

Table 1B
Percent Relative Bias of the Point Estimates
for Employment Rate

Estimator mg=Mg mg=50 mg=20 mg=10 m =5
REE - -0.09 -0.31 -019  -0.26
DEE - -0.08 -0.27 -012  -0.13
FFPE -0.09 - - - -

REE - Reweighted Expansion Estimator (¢,)
DEE - Double Expansion Estimator (¢;)
FFPE - Full First Phase Estimator (¢,)
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Not displayed are the Monte Carlo estimates of the mean
squared errors (i.e., the values of MSE,,.) and the
corresponding coefficients of variation from using either
the reweighted or double expansion estimator. This is
because the focus in this article is on mean squared error
estimation. The mean squared errors (and coefficients of
variation) from using the two estimators are comparable for
each sample size (a relative difference in the coefficient of
variation is roughly half of the corresponding relative
difference in mean squared error). The reweighted
expansion estimator is slightly more efficient when
estimating the total number of employed individuals (e.g.,
when m_ =35, the double expansion estimator has 17%

g .
more mean squared error). There is less than a 1%
difference in the mean squared errors from using the two
approaches when estimating the employment rate. Not
surprisingly, the mean squared errors for all estimators
increase as the second-phase sample size decreases.

Table 2A gives the estimated percent relative biases of
the jackknife variances for the total number of employed
using equation (19), and Table 2B gives the same for the
employment rate. Focusing first on Table 2A, the full first-
phase estimator’s variance is almost perfectly unbiased, at
0.94%. The jackknife for the reweighted expansion
estimator works well, having small negative biases in the
variances always less than -6%. The biases tend to become
more negative (although not uniformly) as the second-phase
sample sizes diminish.

Table 2A
Percent Relative Bias of Jackknife Variances
for Total Number of Employed

Estimator mg=Mg mg=50 mg=20 mg=10 mg=5
REE - -0.99 -2.51 -5.81 -5.13
DE

K E - 46.35 68.24 78.18 86.22

(Variant 1)

DEE 101.59 278.44 65499 1997.51

(Variant 2) ’ ’ ’ ’
FFPE 0.94 - - - -

Table 2B
Percent Relative Bias of Jackknife Variances
for Employment Rate

Estimator mg=Mg mg=50 mg:20 mg=10 mg=5
REE - -3.53 -3.45 -7.09 -6.55
DEE

- -2.46 -1.53 -5.21 -7.41

(Variant 1)

DEE -0.36 4.91 9.09 30.46

(Variant 2) ) ’ ’ ’
FFPE 2.08 - - - -

REE - Reweighted Expansion Estimator (z,)

DEE - Double Expansion Estimator (z;)

FFPE - Full First Phase Estimator ()

Variant 1 uses the jackknife replicates in equation (16)
Variant 2 uses the jackknife replicates in equation (17)

In contrast, both jackknife variants for the double
expansion estimator fail miserably, with very large positive
biases in the variances ranging from 46.35% to 1997.51%!
The second variant is worse than the first, but both are well
beyond the realm of acceptable behavior.

Table 2B repeats the analysis for the ratio estimate of
employment rate. The results here are surprising since all
variance estimators behave reasonably well, with the
exception of variant 2 of the double expansion estimator
when m_ =5. Other than this case where the bias in the
variance is 30.46%, all other biases are less than 10% in
absolute value.

Overall, Table 2A and 2B provide strong support for
using the jackknife variance estimator with a reweighted
expansion estimator even when second-phase sample sizes
are surprisingly small. By contrast, the jackknife can fail
miserably for the double expansion estimator when
estimating totals. Sometimes, however, variant 1 can also
work reasonably well depending on the estimator and the
data.

Although most studies focus on the bias of the variance
estimators, it is also of secondary interest to look at the
coefficient of variation of the variance estimators to see
how stable the variance estimates themselves are. In Tables
3A and 3B, we investigate the estimated (percent)
coefficients of variation corresponding to the total number
of employed and the employment rate, respectively. In
equation (20), the expression under the square root in the
numerator gives the MSE of the variance, whose
component parts are the square of the bias of the variance
and the variance of the variance. For those entries in Tables

2A and 2B where the bias of the variance has been

determined to be exceedingly large (say larger than 20%),
the corresponding entries in Tables 3A and 3B are not
reported (indicated by a *), since it is clear that those entries
will be excessively large. In Table 3A, the estimated
coefficients of variation corresponding to the reweighted
expansion estimator range between 46.86% and 53.42%.
Coefficients of variation of the magnitude exhibited here
are typical for variance estimators, and have been
encountered in other simulation studies relating to
variances. See, for example, Kovacevi¢ and Yung (1997).
To that end, note that even the estimated coefficients of
variation corresponding to the full first-phase estimators are
in the same range, and in fact, somewhat higher than those
of the second-phase estimators in all cases.

Table 3B, which gives the coefficients of variation for
the variances of the estimated employment rates, are entry
by entry higher than their counterparts in Table 3A. In
addition, all estimators exhibit the pattern that their
corresponding coefficients of variation increase, quite
substantially in fact, as the second-phase sample sizes
diminish. This effect is more pronounced for the ratio
estimators than it is for the estimators of the total. The very
high coefficients of variation in the column m_ =5 for both
tables is not surprising, since the overall second-phase
sample size (25) is actually smaller than the number of
PSU’s drawn in the first phase of sampling (36). In fact, a
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Table 3A
Coefficient of Variation of Jackknife Variances
for Total Number of Employed

Estimator mg=Mg m_ =50 m_=20 m_ =10 mg=5

b4 4 4
REE - 51.33 493 46.86 53.42
DEE _ * * * *
(Variant 1)
DEE —~ * * * *
(Variant 2)
FFPE 56.71 — - - -
Table 3B
Coefficient of Variation of Jackknife Variances
for Employment Rate
Estimator mg=Mg mg=50 mg:20 mg=10 mg:S
REE - 59.28 65.66 74.26 103.06
DEE - 59.24 66.16 72.89 99.1
(Variant 1)
DEE - 60.94 73.2 92.71 *
(Variant 2)
FFPE 78.42 - - — -

REE - Reweighted Expansion Estimator (z,)

DEE - Double Expansion Estimator (£;)

FFPE - Full First Phase Estimator (2,)

Variant 1 uses the jackknife replicates in equation (16)
Variant 2 uses the jackknife replicates in equation (17)

more relevant realized sample count for the ratio estimator
is the number of sampled individuals in the labour force
(i.e., in the denominator). This value varies from sample to
sample and is often considerably less than 25.

6. EXTENDING THE REWEIGHTED
EXPANSION ESTIMATOR

6.1 The Reweighted Expansion Estimator

It is not that difficult to develop a linearization variance
estimator for the reweighted expansion estimator in
equation (2). Suppose, however, one had a sample design
with more than two phases or was interested in estimating
the ratio of two totals. Linearization, although still possible,
becomes increasingly cumbersome. The jackknife, on the
other hand, does not.

It is a simple matter to generalize the results in Section
3 to p-phase sampling by induction. The 4 still refer the
first-phase strata, but the g now denote the p-th-phase
strata; S is the set of elements in the (p-1)th-phase sample
from stratum g while s_ is the pth-phase subsample from g.
The w, in equation (2) are replaced with the g, from (3)
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for the (p-1)th-phase estimator. Similarly, the ¢, ., in the
jackknife are computed using a,; from the (p-1)th phase in
place of the w,.

It is also a simple matter (left to the reader) to replace the
stratified cluster sample in the first phase of selection with
a stratified multi-stage sample. The results in Section 3
follow as long as the first stage of the multi-stage sample is
drawn with replacement.

Finally, it is not difficult to extend the results of
Section 3 to more complicated estimators. Let U, be a
vector of estimators each in the form of ¢, from equation
(2). The mean squared error of any estimator @ = g(U),),
where g is a smooth function, can be estimated with a
jackknife in a nearly unbiased manner whenever the
members of U, can be. This follows the proofs in the
literature. Rao and Wu (1985), for example, address the
asymptotic framework where the n, are all bounded, while
Wolter (1985; Chapter 4.5) treats the case where the n,
grow arbitrarily large.

6.2 Regression in the Second Phase

The estimator ¢, can be generalized into the regression
estimator:

-1
Dyceg =E Wixi( Z w,edXx; xi) (E wieidixilyi) > (21
ieS ies i€s
where S denotes the original sample, x; is a row vector, d,
is a scalar, and there exists a row vector y such that
d;yx; =1 for all i. In practice, d, is usually 1 forall i. A
popular exception occurs when x; =x; and 4, = 1/x. In
equation (2), d, =1 for all i, and x, is a G-vector with a
value of 1 in the g-th position and O’s elsewhere for i€ S, o
Let

ri=Vi™ xi(z widixi,xi) _I(E Widixi,yi) :
ieS i€S
The replicate t,,, ., has the same form as ¢, ., except
that w,, replaces w; everywhere. Similarly, r,; has the
same form as 7; except that w,, replaces w,. Note that the e,
are unchanged from byreg 10 Dorepiiy

Since the sampling design ilasn’t changed, most of
equation (6) stays as is except that now (Y es w,.ri)2 is
nonnegative rather than strictly zero. The interesfed reader
can verify that equations (10) through (13) remain in their
present form. It turns out that the jackknife has, if anything,
an (approximate) upward bias in equation (14). That is to
say, the jackknife is a conservative estimator of variance.
Again, see the apppendix (equations (A6) through (A9)) for
a formal statement of the asymptotic assumptions.

The bias in the jackknife disappears when ) o w,;7; =0
for all g. Formally, this will happen when there’exists G
row Vvectors 7v,, ..., Y5 such that d,,ygxi’ =1 when i€S§,
and O otherwise (since Y, w7, =Y d ¥, X/ W=
Te LiesWid X, 7, = Vg (L Wid X, 0 = X[, wid ) X7

Widx;'y)} =0). Whenall d, = 1, the existence of e

i
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means that either one member of x; is an indicator variable
equal to 1 when i€ S and O otherwise, or one member of a
linear transform of x; is such an indicator variable.

7. CONCLUDING REMARKS

The main purpose of this paper was to show that a
simple jackknife variance estimator can be nearly unbiased
for an estimation strategy involving two-phase sampling as
long as that strategy employs a reweighted expansion
estimator and not a double expansion estimator. Since the
theoretical results for the reweighted expansion estimator
rely on asymptotic arguments, their practical application
will depend on the context. Nevertheless, a Monte Carlo
simulation study performed here suggests that the jackknife
can be an effective estimator for the variance of a
reweighted expansion estimator even with surprisingly
small second-phase stratum sample sizes, that is, sizes of 5
and 10.

APPENDIX

The Design Consistency of the Reweighted Expansion
Estimator

To establish the design consistency of ¢, in equation (2)
it is sufficient to assume that the sample design and
population values of the y, are such that

G
{E (Mg/mg)z w,.y,./T} -1=0,(1Wm),

g=1 ics,

and, given any first-phase sample,

Yw/Y wk] (m /M) -1=0,(Nm) (A1)

kesS, kes,

for all g. These assumptions justify equation (5) in the text.

We assume in our analysis that G is bounded and that
each m_ has the same asymptotic order as m. This is only
possible when the S_ are determined affer the first-phase
sample has been drawn. Otherwise, the M, would be
random variables, and a minimum size for each m, could
not be guaranteed for all possible first-phase samples. In
principle, we are assuming the existence of a mechanism
for determining the S and the second-phase sampling
fractions given any first-phase sample. By contrast, the
exact values of G and the m, can but need not be fixed
before the first-phase sample is drawn.

A Comment on the Asymptotic Framework

Recall that the text showed that the jackknife contains a
component that estimates the second-phase variance (i.e.,
E, [, - tl)z]) in an asymptotically unbiased manner given
any first- phase sample (see equation (14)). As a result, that
component also estimates the average (i.e., unconditional)
second-phase variance across all possible first-phase
samples (i.e., E{E,[(z,- tl)z] }) in an asymptotically
unbiased manner.

In our empirical work, we strayed from the sampling
framework described above so that the results could be
easily summarized. In particular, we defined the S
beforehand, and let the M_ be random. When the first-

‘phase sample was such that M was less than the desired

m_, (say 50) in some second-phase stratum, we planned to
choose all the individuals in S; for the second-phase
sample. As a result, there would be no contribution to the
mean squared error (or bias) of #, from second-phase
stratum g when that particular first-phase sample was
selected, and so no asymptotic assumptions about m
would be necessary. As it happened, in no simulation was
M_ actually less than 50. Nevertheless, a decision rule
about the second-phase sampling fractions was in place for
every possible first-phase sample.

Jackknife Replicates

There are (at least) two distinct asymptotic frameworks
for the first-phase sample. In the first, there is an arbitrarily
large number of first-phase strata each of which is bounded
in size; that is, each 1/a, = O(1) while 1/H = O(1/m). In
the second, all the first-phase strata are arbitrarily large;
thatis, 1/n, = O(1/m). Under either framework, we assume
that the number of elements in each cluster is O(1); that is
to say, bounded.

Since every m_, is of the same asymptotic order as m, it
is not unreasona%le to assume under either regime that,
given any first-phase sample,

,.‘j;‘ Wy ggj w,~ 1= 0,(1/m), (A2)
and
E Whji/z L 1= Op(l/m), (A3)

IESg IESg

which can be used to establish equation (9). Similarly, we
assume that given any first-phase sample

Z Whjiyi/z wy -1= Op(l/m),
ieSg ieSg

which assures us that Pii =10 = 0p(1/m).

(A4)

Equations (12), (13), and (14)

Since the number of elements in each cluster is
bounded, say by B. The third term on the right hand side of
equation (12) has at most GB? terms, a bounded number.

Each of these terms is of order 1/m, (formally, the
probability that any one term is of asymptotic order greater
than 1/m, is zero). Consequently, the second line of
equation (12) is asymptotically ignorable.

Equation (14) holds when each 1/n, = O(1), because if
each n, is less than C (say), then the third term on the right
hand side of equation (13) will be the sum of at most
G(BC)? terms, a bounded number. Each of these terms is
again of order 1/m_. Consequently, the second line of
equation (13) is asymptotically ignorable.

Alternatively, suppose each 1/n, were O(1/m). We will
assume that the sample design and population is such that,
given any first-phase sample,
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4= 3 wec;- Dr,/ X wy,=0,(m) g
ieF) iefy

for all 1. To see why this is a reasonable assumption,
observe that conditioned on the first-phase sample, the
denominator of 4, is a domain total — the sum of the w,y;
among the elements in F,. Consequently, it is O(m)
(without loss of generality we can assume that all the w, are
O(1)). The numerator of 4, is the difference between an
expansion estimator (the sum of the w,e;c,7; in F; h*) based
on a stratified simple random sample and its target (the sum
of the w,r, in F, ). Equation (A.5) makes the modest
assumption that the sampling design and population is such
that this difference is Op(\/ m) for every possible first-phase
sample.

Under assumption (A5), Yerw,z, =Y .-wy,(1 +4,)
is approximately equal to Zier,,' WY, which implies
Ez[(ZiEF; W, Z,‘)2]/nh = (Zith' w,'y,‘) /nh' Equation (14)
follows from this near equality and from equations (11) and
(12) (since n, is large, n,/(n, - 1) = 1).

Counter-examples to the Jackknifes for the Double
Expansion Estimator

As a counter-example to the replicate form in equation
(16), consider the situation where each cluster contains a
single element, # = G = 1, and all the y, values are equal
to 1. As a result, ty = T, which means that t has no
variance. Unfortunately fq;)3 = T'[n,/(n, - 1)](m - 1)/m
when jes and Tn/(n,-1) otherwise. Thus,
(s~ TIT = Op(1/m). Now v,/T? computed from the
Iy would also be O(1/m)since it is the sum of »,; terms
of order O(1/m?).

Although vJ3/T2 is O(1/m), v, is not close enough to
zero for our purposes. To see why, observe that if the y,
were all N(1,1), then the relative variance of #; would be
1/m, which is also O(1/m). Thus, for v, to be nearly zero,
v, IT 2 would have to be smaller than O(1/m). It is not,
and the jackknife variance estimator is not nearly unbiased.

As a counter-example to the replicate form in equation
(17), consider the situation where each cluster is again a
single element and all y, values are equal to 1, but now
H=m,G =1, the population size in each & is Ny, n, =2
forall 2, and M, =2m. As a result, T = ¢, = mN,, so that
t, has no variance. The replicate fp)s can take on
four possible values. If Ajes and Aj'es(j #j’), then
tayys = [(m/2)(2m - Dlm - DIN,.  If hjes and by’ é¢s,
then 7,3 = [({nz - 1}/2)2m - Df(m - DIN,,. If hj¢s and
h'es, then ty,, = [(m/2)2m - 1)imIN,. If hj¢s and
hj'¢s, then g3 =[({m - 1}/2)2m - 1)/m]IN,. In all
cases, (tp3~ TVT =0 (1/m), and so the jackknife
variance estimator fails to be nearly unbiased.

The Two-phase Regression Estimator

To support the arguments in the text about the regression
estimator in equation (21), we assume the sampling design
and population values are such that the following
asymptotic relationships hold. First,
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Z w,_xi(z w.e.dAx.'xl.)—ldl.xi' -1= Op(l/\/m), (A6)

[ AN A §
ieS i€s

which is a generalization of equation (Al). Likewise,
equations (A2) and (A3) generalize to
> whjidiqi/z w,diq,~ 1=0,(1/m), (A7)
ieSg ieS,

and
> whjieidiqi/z w,ed,q; = 1=0,(1/m)

IESg IESg

(A8)

for all g,, where ¢, is an element of the matrix x;’x;.
Finally, the assumption in equation (A4) generalizes to

> whjidipi/z wdp;= 1 =0 ,(1/m)
ieS, €S,

for all p,, where p;, is an element of the matrix x;’y,.

(A9)
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