Can the Jackknife Be Used With a Two-Phase Sample?

PHILLIP S. KOTT and DIANA M. STUKEL

ABSTRACT

The jackknife variance estimator has been shown to have desirable properties when used with smooth estimators based on stratified multi-stage samples. This paper focuses on the use of the jackknife given a particular two-phase sampling design: a stratified with-replacement probability cluster sample is drawn, elements from sampled clusters are then restratified, and simple random subsamples are selected within each second-phase stratum. It turns out that the jackknife can behave reasonably well as an estimator for the variance for one common "expansion" estimator but not for another. Extensions to more complex estimation strategies are then discussed. A Monte Carlo study supports our principal findings.

KEY WORDS: Stratified; Reweighted expansion estimator; Double expansion estimator; Asymptotic.

1. INTRODUCTION

Krewski and Rao (1981) and Rao and Wu (1985) explore the design-based properties of the jackknife variance estimator given a stratified multi-stage sample incorporating with-replacement sampling in the first stage. Their results, although fairly general, cannot be directly applied to many multi-phase sampling designs. See also Wolter (1985; Chapter 4.5).

In this paper, we consider a simple example of two-phase sampling. A stratified with-replacement probability cluster sample is selected in a first phase of sampling. The elements in sampled clusters are then restratified, perhaps using information gathered from the first-phase sample, and a stratified simple random subsample is drawn without replacement.

One can estimate a total without auxiliary information in one of two ways. In the double expansion estimator – called “the π' estimator" in Särndal, Swensson, and Wretman (1992, p. 347) – the value of each subsampled element is simply multiplied by the product of its expansion factor at each phase (i.e., the inverses of its first-phase and second-phase selection probabilities) and then summed.

Although the double expansion estimator is more easily located in text books, the reweighted expansion estimator may be more common in practice, especially when element nonresponse is treated as a second phase of sampling, as in the weighting class estimator of Oh and Scheuren (1983, p. 150). An estimator for the population size of each second-phase stratum is computed by summing the first-phase expansion factors of all the elements in the second-phase stratum before subsampling. This value is then multiplied by the estimated second-phase stratum mean based on the subsample to yield an estimated stratum total. The second-phase estimated stratum totals are finally added together to produce the reweighted expansion estimator for the population total.

We are more concerned here with real two-phase sampling, rather than the artifice of treating nonresponse as an additional sampling phase. The National Agricultural Statistics Service (NASS) presently uses the double expansion estimator in its Quarterly Agricultural Surveys (QAS). A stratified area cluster sample is enumerated in June. Farms identified in the June survey are restratified based on their June responses and then subsampled for enumeration in September, December, and March.

NASS uses a two-phase design and the reweighted expansion estimator for its on-farm chemical use surveys. The first phase of sampling identifies farms with specific crops, and the second phase measures pesticide use on those crops.

This paper shows that although the jackknife may be used to estimate the variance of the reweighted expansion estimator under certain conditions, it is not generally effective as a variance estimator for the double expansion estimator. Section 2 introduces the reweighted expansion estimator and discusses its mean squared error. Section 3 shows that the jackknife variance estimator can be nearly unbiased for the reweighted variance estimator, while Section 4 addresses the jackknife’s failings as a variance estimator for the double expansion estimator. Section 5 describes a simulation study that appears to confirm the main assertions of the previous sections. Section 6 discusses extensions of the reweighted expansion estimator, and Section 7 offers some concluding remarks. An appendix provides an outline of our assumed asymptotic framework and some proofs.

2. THE REWEIGHTED EXPANSION ESTIMATOR

2.1 The Estimator

Let $h(=1,\ldots,H)$ denote the first-phase strata of a stratified with-replacement probability cluster sample, n_h the number of sampled clusters in stratum h, and F_h the set of those clusters. Let $g(=1,\ldots,G)$ be the second-phase...
strata from which a stratified simple random subsample is drawn without replacement. An element in a cluster sampled \(p \) times in the first phase is treated as \(p \) distinct elements for the subsample. Let \(M_g \) be the number of elements in \(g \) before subsampling and \(m_g \) the number of subsampled elements in \(g \). In practice, the \(G \) second-phase strata are often not defined until after the first-phase sample has been drawn.

Let \(S_g \) be the set of elements in \(g \) before subsampling, \(s_g \) the set of subsampled elements in \(g \), \(s \) the entire set of subsampled elements, and \(m = \sum_g m_g \) the subsample size. Finally, let \(y_i \) be the value of interest for element \(i \), and \(w_i \) the first-phase expansion factor for \(i \) (i.e., the inverse of the selection probability for the cluster containing \(i \)).

The estimator for the population total, \(T \), one would use if all the elements in the first-phase sample were enumerated can be written as

\[
t_1 = \sum_{g=1}^G \sum_{i \in S_g} w_i y_i.
\]

Let the reweighted expansion estimator for \(T \) be:

\[
t_2 = \sum_{g=1}^G \left\{ \sum_{i \in S_g} w_i \left[\sum_{i \in S_g} \frac{(M_g/m_g)}{w_i} y_i \right] \right\}
\]

\[
= \sum_{g=1}^G \left(\sum_{i \in S_g} w_i y_i / \sum_{i \in S_g} w_i \right).
\]

An alternative expression for \(t_2 \) is

\[
t_2 = \sum_{g=1}^G \sum_{i \in S_g} a_i y_i = \sum_{i \in s} a_i y_i,
\]

where

\[
a_i = \left[\sum_{k \in S_g} w_k \right] / \left[\sum_{k \in S_g} w_k \right] w_i \text{ for } i \in S_g
\]

is the adjusted weight for element \(i \). Equation (3) is what gives the reweighted expansion estimator its name.

2.2 Its Mean Squared Error (Some Theory)

Now \(t_2 \) is, in general, an unbiased estimator of \(T \). Nevertheless, under certain mild conditions specified in the appendix, it is a design consistent estimator for \(T \); that is, \(\text{plim}_{t \to \infty} (t_2 - T) / t = 0 \) (Isaki and Fuller 1982). For the exposition in the text, it suffices to say that the \(m_g \) are assumed to be large.

Observe that

\[
E[(t_2 - T)^2] = E[(t_1 - T) + (t_2 - t_1)]^2
\]

\[
= \text{Var}(t_1) + E\{E[(t_2 - t_1)^2]\},
\]

where the subscripts on \(\text{Var} \) and \(E \) denote the phase of sampling. Since the \(m_g \) are assumed to be large, \(E_x[t_1(t_2 - t_1)] = t_1 E_x(t_2 - t_1) = 0 \). Also, \(E[t_2 - T] = E_x[E_x(t_2 - T)] = 0 \), and the mean squared error of \(t_2 \) is effectively its (asymptotic) variance.

Since first phase of sampling was conducted with replacement, \(\text{Var}_1(t_1) \) can, in principle, be estimated by

\[
v_{L1} = \sum_{h=1}^H (n_h/[n_h - 1])
\]

\[
\times \left(\sum_{j \in F_h} \left[\sum_{i \in U_{kj}} w_i y_i \right]^2 - \left(\sum_{j \in F_h} \sum_{i \in U_{kj}} w_i y_i \right)^2 \right) / n_h,
\]

where \(U_{kj} \) is the set of elements in sampled cluster \(j \) of first-phase stratum \(h \). The subscript \(L \) denotes "linearization" for historical reasons although there is nothing to linearize in this context. Note that when there is a second phase of sampling, it will generally not be possible to compute \(v_{L1} \) in practice.

Now

\[
t_2 - t_1 = \sum_{g=1}^G \sum_{i \in S_g} w_i \left[\sum_{i \in S_g} \frac{w_i y_i}{w_i} - \frac{\sum_{i \in S_g} w_i y_i}{\sum_{i \in S_g} w_i} \right]
\]

\[
= \sum_{g=1}^G \sum_{i \in S_g} \frac{w_i r_i}{\sum_{i \in S_g} w_i},
\]

where

\[
r_i = y_i - \sum_{k \in S_g} w_k y_i / \sum_{k \in S_g} w_k \text{ for } i \in S_g.
\]

It is crucial for the arguments below to realize that \(r_i \) has been defined so that \(\sum_{i \in S_g} w_i r_i = 0 \) for all \(g \).

Continuing,

\[
t_2 - t_1 = \sum_{g=1}^G \sum_{i \in S_g} \frac{(M_g/m_g) w_i r_i}{w_i},
\]

since \(\sum_{i \in S_g} w_i = \sum_{i \in S_g} (M_g/m_g) w_i \) (see equation (A1) of the appendix). This implies

\[
E_x[(t_2 - t_1)^2] = \text{Var}_x \left(\sum_{g=1}^G \sum_{i \in S_g} \frac{(M_g/m_g) w_i r_i}{w_i} \right)
\]

\[
= \sum_{g=1}^G \left((M_g^2 M_g - 1) m_g \right) (1 - m_g/M_g)
\]

\[
\times \left(\sum_{i \in S_g} (w_i r_i)^2 - \left(\sum_{i \in S_g} w_i r_i \right)^2 / M_g \right)
\]

\[
= \sum_{g=1}^G \left(\frac{(M_g/m_g)^2 - 1}{M_g} \left(\sum_{i \in S_g} (w_i r_i)^2 \right) \right),
\]

where \(M_g = \sum_{i \in S_g} w_i \).
Observe that equation (6) does not ignore the finite population corrections from the second phase of sampling.

3. **THE JACKKNIFE VARIANCE ESTIMATOR**

3.1 **The Variance Estimator**

We are now ready to discuss the jackknife. For \(j \in F_h \), define the jackknife replicate \(t_{(hj)} \) as

\[
t_{(hj)} = \sum_{g=1}^{G} \left(\sum_{i \in S_g} w_{hi} Y_{i} \right)
\]

where

\[
w_{hi} = \begin{cases} w_{i} n_{h}/(n_{h} - 1) & \text{when } i \in U_{hj} \text{ and } j' \neq j \\ 0 & \text{when } i \in U_{hj} \\ w_{i} & \text{when } i \in U_{hj'} \text{ and } h' \neq h. \end{cases}
\]

Similarly, we define

\[
t_{(hj)} = \sum_{g=1}^{G} \sum_{i \in S_g} w_{hi} Y_{i}.
\]

Following Rust (1985), the *jackknife variance estimator*, \(v_{j} (f = 1 \text{ or } 2) \), is defined here simply as

\[
v_{j} = \sum_{h=1}^{H} \left(n_{h} - 1 \right) n_{h} \sum_{j \in F_{h}} \left(t_{(hj)} - t_{j} \right)^{2}. \tag{8}
\]

This form is labeled \(v_{j}^{(2)} \) in Krewski and Rao (1981, equation (2.4)). It is easy to show that \(v_{j1} = v_{L1} \).

3.2 **Why it Works (More Theory)**

We will soon see that \(v_{j2} \) provides a nearly unbiased estimator for the variance of the reweighted expansion estimator in equation (2). Rao and Shao (1992) indirectly make the same claim (our equation (2) is the expectation of their estimator in Section 3.3, pp. 818-819). Their work, however, treats nonresponse as an additional phase of sample selection in which Poisson sampling (Särndal et al. 1992, p. 85) is used in place of stratified simple random sampling. Each first-phase sample element in the Rao and Shao (1992) setup is effectively a second-phase stratum. Consequently, the near unbiasedness of \(v_{j2} \) reduces to a special case of a result in Krewski and Rao (Rao and Shao 1992, p. 821).

What we have called the second-phase strata are reweighting classes in the Rao and Shao (1992) setup. Elements in the same class are assumed to have the same unknown probability of selection/response. Conditional on the realized subsample sizes within reweighting classes, Poisson sampling is equivalent to stratified simple random sampling. Rao and Shao’s (1992) treatment, however, is unconditional.

Returning to the problem at hand, observe that

\[
t_{(hj2)} - t_{(hj1)} = \sum_{g=1}^{G} \sum_{i \in S_g} w_{hi} Y_{i} \left(\sum_{i \in S_g} w_{hj} Y_{i} - \sum_{i \in S_g} w_{hi} Y_{i} \right)
\]

\[
= \sum_{g=1}^{G} \sum_{i \in S_g} w_{hi} r_{hj}
\]

where

\[
r_{hj} = y_{i} - \sum_{k \in S_{g}} w_{hjk} Y_{k} / \sum_{k \in S_{g}} w_{hjk} \text{ for } i \in S_{g}.
\]

Under mild conditions (see equations (A2) and (A3) in the appendix), we have the following analogue to equation (5):

\[
t_{(hj2)} = t_{(hj1)} + \sum_{g=1}^{G} \left(M_{g}/m_{g} \right) \sum_{i \in S_{g}} w_{hi} r_{hj}
\]

\[
= \sum_{g=1}^{G} \sum_{i \in S_{g}} w_{hi} (y_{i} + [M_{g}/m_{g}] c_{i} r_{hj}), \tag{9}
\]

where \(c_{i} \) is an indicator variable equal to 1 when \(i \) is in the subsample and zero otherwise.

Continuing,

\[
t_{(hj2)} = \sum_{g=1}^{G} \sum_{i \in S_{g}} w_{gj} (y_{i} + [M_{g}/m_{g}] c_{i} - 1) r_{hj}
\]

\[
= \sum_{g=1}^{G} \sum_{i \in S_{g}} w_{gj} z_{hj}^{*} \tag{10}
\]

where \(z_{hj}^{*} = y_{i} + [M_{g}/m_{g}] c_{i} - 1) r_{hj} \). Again, since every \(m_{g} \) is large, it is not unreasonable to assume \(r_{hj} = r_{i} \) (see equation (A4) in the appendix). Thus,

\[
t_{(hj2)} = \sum_{g=1}^{G} \sum_{i \in S_{g}} w_{hi} z_{hj}^{*},
\]

where \(z_{hj} = y_{i} + [M_{g}/m_{g}] c_{i} - 1) r_{i} \). Using similar arguments, \(t_{2} = \sum_{g=1}^{G} \sum_{i \in S_{g}} w_{hi} z_{hj}^{2} \). Since \(t_{2} \) is linear in the \(z_{i} \),

\[
v_{j2} = v_{L1} \left(\sum_{h=1}^{H} \sum_{i \in U_{h}} w_{i} z_{i} \right) = \sum_{h=1}^{H} \left(n_{h}/[n_{h} - 1] \right) \left(\sum_{i \in U_{h}} w_{i} z_{i} \right)^{2}/n_{h}. \tag{11}
\]
Let \(e_i = M_i / m_i \) be the second-phase expansion factor for \(i \in S \). Observe that \(e_i \) is a random variable with \(E(c_i) = m_i / M_i \) and \(E(c_i c_j) = (m_i / M_i)(m_j / M_j - 1)/(M_i - 1) \) for \(i, j \in S \), \(i \neq j \). Now

\[
E\left(\left(\sum_{i \in U_h} w_i z_i \right)^2 \right) = \left(\sum_{i \in U_h} w_i y_i \right)^2 + \sum_{i \in U_h} (e_i - 1)(w_i r_i^2) - \sum_{g=1}^{G} \sum_{i, k \in S^g \cap U_h} [(1 - m_i / M_i) w_i r_i w_k r_k].
\]

(12)

Similarly, letting \(F_h^* \) be the set of elements from selected clusters in the first-phase stratum \(h \) before subsampling, we have

\[
E\left(\left(\sum_{i \in F_h^*} \sum_{i \in U_h} w_i z_i \right)^2 \right) = E\left(\left(\sum_{i \in F_h} w_i z_i \right)^2 \right)
\]

\[
= \left(\sum_{i \in F_h} w_i y_i \right)^2 + \sum_{i \in F_h} (e_i - 1)(w_i r_i^2) - \sum_{g=1}^{G} \sum_{i, k \in S^g \cap F_h^*} [(1 - m_i / M_i) w_i r_i w_k r_k].
\]

(13)

In the appendix, it is argued that under mild conditions that the last term in both equations (12) and (13) is negligible. As a result,

\[
E_2(v_{j_2}) = v_{j_1} + \sum_{h=1}^{H} \sum_{i \in F_h^*} (e_i - 1)(w_i r_i^2)
\]

\[
= v_{j_1} + \sum_{g=1}^{G} \sum_{i \in S^g} ((M_i / m_i) - 1)(w_i r_i^2)
\]

\[
= v_{L_1} + E_2(\{ t_{2} - t_{1} \}^2),
\]

(14)

which in turn implies that \(v_{j_2} \) is a nearly unbiased estimator for \(E(\{ t_{2} - T \}^2) \).

4. THE DOUBLE EXPANSION ESTIMATOR

An alternative to \(t_2 \), the double expansion estimator, has the form:

\[
t_2 = \sum_{g=1}^{G} \sum_{i \in S^g} (M_i / m_i) w_i y_i.
\]

(15)

The definition of a jackknife replicate for \(t_2 \) is unclear. One simple possibility is

\[
t_{(h)2} = \sum_{g=1}^{G} \sum_{i \in S^g} w_{hj} (M_i / m_i) y_i.
\]

(16)

Another, perhaps more in the spirit of "replication", is

\[
t_{(h)2}^* = \sum_{g=1}^{G} \sum_{i \in S^g} w_{hj} (M_{gh} / m_{gh}) y_i,
\]

(17)

where \(M_{gh} \) is the number of elements in the first-phase sample (i.e., in a cluster in the first-phase sample) that are in \(S_i \) but not \(U_{gh} \). Similarly, \(m_{gh} \) is the number of elements in the second-phase sample that are in \(S_i \) but not \(U_{hgh} \). Through counter-examples given in the appendix, we show that neither version of the replicate produces a jackknife variance estimator \(v_{j_2} \) from equation (8)) that is asymptotically unbiased in general.

5. A MONTE CARLO SIMULATION STUDY

5.1 Design of the Study

The results given so far in the text are asymptotic. In order to assess the accuracy of the jackknife as a variance estimator for the reweighted expansion estimator in a finite world, we undertook a Monte Carlo simulation study. At the same time, we assessed the accuracy of the two jackknife estimators suggested for the double expansion estimator in Section 4.

We used December 1990 Canadian Labour Force Survey (LFS) sample data for the province of Newfoundland to simulate a finite population, from which repeated samples were drawn. The LFS is the largest ongoing household sample survey conducted by Statistics Canada. Monthly data relating to the labour market is collected using a complex multi-stage sampling design with several levels of stratification. The details of the design of the survey prior to the 1991 redesign can be found in Singh, Drew, Gambino and Mayda (1990) and Stukel and Boyer (1992). In general, provinces are stratified into “economic regions”, which are large areas of similar economic structure; Newfoundland has four such economic regions. The economic regions are further stratified into lower level substrata. The lowest level of stratification in Newfoundland yielded 45 strata, each of which contained less than 6 clusters or primary sampling units (PSU’s), which was an insufficient number from which to sample for the purposes of the simulation. Thus, the 45 strata were collapsed down to 18, each containing between 6 and 18 PSU’s. In collapsing the strata, economic regions were kept intact, as were the Census Metropolitan Areas of St. John’s and Cornerbrook.

For the Monte Carlo study, \(R = 4,000 \) samples were drawn from the Newfoundland “population” (which was 9,152 individuals), according to the following two-phase design: within each first-phase stratum, two PSU’s were selected at the first phase using simple random sampling (SRS) with replacement. This yielded a total of 36 PSU’s. All households within selected first-phase PSU’s (as well as individuals within those households) were selected, resulting in a single-stage take-all cluster sample. At the second phase, all selected first-phase elements (individuals, treating each person in a PSU selected twice as two separate individuals) were restratified according to five age categories (<14, 15-24, 25-44, 45-64, >65), and second-phase sample elements (i.e., individuals) were drawn using SRS without replacement sampling within each of the five second-phase strata.
We varied the second-phase stratum sample size to take on values \(m_g = 5, 10, 20, \) and 50 yielding overall second-phase sample sizes of \(m = 25, 50, 100, \) and 250. When the number of first-phase-sampled individuals in a second-phase stratum was less than our target \(m_g \) value, we planned to set \(m_g = M_g \), but that event never occurred.

A popular rule of thumb for a "separate ratio estimator" such as the reweighted expansion estimator in equation (2) is that there should be at least 20 individuals within each second-phase stratum (see, for example, Särndal, Swensson and Wretman 1992, p. 270). By allowing \(m_g \) to be as small as 5 and 10, we are checking whether this rule is really necessary.

We considered two parameters of interest: \(T_y \), the total number of employed, and \(T_y / T \), the employment rate. Here \(T_y = \sum_{i \in U} T_{yi} \), where \(T_{yi} = 1 \) when individual \(i \) is employed; 0 otherwise. Similarly, \(T = \sum_{i \in U} T_{zi} \), where \(T_{zi} = 1 \) when individual \(i \) is in the labour force (i.e., either employed or unemployed); 0 otherwise. For each of the \(R = 4,000 \) samples, we calculated the reweighted expansion estimator (REE), \(t_y \), given by equation (2), the double expansion estimator (DEE), \(t_1 \), given by equation (15), and the full first-phase expansion estimator (FFPE), \(t_1 \), given by equation (1). Although these estimators are defined for totals (applicable for total number of employed), it is a simple matter to extend them to ratios of totals (applicable for employment rate).

For each of the \(R = 4,000 \) second-phase samples, we calculated the jackknife variance corresponding to the reweighted expansion estimator and the double expansion estimator, given by equation (8) with \(f = 2 \) and \(f = 3 \) respectively. In the case of the double expansion estimator, we attempted both the replicates defined in equations (16) and (17), which we will refer to as variant 1 and 2, respectively.

For each of the \(R = 4,000 \) first-phase samples, we also calculated the jackknife variance corresponding to the full first-phase estimator for comparison purposes. This is given by equation (8) with \(f = 1 \).

For all of the above estimators and their corresponding jackknife variances, a number of frequentist properties were investigated. These are given below. For simplicity, they are expressed only in terms of estimates of the total number of employed.

The percent relative bias of the estimated number of employed with respect to the population value is estimated by

\[
PRB(t^*) = \{ [E_M(t^*) / T_y] - 1 \} \times 100, \tag{18}
\]

where

\[
E_M(t^*) = (1/4,000) \sum_{r=1}^{4,000} t_r^*
\]

is the Monte Carlo expectation of the point estimator \(t^* \) taken over the 4,000 samples. Here \(t^* \) can be either \(t_1^* \), \(t_2^* \), or \(t_1^* \), and \(t_r^* \) is the value of \(t^* \) for sample \(r \).

The percent relative bias of the jackknife variance estimator with respect to the true mean squared error is estimated by

\[
PRB[v_y(t^*)] = \left([E_M[v_y(t^*)] - \text{MSE}_{\text{true}}] / \text{MSE}_{\text{true}} \right) \times 100, \tag{19}
\]

where

\[
E_M[v_y(t^*)] = (1/4,000) \sum_{r=1}^{4,000} v_{y,r}(t^*),
\]

\[
\text{MSE}_{\text{true}} = (1/4,000) \sum_{r=1}^{4,000} (t_r^* - T_y)^2,
\]

and \(v_{y,r}(t^*) \) is the value of \(v_y(t^*) \) for sample \(r \).

The (percent) coefficient of variation of the jackknife variance with respect to the true MSE is estimated by:

\[
\text{CV}[v_y(t^*)] = \left(\{ (1/4,000) \sum_{r=1}^{4,000} [v_{y,r}(t^*) - \text{MSE}_{\text{true}}] \} / \text{MSE}_{\text{true}} \right) \times 100; \tag{20}
\]

that is, the estimated root mean squared error of the variance estimator divided by the estimated true MSE, expressed as a percentage.

5.2 Results of the Study

Table 1A gives the estimated percent relative biases of the three point estimates for the total number of employed using equation (18), and Table 1B gives the same for the employment rate. All biases are less than 1% in absolute value.

<table>
<thead>
<tr>
<th>Table 1A</th>
<th>Percent Relative Bias of the Point Estimates for Total Number of Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimator</td>
<td>(m_g = M_g)</td>
</tr>
<tr>
<td>REE</td>
<td>–</td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
</tr>
<tr>
<td>FFPE</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1B</th>
<th>Percent Relative Bias of the Point Estimates for Employment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimator</td>
<td>(m_g = M_g)</td>
</tr>
<tr>
<td>REE</td>
<td>–</td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
</tr>
<tr>
<td>FFPE</td>
<td>–0.09</td>
</tr>
</tbody>
</table>
Not displayed are the Monte Carlo estimates of the mean squared errors (i.e., the values of MSE_{true}) and the corresponding coefficients of variation from using either the reweighted or double expansion estimator. This is because the focus in this article is on mean squared error estimation. The mean squared errors (and coefficients of variation) from using the two estimators are comparable for each sample size (a relative difference in the coefficient of variation is roughly half of the corresponding relative difference in mean squared error). The reweighted expansion estimator is slightly more efficient when estimating the total number of employed individuals (e.g., when $m^* = 5$, the double expansion estimator has 17% more mean squared error). There is less than a 1% difference in the mean squared errors from using the two approaches when estimating the employment rate. Not surprisingly, the mean squared errors for all estimators increase as the second-phase sample size decreases.

Table 2A gives the estimated percent relative biases of the jackknife variances for the total number of employed using equation (19), and Table 2B gives the same for the employment rate. Focusing first on Table 2A, the full first-phase estimator’s variance is almost perfectly unbiased, at 0.94%. The jackknife for the reweighted expansion estimator works well, having small negative biases in the variances always less than –6%. The biases tend to become more negative (although not uniformly) as the second-phase sample sizes diminish.

Table 2A

<table>
<thead>
<tr>
<th>Estimator</th>
<th>$m^* = M^*_1$</th>
<th>$m^* = 50$</th>
<th>$m^* = 20$</th>
<th>$m^* = 10$</th>
<th>$m^* = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>–</td>
<td>–0.99</td>
<td>–2.51</td>
<td>–5.81</td>
<td>–5.13</td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
<td>46.35</td>
<td>68.24</td>
<td>78.18</td>
<td>86.22</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
<td>101.59</td>
<td>278.44</td>
<td>654.99</td>
<td>1997.51</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>0.94</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2B

<table>
<thead>
<tr>
<th>Estimator</th>
<th>$m^* = M^*_1$</th>
<th>$m^* = 50$</th>
<th>$m^* = 20$</th>
<th>$m^* = 10$</th>
<th>$m^* = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>–</td>
<td>–3.53</td>
<td>–3.45</td>
<td>–7.09</td>
<td>–6.55</td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
<td>–2.46</td>
<td>–1.53</td>
<td>–5.21</td>
<td>–7.41</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>–</td>
<td>–0.36</td>
<td>4.91</td>
<td>9.09</td>
<td>30.46</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>2.08</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

REE - Reweighted Expansion Estimator (t_2)
DEE - Double Expansion Estimator (t_3)
FFPE - Full First Phase Estimator (t_4

Variant 1 uses the jackknife replicates in equation (16)
Variant 2 uses the jackknife replicates in equation (17)

In contrast, both jackknife variants for the double expansion estimator fail miserably, with very large positive biases in the variances ranging from 46.35% to 1997.51%! The second variant is worse than the first, but both are well beyond the realm of acceptable behavior.

Table 2B repeats the analysis for the ratio estimate of employment rate. The results here are surprising since all variance estimators behave reasonably well, with the exception of variant 2 of the double expansion estimator when $m^* = 5$. Other than this case where the bias in the variance is 30.46%, all other biases are less than 10% in absolute value.

Overall, Table 2A and 2B provide strong support for using the jackknife variance estimator with a reweighted expansion estimator even when second-phase sample sizes are surprisingly small. By contrast, the jackknife can fail miserably for the double expansion estimator when estimating totals. Sometimes, however, variant 1 can also work reasonably well depending on the estimator and the data.

Although most studies focus on the bias of the variance estimators, it is also of secondary interest to look at the coefficient of variation of the variance estimators to see how stable the variance estimates themselves are. In Tables 3A and 3B, we investigate the estimated (percent) coefficients of variation corresponding to the total number of employed and the employment rate, respectively. In equation (20), the expression under the square root in the numerator gives the MSE of the variance, whose component parts are the square of the bias of the variance and the variance of the variance. For those entries in Tables 2A and 2B where the bias of the variance has been determined to be exceedingly large (say larger than 20%), the corresponding entries in Tables 3A and 3B are not reported (indicated by an *), since it is clear that those entries will be excessively large. In Table 3A, the estimated coefficients of variation corresponding to the reweighted expansion estimator range between 46.86% and 53.42%. Coefficients of variation of the magnitude exhibited here are typical for variance estimators, and have been encountered in other simulation studies relating to variances. See, for example, Kovačević and Yung (1997). To that end, note that even the estimated coefficients of variation corresponding to the full first-phase estimators are in the same range, and in fact, somewhat higher than those of the second-phase estimators in all cases.

Table 3B, which gives the coefficients of variation for the variances of the estimated employment rates, are entry by entry higher than their counterparts in Table 3A. In addition, all estimators exhibit the pattern that their corresponding coefficients of variation increase, quite substantially in fact, as the second-phase sample sizes diminish. This effect is more pronounced for the ratio estimator than it is for the estimators of the total. The very high coefficients of variation in the column $m^* = 5$ for both tables is not surprising, since the overall second-phase sample size (25) is actually smaller than the number of PSU’s drawn in the first phase of sampling (36). In fact, a
Table 3A
Coefficient of Variation of Jackknife Variances for Total Number of Employed

<table>
<thead>
<tr>
<th>Estimator</th>
<th>$m_g - M_g$</th>
<th>$m_g = 50$</th>
<th>$m_g = 20$</th>
<th>$m_g = 10$</th>
<th>$m_g = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>--</td>
<td>51.33</td>
<td>49.3</td>
<td>46.86</td>
<td>53.42</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>56.71</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3B
Coefficient of Variation of Jackknife Variances for Employment Rate

<table>
<thead>
<tr>
<th>Estimator</th>
<th>$m_g - M_g$</th>
<th>$m_g = 50$</th>
<th>$m_g = 20$</th>
<th>$m_g = 10$</th>
<th>$m_g = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>--</td>
<td>59.28</td>
<td>65.66</td>
<td>74.26</td>
<td>103.06</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>59.24</td>
<td>66.16</td>
<td>72.89</td>
<td>99.1</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>78.42</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

REE - Reweighted Expansion Estimator (t_{reg})
DEE - Double Expansion Estimator (t_2)
FFPE - Full First Phase Estimator (t_1)

6.2 Regression in the Second Phase

The estimator t_2 can be generalized into the regression estimator:

$$t_{reg} = \sum_{i \in S} w_i x_i \left(\sum_{i \in S} w_i e_i d_i x_i' x_i^{-1} \right) \left(\sum_{i \in S} w_i e_i d_i x_i' y_i \right),$$

(21)

where S denotes the original sample, x_i is a row vector, d_i is a scalar, and there exists a row vector γ such that $d_i' \gamma x_i = 1$ for all i. In practice, d_i is usually 1 for all i. A popular exception occurs when $x_i = x$ and $d_i = 1/x$. In equation (2), $d_i = 1$ for all i, and x_i is a G-vector with a value of 1 in the g-th position and 0’s elsewhere for $i \in S_g$.

Let

$$r_i = y_i - x_i \left(\sum_{i \in S} w_i d_i x_i' x_i^{-1} \right) \left(\sum_{i \in S} w_i d_i x_i' y_i \right).$$

The replicate $t_{reg(h)}$ has the same form as t_{reg} except that w_{ijh} replaces w_i everywhere. Similarly, r_{ijh} has the same form as r_i except that w_{ijh} replaces w_i. Note that the e_i are unchanged from t_{reg} to $t_{reg(h)}$.

Since the sampling design hasn’t changed, most of equation (6) stays as is except that now $(\sum_{i \in S} w_i r_i)^2$ is nonnegative rather than strictly zero. The interested reader can verify that equations (10) through (13) remain in their present form. It turns out that the jackknife has, if anything, an (approximate) upward bias in equation (14). That is to say, the jackknife is a conservative estimator of variance. Again, see the appendix (equations (A6) through (A9)) for a formal statement of the asymptotic assumptions.

The bias in the jackknife disappears when $\sum_{i \in S} w_i r_i = 0$ for all g. Formally, this will happen when there exists G row vectors $\gamma_1, ..., \gamma_G$ such that $d_i \gamma_i x_i = 1$ when $i \in S_g$ and 0 otherwise (since $\sum_{i \in S} w_i r_i = \sum_{i \in S} d_i \gamma_i x_i w_i r_i = \gamma_g \sum_{i \in S_g} w_i d_i x_i' r_i = \gamma_g \sum_{i \in S_g} w_i d_i x_i' \left(y_i - x_i \left(\sum_{i \in S_g} w_i d_i x_i' x_i^{-1} \right) \left(\sum_{i \in S_g} w_i d_i x_i' y_i \right) \right) = 0$). When all $d_i = 1$, the existence of γ_g
means that either one member of \(x_i \) is an indicator variable equal to 1 when \(i \in S_g \) and 0 otherwise, or one member of a linear transform of \(x_i \) is such an indicator variable.

7. CONCLUDING REMARKS

The main purpose of this paper was to show that a simple jackknife variance estimator can be nearly unbiased for an estimation strategy involving two-phase sampling as long as that strategy employs a reweighted expansion estimator and not a double expansion estimator. Since the theoretical results for the reweighted expansion estimator rely on asymptotic arguments, their practical application will depend on the context. Nevertheless, a Monte Carlo simulation study performed here suggests that the jackknife can be an effective estimator for the variance of a reweighted expansion estimator even with surprisingly small second-phase stratum sample sizes, that is, sizes of 5 and 10.

APPENDIX

The Design Consistency of the Reweighted Expansion Estimator

To establish the design consistency of \(t_2 \) in equation (2) it is sufficient to assume that the sample design and population values of the \(y_i \) are such that

\[
\left\{ \sum_{g=1}^{G} \left(\frac{M_g}{m_g} \right) \sum_{i \in S_g} w_i y_i / T \right\} - 1 = O_p(1/\sqrt{m}),
\]

and, given any first-phase sample,

\[
\left(\sum_{k \in S_g} w_k \right) \left(\sum_{i \in S_g} w_i \right) \left(\frac{m_g \cdot M_g}{m_g \cdot M_g} \right) - 1 = O_p(1/\sqrt{m})
\]

for all \(g \). These assumptions justify equation (5) in the text.

We assume in our analysis that \(G \) is bounded and that each \(m_g \) has the same asymptotic order as \(m \). This is only possible when the \(S_g \) are determined after the first-phase sample has been drawn. Otherwise, the \(M_g \) would be random variables, and a minimum size for each \(m_g \) could not be guaranteed for all possible first-phase samples. In principle, we are assuming the existence of a mechanism for determining the \(S_g \) and the second-phase sampling fractions given any first-phase sample. By contrast, the exact values of \(G \) and the \(m_g \) can but need not be fixed before the first-phase sample is drawn.

A Comment on the Asymptotic Framework

Recall that the text showed that the jackknife contains a component that estimates the second-phase variance (i.e., \(E_i \{ (t_2 - t_i)^2 \} \)) in an asymptotically unbiased manner given any first-phase sample (see equation (14)). As a result, that component also estimates the average (i.e., unconditional) second-phase variance across all possible first-phase samples (i.e., \(E \{ E_i \{ (t_2 - t_i)^2 \} \} \)) in an asymptotically unbiased manner.

In our empirical work, we strayed from the sampling framework described above so that the results could be easily summarized. In particular, we defined the \(S_g \) beforehand, and let the \(M_g \) be random. When the first-phase sample was such that \(m_g \) was less than the desired \(m_g \) (say 50) in some second-phase stratum \(g \), we planned to choose all the individuals in \(S_g \) for the second-phase sample. As a result, there would be no contribution to the mean squared error (or bias) of \(t_2 \) from second-phase stratum \(g \) when that particular first-phase sample was selected, and so no asymptotic assumptions about \(m_g \) would be necessary. As it happened, in no simulation was \(m_g \) actually less than 50. Nevertheless, a decision rule about the second-phase sampling fractions was in place for every possible first-phase sample.

Jackknife Replicates

There are (at least) two distinct asymptotic frameworks for the first-phase sample. In the first, there is an arbitrarily large number of first-phase strata each of which is bounded in size; that is, each \(1/n_g = O(1) \) while \(1/H = O(1/m) \). In the second, all the first-phase strata are arbitrarily large; that is, \(1/n_g = O(1/m) \). Under either framework, we assume that the number of elements in each cluster is \(O(1) \); that is to say, bounded.

Since every \(m_g \) is of the same asymptotic order as \(m \), it is not unreasonable to assume under either regime that, given any first-phase sample,

\[
\sum_{i \in S_g} w_{i2} \sum_{i \in S_g} w_i - 1 = O_p(1/m),
\]

and

\[
\sum_{i \in S_g} w_{i2} \sum_{i \in S_g} w_i - 1 = O_p(1/m),
\]

which can be used to establish equation (9). Similarly, we assume that given any first-phase sample

\[
\sum_{i \in S_g} w_{i2} y_i \sum_{i \in S_g} w_{i2} - 1 = O_p(1/m),
\]

which assures us that \(r_{i2} - r_i = O(1/m) \).

Equations (12), (13), and (14)

Since the number of elements in each cluster is bounded, say by \(B \). The third term on the right hand side of equation (12) has at most \(G B^2 \) terms, a bounded number.

Each of these terms is of order \(1/m_g \) (or \(1/\sqrt{m_g} \)), the probability that any one term is of asymptotic order greater than \(1/m_g \) is zero). Consequently, the second line of equation (12) is asymptotically ignorable.

Equation (14) holds when each \(1/n_g = O(1) \), because if each \(n_g \) is less than \(C \) (say), then the third term on the right hand side of equation (13) will be the sum of at most \(G(BC)^2 \) terms, a bounded number. Each of these terms is again of order \(1/m_g \). Consequently, the second line of equation (13) is asymptotically ignorable.

Alternatively, suppose each \(1/n_g \) were \(O(1/m) \). We will assume that the sample design and population is such that, given any first-phase sample,
where $A_h = \sum_{i \in F_h} w_i (e_i c_i - 1) r_i / \sum_{i \in F_h} w_{i,j} = O_p(1/\sqrt{m})$ (A5)

for all h. To see why this is a reasonable assumption, observe that conditioned on the first-phase sample, the denominator of A_h is a domain total—the sum of the $w_{i,j}$ among the elements in F_h. Consequently, it is $O(m)$ (without loss of generality we can assume that all the w_i are $O(1)$). The numerator of A_h is the difference between an expansion estimator (the sum of the $w_i e_i c_i r_i$ in F_h) based on a stratified simple random sample and its target (the sum of the $w_i r_i$ in $F_h^* *$). Equation (A5) makes the modest assumption that the sampling design and population is such that this difference is $O_p(\sqrt{m})$ for every possible first-phase sample.

Under assumption (A5), \(\sum_{i \in F_h^*} w_{i,j} = \sum_{F_h} w_{i,j} (1 + A_h) \)

is approximately equal to \(\sum_{i \in F_h^*} w_{i,j} y_i\), which implies \(E_h(\sum_{i \in F_h^*} w_{i,j} y_i)^2 \approx n_h = \sum_{i \in F_h^*} w_{i,j} y_i^2\). Equation (14) follows from this near equality and from equations (11) and (12) (since \(n_h \) is large, \(n_h / (n_h - 1) = 1\)).

Counter-examples to the Jacknifes for the Double Expansion Estimator

As a counter-example to the replicate form in equation (16), consider the situation where each cluster contains a single element, \(H = G = 1\), and all the \(y_i\) values are equal to 1. As a result, \(t_3 = T\), which means that \(t_3\) has no variance. Unfortunately, \(t_{ij3} = T[n_i / (n_i - 1)](m - 1)/m\) when \(j \neq s\) and \(T(n_i - 1) / n_i\) otherwise. Thus, \(t_{ij3} - T)/T = O_p(1/m)\). Now \(v_{ij} / T^2\) computed from the \(t_{ij3}\) would also be \(O(1/m)\) since it is the sum of \(n_i\) terms of order \(O(1/m^2)\).

Although \(v_{ij} / T^2\) is \(O(1/m)\), \(v_{ij}\) is not close enough to zero for our purposes. To see why, observe that if the \(y_i\) were all \(N(1,1)\), then the relative variance of \(t_3\) would be \(1/m\), which is also \(O(1/m)\). Thus, for \(v_{ij}\) to be nearly zero, \(v_{ij} / T^2\) would have to be smaller than \(O(1/m)\).

As a counter-example to the replicate form in equation (17), consider the situation where each cluster is again a single element and all \(y_i\) values are equal to 1, but now \(H = m, G = 1\), the population size in each \(h\) is \(N_0, n_h = 2\) for all \(h\), and \(M_1 = 2m\). As a result, \(T = t_3 = mN_0\), so that \(t_3\) has no variance. The replicate \(t_{ij3}\) can take on four possible values. If \(h \in S\) and \(h' \notin S, \(t_{ij3} = (m/2)(2m - 1)/(m - 1)/N_0\). If \(h \in S\) and \(h' \notin S, \(t_{ij3} = ((m - 1)/2)(m - 1)/(m - 1)/N_0\). If \(h \in S\) and \(h' \in S, \(t_{ij3} = (m/2)(2m - 1)/mN_0\). If \(h \notin S\) and \(h' \in S, \(t_{ij3} = ((m - 1)/2)(2m - 1)/mN_0\). In all cases, \((t_{ij3} - T)/T = O_p(1/m)\), and so the jackknife variance estimator fails to be nearly unbiased.

The Two-phase Regression Estimator

To support the arguments in the text about the regression estimator in equation (21), we assume the sampling design and population values are such that the following asymptotic relationships hold. First,

$$\sum_{i \in S} \sum_{j \in F_S} w_i e_i d_i x'_i x_i = O_p(1/m),$$

which is a generalization of equation (A1). Likewise, equations (A2) and (A3) generalize to

$$\sum_{i \in S} w_{ij} d_{ij} q_i / \sum_{i \in S} w_i d_{ij} q_i - 1 = O_p(1/m),$$

and

$$\sum_{i \in S} w_{ij} d_{ij} q_i / \sum_{i \in S} w_i e_i d_{ij} q_i - 1 = O_p(1/m)$$

for all \(q_i\), where \(q_i\) is an element of the matrix \(x'_i x_i\). Finally, the assumption in equation (A4) generalizes to

$$\sum_{i \in S} w_{ij} d_{ij} p_i / \sum_{i \in S} w_i d_{ij} p_i - 1 = O_p(1/m)$$

for all \(p_i\), where \(p_i\) is an element of the matrix \(x'_i x_i\).

REFERENCES

