Survey Methodology, December 1997
Vol. 23, No. 2, pp. 99-107
Statistics Canada

99

An Adaptive Procedure for the Robust Estimation of the
Rate of Change of Investment

PHILIPPE RAVALET!

ABSTRACT

The presence of outliers in survey data is a recurring problem in applied statistics, and the INSEE survey on industrial
investment is not immune from this. The forecasting of the rate of growth of capital investment expenditures in industry
therefore comes down to robust estimation of a total in a finite population. The first part of this article analyses the estimator
currently used in the Investment Survey. We show that it follows a strategy of reweighting the linear estimator. But the strict
dichotomy imposed between outliers — all assumed to be nonrepresentative - and other points is not fully satisfactory from
either a theoretical or a practical standpoint. These flaws can be overcome by adopting a model-based approach and
estimating by GM-estimators, applied to the case of a finite population. We then construct a robust adaptive procedure that
determines the appropriate estimator on the basis of the residuals observed in the sample in cases where the residuals may
be assumed to be symmetrical. Lastly, this method is applied to the data from the Investment Survey for the period 1990-

1995.
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1. INTRODUCTION

_ Since 1952, the Institut National de la Statistique et des
Etudes Economiques (INSEE) has been conducting an
investment survey that provides estimates of the future
trend of capital investment expenditures in industry, well
before the National Accounts are released or the findings of
exhaustive surveys are published. The estimation of the rate
of investment growth is based on the declarations of some
2,500 company heads concerning their intentions to
purchase capital goods.

The almost systematic presence of outliers in these data
is a major problem. Outliers can seriously distort the
estimate of the average growth rate and lead to unac-
ceptable results. According to Chambers (1986), two types
of outliers may be distinguished. Nonrepresentative points
designate either measurement errors, which survey staff
strive to correct during data collection, or unique
individuals in the population. By contrast, representative
outliers designate individuals which, while somewhat
unusual, cannot be considered exceptional. There are
undoubtedly similar individuals in the population not
questioned, and the information that they contain must be
integrated into the estimate.

The problem posed here is that of robust estimation of a
total in a finite population with auxiliary information, a
problem to which theory provides no definitive answer.
Nevertheless, various techniques, reviewed in Lee (1995),
can be applied. The estimation method currently used in the
Investment Survey follows the logic of reweighting the
linear estimator, following Hidiroglou and Srinath (1981).
However, the identification and treatment of outliers are not
entirely satisfactory. In particular, all outliers are assumed
to be nonrepresentative, and the dichotomy between

“normal” points and outliers makes the estimation quite
sensitive to the choice of outliers.

The introduction of a linear superpopulation model,
which describes the change in investment at the level of
individuals, enables us to better assess the unusual nature of
an observation and determine how representative it is. Its
estimation by means of GM-estimators is then an attractive
alternative to the least squares method, whose absence of
bias is quite costly in terms of variance. The adjustment of
the weight function depends at the outset on characteristics
of the population according to criteria now well described
in the literature. Since these characteristics can change not
only from one stratum to another but also over time, the
significance of an adaptive procedure is obvious. On the
basis of a first robust estimate, we determine the appearance
of the distribution of residuals, and then we choose the
estimator to be used according to a predefined rule.
Following Hogg, Bril, Han and Yul (1988), we construct an
adaptive procedure based on indicators of tail weight and
concentration estimated from the sample, since the residuals
are not expected to be asymmetrical. This procedure is
applied to the data from the Investment Survey for the
period 1990-1995.

2. ESTIMATOR FOR THE INVESTMENT
SURVEY

2.1 Estimation Principle

In a finite population U ={l,..,N}, which here
represents a stratum of the survey, a sample s = {1, ..., n}
of size n, is drawn, and s = {n + 1, ..., N} designates the
population not questioned. Each company is questioned on
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its investment expenditures for two consecutive years ¢ - 1
and ¢, denoted respectively x and y.

Knowing the total amount X of investments for year
¢ - 1 in the population, we can deduce from the estimate ¥
of total investments for year ¢ the average rate of change of
equipment expenditures between ¢ - 1 and £

g-t-X
X

To simplify the notations, we define the parameter

=1 + 6 = Y/X, estimated by © = VLX.

The estimator currently used in the INSEE survey draws
on the ratio method, with the level of investment in ¢ - 1 as
auxiliary information:

ratlo:ExXS:yt

This estimator may be written as a weighted linear
estimator:

i}ratio ZZ wiZi' (1)

In this expression, w,=Xx,/ stj is the weight of
individual i and z,=y/x, is the annual change in its
investment. Such an estimator will be sensitive to the
presence of outliers on both z and w. 4n atypical point will
exhibit a change z that is very different from that of the
others, while an influential point will have a weight w that
is large enough to attract, by leverage, the average rate of
change of the stratum towards its own rate of change. Since
the decisive criterion for characterizing an observation as an
outlier is that the product wz is large enough to distort the
estimate leo, the distinction between atypical points and
influential points is, of course, arbitrary. The generic term
large investors (or LI for short) will designate these outliers
as a group, while the term extrapolatables will refer to the
other individuals in the sample.

Having carried out an a posteriori partition of the sample
s = {LI} u {extrapolatables}, we estimate the total invest-
ments of the rest of the population s on the basis of the
behaviour of only the extrapolatable individuals according
to the ratio method:

>

j}u =Ey +(E ) ext.ra}
FER , @)
{exXtr:a) &

In (2), the weight of the extrapolatables
1+ Yo,/ ¥, exira); 18 Quite strictly greater than the weight
of the large investors, which is equal to 1.

2.2 Selection of Large Investors

The large investors are selected within each stratum on
the basis of their influence on the estimation of ® according
to an iterative procedure. At the outset, all individuals are

assumed to be extrapolatable, and for each of them we
calculate a not-taken-into-account index, measuring the
impact on ® of its exclusmn from the sample,
NTIA = (Y, LI)/X where Y is the estimated total
without 1nd1v1dual i

The firm with the largest NTIA index in absolute value
is said to be a large investor. Y|, is then re-estimated with
this new partition of U, and then the next large investor is
identified. The selection stops when all extrapolatable
individuals’ have an influence on the estimate that is below
a given threshold. The greater the number and mass of
observations, the easier it is to verify this condition.
Conversely, it will prove impossible to verify the condition
if the number of individuals is too small; in that case, the
survey manager merely makes sure that no individual has a
much greater influence than the others, thus introducing an
element of subjectivity into the procedure.

By this iterative mechanism, the usual phases of
detection and treatment of outliers are carried out
simultaneously. The main problem is that the status of an
individual is not an intrinsic characteristic but instead
depends on the composition of the sample. This can change
from one survey to another. In addition, in certain
hypothetical cases (Ravalet 1996), this procedure can lead
to the unnecessary exclusion of some individuals, since at
no point is the status of large investor called into question.

2.3 Strategy for Reweighting the Linear Estimator

The estimator LI in fact follows from the strategy for
reweighting the linear estimator (1) presented by Hidiroglou
and Srinath (1981) using the example of estimation of a
total without auxiliary information. Having already carried
out a partition s = s, U s, of the sample distinguishing the
outliers s, (numbering 7,) from the other observations s,),
the authors propose to reduce, in ¥ = (NIn)Y. y,, the weight
Nin of the outliers to a lower value A by positing

N-Ain
=AYyt ———=3y,
51 h-—n;
and

Ey,

n s,

n (A - 1)|—

Ly y,- ———EY,

1y s n s,

The optimal value of A that minimizes the mean square
deviation of this estimator, whether or not conditional on
the number of outliers in the sample, depends on several
parameters of the population. Without prior information,
the choice of A is a delicate one.

Applied to the case of the estimator of the ratio with
auxiliary variable x, this is written as:
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The first two terms of the second member of (3) form an
estimate of the total ¥, under the implicit hypothesis that all
outliers are in the sample, and the third is a correction
taking account of the possible presence of outliers in the
population not questioned. This correction is a function of
the A selected and the difference in average behaviour
between the two types of individuals estimated in the
sample.

When (2) and (3) are considered together, it may be seen
that the estimator LI is formally equivalent to the case
A =1. The use of Y} thus implicitly assumes that the
outliers have been correctly identified and are all non-
representative. In Ravalet (1996), it was shown that these
two hypotheses were unfortunately seldom verified in the
context of the Investment Survey.

Since the identification procedure is manual and the
criterion used is relatively ad hoc in the absence of any
hypothesis on the population, it is not impossible that some
outliers will escape selection. The use of the ratio on the
extrapolatables then poses the problem of the robustness of
the estimation in relation to the choice of large investors. In
addition, it is unlikely that all these points are unique. The
atypical points, which are especially numerous among small
and medium-sized firms, should instead be considered as
representative. However, choosing A > 1 would inevitably
raise the question of the robustness of the third term of (3).

To try to compensate for these defects, changes to the
estimator Y, are possible. For example, the mean of the
extrapolatables may be replaced by a more robust estimator,
and only the nonrepresentative points are designated as
large investors. This technique fits into the more general
framework of M-estimators, in which the existence of a
model facilitates both the detection and treatment of outliers
(Lee 1995). It is then no longer a matter of constructing a
strict dichotomy between outliers and other points but
rather of defining areas of varying representativeness.

3. ROBUST ESTIMATION BY
GM-ESTIMATORS
3.1 The Linear Model and GM-Estimators

Assume the existence of a linear model & that links
together, for the overall population U, investments x and y
ondates £- 1 and .

E:y,=Bx, +€;
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with
E(€)=0
E(eiej) =0
V() =o’n(x,)

Vi#j,

Slope P of the regression line passing through the origin
in the superpopulation model is interpreted as the rate of
change © in the population. The variance of y is assumed to
be an increasing function of x and 7 is generally a power
function: n(x,) =x;.

According to the model, the best unbiased linear
estimator (Brewer 1963 and Royall 1970) of the total is
Yie = Zsyi * Bmczs_xi where Bmc = (st,'y,'/n(x,-))/
(st,?/ n(x;))"! is the least squares estimator.

In the particular case n(x) =x, this expression reduces
to B,,, = Y7/ Y., estimator of the ratio. This unbiased
estimator is effective only under the hypothesis of normality
of the residuals, and it does not prove to be very robust.

The M-estimators (Huber 1981) serve to define a robust
version of the least squares by replacing the square
function, in the minimization program, with a function p
that increases less rapidly:

MinY p Y, Pexi .
s oy/n(x,)

The M-estimator f} » is the solution of the following implicit
equation:

Y, Brx; X;

v
s | oG ) YnGx)

=0

where

- 9@
v(® v

The function v, like Huber’s function () =
Max(- ¢, Min(z, ¢)), depends on one or more adjustment
constants ¢ controlling the portion of observations that must
be considered as outliers. This estimator will still be
sensitive to the effect of outliers on the explanatory variable
x. Therefore a more general class of estimators, called GM-
estimators (Hampel, Ronchetti, Rousseeuw and Stahel
1986), is defined by means of the following implicit
equation:

s o )]
s oy (x;) G {oynx))) ym (x;)

with
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A choice usually made is Mallows’ formulation: v(#) = 1
and w(f) = 1/t. Hence arobust estimator 3, will verify the
implicit equation

yi_B X,
Yy oy ] =0 4)

s c,/n(x,-)

In general, the parameter ¢ is unknown and must be
replaced in this expression by a robust estimate 6 of the
dispersion of the residuals

B y
Yyl 2 =Zw[7') =0.
s 8ymtx)) 0 \O

The estimator of the total will then be:
Yo =227+ Br ) %, )

This estimator is studied by Gwet and Rivest (1992). In
general, it is not unbiased in relation to the sample design.
Chambers (1986) proposes to correct that bias by intro-
ducing into (5) a third term that estimates it robustly:

I’}Chambers = Z yi + ﬁRZ xi *

ies ies

x,/6[n(x) ¥, = Bex,
; 2,42 \VE A . 2 xi'
ies 2 xj /6 n(xj) & h‘l(x’) i€§

Jes

Choosing a bounded function vy, seems a good
compromise between estimator bias and variance For
example, Welsh and Ronchetti (1994) opt for a Huber’s
function with a large adjustment constant ¢ = 15. But the
adjustment of v, without prior information on the density
of the outliers, is always difficult.

3.2 Choice of Estimator

The desirable properties of y functions are now well
known with reference to the problem of estimating a central
tendency. They must be bounded, continuous, and
equivalent to an identity in the vicinity of zero. Strictly
monotone functions (Huber) are distinguished from
redescending functions such as Tukey’s biquadratic
function, Andrew’s sine and the Hampel or Cauchy func-
tion. Because their influence function tends toward zero,
these estimators will be less sensitive to the presence of
outliers than the Huber function. The speed of convergence

toward zero is an essential characteristic of redescending
functions. Those that are nil at a finite distance (Hampel,
Tukey or Andrew) exclude outliers from the estimation of
B, whereas the others assign them low representativeness.

The choice and adjustment of the y function are difficult.
They greatly depend on the nature of the data and more
specifically on the distribution of the residuals (Hoaglin,
Mosteller and Tukey 1983, Ch. 11). An idea, however
approximate, of the appearance of the distribution of the
residuals should make it possible to better target both the
choice and the adjustment of the estimator, and hence to
make the estimation more efficient. This intuitive remark is
at the origin of adaptive procedures, presented in particular
by Hogg (1974) and (1982). The idea is to evaluate the
nature of the distribution of the residuals, calculated on the
basis of an initial robust estimate (of the norm L, type, for
example), using carefully selected robust indicators (tail
weight, asymmetry, concentration, etc.). The existence of
these indicators makes it possible, using a predefined
decision rule, to select the appropriate estimator for this
situation, and the implicit equation (4) is solved by taking
the first robust estimate of B as an initial value.

The idea of an adaptive procedure appears all the more
attractive since it systematizes the study that must precede
the choice and adjustment of an estimator. That study can
prove extremely costly if it must be performed manually for
each stratum of the sample and repeated for each survey.

4. CONSTRUCTION OF AN ADAPTIVE
PROCEDURE

This section describes the construction of an adaptive
procedure for calculating the average rate of change of
investment on the basis of economic survey data.
Consequently, certain choices were made in light of the
specific nature and characteristics of those data and are not
necessarily transposable to other regression models. In
particular, after checking the data, we adopted the
hypothesis of a symmetrical distribution of residuals and we
excluded the case of light-tail distributions.

The construction of an adaptive procedure, which draws
on the works of Moberg, Ramberg and Randles (1980), is
carried out in several stages. The first step is to choose the
y function (or family of functions) to be used. The second
is to select the various criteria for characterizing the
distribution of residuals. Using these criteria, a
classification rule is constructed. Finally, each class is
matched with the adjustment of the estimator to be used.

4.1 Choice of y Function

Since Huber-type monotone functions do not provide
sufficient protection against outliers, only redescending
functions were considered. Among them, we selected the
generalized Cauchy function (used in particular by Moberg
et al. 1980 to approximate generalized lambda functions)
and the Tukey biquadratic function:
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These two estimators are quite different in their
treatment of outliers (see Figure 1). The biquadratic
function equals zero for longer than the Cauchy function,
but on the other hand it has a finite rejection point: the
residuals beyond c¢’c do not enter into the estimate,
whereas the Cauchy function assigns them a certain repre-
sentativeness. The parameter b serves, in principle, to
control the asymmetry of y according to that of the
residuals.

Tukey (c=8) / \
1 Cauchy (c=6, b=0)

Figure 1. Cauchy and Tukey Functions

4.2 Parameter of Scale, Calculation Algorithm and
Selection Criteria

In general an estimator & of dispersion is defined by an
implicit equation )y (r,/6) = 0, where y is an even function.
It is therefore a matter of solving the system of non-linear
equations in (B3, 6) following:

Yi~— i
Sl 22
4 ©)

Y x| —=| =o.
L dyn(x)
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Rivest (1989) offers several examples showing that
resolving system (6) can pose problems, owing to the fact
that there may be a number of solutions, even in the case of
a monotone y function. Following his recommendations,
we will proceed in two stages. First, the parameter of
dispersion ¢ is estimated using the median of the absolute
values (MAD) of the residuals defined on the basis of the
median of the individual rates of change. Then B is
calculated by (4) using the value of ¢ found previously.

For solving (4), we preferred the reweighting algorithm
to the Newton-Raphson algorithm, since it seems to
converge more easily, especially when the adjustment
constant is small.

Since the effectiveness of an adaptive procedure depends
on the effectiveness of the decision-making process, the
greatest attention must be paid to the nature, quality and
robustness of the information that guides the choice of the
cstimator. Tail weight is an indispensable indicator, since it
provides information on the relative significance of outliers
in the sample and thus in the population (see Hoaglin et al.
1983, ch. 10). For the tail weight indicator, we adopted the
proposal of Hogg (1974):

() = Up) - L(p)

U(0.5) - L(0.5)

U(p) (resp. L(p)) is the mean of the np largest (resp.
smallest) order statistics, using a linear interpolation when np
is not whole. We chose p = 0.05; for the normal distribution
7(.05) is equal to 2.59.

In addition, like Hogg et al. (1988), we considered it
important to test for the possible presence of a distribution
of the double exponential type, measuring the concentration
of residuals by the following pk indicator:

poX(-B1-0)-X(@p)
X(51-P)-X(B,.5

where X (a, b) is the means of the order statistics between
the na-th and the nb-th, with the sizes interpolated if na or
nb are not integers. We selected o = 0.05 and B =0.15, or
pk = 2.7 for a normal distribution.

Finally, different studies (Moberg et al. 1980, Hogg
et al. 1988) have emphasized the importance of the dissym-
metry of distributions. When there are asymmetrical
residuals, the bias of robust estimators can be sizable,
making it tricky to use them (Chambers et Kokic 1993). In
the INSEE Investment Survey, the residuals are theo-
retically asymmetrical since they are confined to a limited
range (» =y - Bx > - Px). However, we noted empirically
that this asymmetry was very slight and could safely be
ignored. The failure of the correction of a possible bias by
the function v, in Chambers’ estimator moreover confirms
this observation. Only the symmetrical case is considered
here; the bias of the estimators defined by (5) is therefore
nil.
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4.3 Classification of Distributions and Adjustment
of the Estimator

The definition of the decision rule was based on the
study of eight specific symmetrical distributions illustrating
various tail weight and concentration situations (see
Table 1). We were interested in the family of contaminated
distributions CN(o, K), with the distribution function
Fx)=(1-a)®() +ad(x/K) where @ is the cumulative
function of the distribution N(0, 1), since these distri-
butions give a good representation of real data (Hoaglin
et al. 1983, ch. 10), especially the data in the Investment
Survey (Ravalet 1996). While Gaussian in the middle, they
nevertheless contain more outliers than the normal
distribution N (0, 1).

Table 1
Eight Specific Distributions
1(.05) pk
1 Normal distribution 2.59 2.76
2 Contaminated dist CN(.05, 3) 2.94 2.83
3 Double exponential dist. 3.28 341
4  Contaminated dist CN(.05, 10) 4.47 2.85
5  Contaminated dist CN(.10, 10) 5.42 3.05
6  Contaminated dist CN(.20, 10) 5.64 4.44
7  Slash distribution 7.65 4.19
8  Cauchy distribution 7.82 4.78

The two indicators T(0.5) and pk were simulated over
these eight distributions, for several sample sizes. The
graph of (1(0.5),pk) serves to distinguish four groups of
distributions: light-tailed, relatively unconcentrated distri-
butions of the normal type or CN(.05,3); heavy-tailed
distributions of the type CN(.05,10), CN(.10,10), and
CN(.20,10), and very heavy-tailed distributions of the Slash
or Cauchy type; and concentrated distributions such as the
double exponential distribution. These four classes are
defined (see Figure 2) by the following equation
boundaries:

ClassT: ©(0.5)<3.6- % and pk<3.20
n

Class I: 3.6 - A2 <7(0.5) < 5.8 - 32
n n
35

Class III: 5.8 - — < 1(0.5)
n

1

Class IV: ©(0.5) < 3.6 - -2 and pk>3.20
n

x
Cauchy
45 x
g Class IV CN(20,10)
f- x
£ Stash
§ ¢
=3
H Class 11
o]
s Class ITI
x
Double exp.
x
371 Classl CNY10,10)
x x
X053 CN.05,10)
Gauss
25 T T T T T T T T 1
2 3 4 5 6 7 8
Tail Weight

Figure 2. Four Classes of Distributions

The final stage consists in setting the adjustment of the
two estimators in each class. Since we are interested only in
the symmetrical case, the b parameter of the Cauchy
function is nil. By simulations, we determined for the eight
reference distributions the optimal constants ¢ of the Tukey
and Cauchy functions (i.e., minimizing the variance of these
estimators or, what amounts to the same thing here, their
mean square deviation). These do indeed diminish with tail
weight, except of course for the case of the double
exponential distribution, which requires an adjustment
similar to those used for the Slash and Cauchy distributions.

Tukey’s estimator is more efficient on the normal or
contaminated distributions, but it generally requires finer
adjustment. Figure 3 shows the example of the contam-
inated distribution CN(.10,10). Lastly, while the choice of
the constant appears to be relatively critical for the heavy-
tailed or concentrated distributions, a wide band of value is
possible for distributions close to the normal distribution.

003 - Tukey - Cauchyl
L]
@
]
8 s
o]
L3
>
o
2
[}
E 002
£
]
[

0.015

0.01 T T T T T T TTT T T T T T T T

[ 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
Adjustment constants

Figure 3. Variance of Tukey and Cauchy Estimators for the

Distribution CN(.10,10) (»=100)



Survey Methodology, December 1997

The synthesis of these results serves to define the
adjustments to be used on each distribution class. These
adjustments, established for samples of size 100 (Table 2),
remain entirely acceptable for samples sizes between 50
and 150.

Table 2
Adjustment of Estimators by Class of Distribution
of Residuals (n = 100)

Class Tukey Cauchy
I 7 7
II 4.5 4
m 3 1
v 3 1

5. APPLICATION TO THE INVESTMENT
SURVEY

5.1 The Problem of Stratification

The strata used for the LI estimator are defined by the
cross-tabulation of an activity (18 manufacturing sectors)
and a company size class (small, medium or large). Among
these 54 strata, approximately 20 never contain more than
20 observations. This stratification is therefore too fine for
the adaptive procedure to be used correctly, as it assumes a
minimum number of observations.

Since small firms are fairly distinct from medium-sized
and large firms in terms of dispersion and residuals tail
weight, differentiation by size is maintained. Sectors must
thus be grouped. We decided not to adopt the method used
by Sohre (1995), which consists of grouping after data
collection those sectors having the closest parameters (here
the average change in investment). Proximity is impossible
to assess in small strata, and the groups obtained are likely
to change from one survey to another, making comparisons
difficult. We preferred to redefine 15 new strata based on a
higher classification level distinguishing only four sectors:
intermediate goods, professional capital goods, automobile,
and consumer goods.

5.2 Characteristics of Strata

The hypothesis of a variance of residuals independent of
x in the model & cannot be accepted. The choice of y in the
function 1 is made in such a way that the curve of the
residuals (in absolute value) as a function of the regressor,
smoothed by the LOESS method, shows no trend
(Cleveland 1979). For the stratum representing intermediate
goods and medium-sized companies in the April 1995
survey (see Figure 4), y = 1.3 is an acceptable compromise
between the appearance of a downward trend for small
values of x and the cancellation of the upward trend for the
larger values of x. A similar examination on the other strata
confirmed this choice for the manufacturing industry as a
whole.
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In each stratum, the distribution of the residuals system-
atically exhibits a heavier tail than the normal distribution,
without being extremely heavy-tailed. Within a given
sector, the tail weight indicator decreases with company
size. The great majority of the strata representing small and
medium-sized firms were assigned to Class 2. Large firms
more often exhibit somewhat heavy-tailed distributions,
close either to the normal distribution (Class 1), or the
double exponential distribution (Class 4). Class 2 is by far
the largest and represents 75% of cases. Only 20% of the
distributions are recognized as somewhat heavy-tailed and
are assigned in equal proportions to classes 1 and 4. On the
other hand, very heavy-tailed distributions (Class 3) are
unusual (less than 5% of the cases). While there appears to
be a certain persistence to the classification, it is not perfect.
And the changes are quite real, since they resist a slight
modification of the boundaries between classes. Thus this
perfectly justifies the use of an adaptive procedure.

Figure 4. Absolute Value of Residuals (y = 1.3, Intermediate Goods,
Size 2, April 95)

5.3 Resulting Estimates

The estimation procedure based on (5), applied to the six
surveys covering the period 1990-1995, yielded the results
shown in Figure 5. Also shown are National Accounts
estimates, those obtained with the LI estimator, and those
fromthe Annual Business Survey (ABS), whichisexhaustive.

For the manufacturing sector as a whole, the results of
the adaptive procedure are comparable to those obtained
with the LI estimator. The biquadratic function results in
estimates that are consistently lower than those obtained
with the Cauchy function. With a finite rejection point, the
Tukey function is less influenced by the slight asymmetry
toward the right in the distribution of the residuals. These
new estimates are closer to those of the ABS than to the
National Accounts estimates. This is hardly surprising,
considering the excellent correlation between individual
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ABS data and the responses obtained in the survey. As yet
there is no explanation for the differences in 1991 and 1994
in relation to the National Accounts estimates. Apart from
the year 1994, the estimates obtained with the Cauchy
function are entirely acceptable in the intermediate goods
and automobile sectors and to a lesser extent in the
professional capital goods sector. On the other hand, in
consumer goods, the results are fairly far from the National
Accounts estimates. Here we are likely running up against
a problem of sample quality. This sector is quite hetero-
geneous, and a few activities such as printing are poorly
covered by the survey.

20

)
1

TIIIRT

-20

-Accounls -©- Cauchy -[3- Tukey D u

-30 T T T T T
1990 1991 1992 1993 1994 1995

Figure 5. Investment Growth Rate in Value in the Manufacturing
Industry

6. CONCLUSIONS

This article presents a theoretical justification of a
procedure currently used to process data from the
Investment Survey; in particular it offers a justification of
the principle of excluding outliers or large investors.
However, the strategy of reweighting the linear estimator
following Hidiroglou and Srinath (1981) shows itself to be
insufficient for this purpose in several respects, mainly
having to do with the identification and treatment of
representative outliers. The dichotomy between extra-
polatable individuals and large investors appears too radical
and leads to a lack of robustness, since the influence curve
of this estimator is not continuous.

On the other hand, the hypothesis of a linear super-
population model and its estimation by GM-estimators
seemed to us to be of great interest from both a method-
ological and practical standpoint. The insertion of these
techniques into an adaptive procedure also makes it
possible to have a robust estimator for a variety of situa-
tions. Following principles described in the literature, the
procedure proposed here uses indicators of tail weight and
concentration of the residuals in the linear model calculated
from the sample, to decide on the adjustment of the weight
function to be used, it being assumed that the residuals are

symmetrical. The estimates made with the Cauchy function
yielded satisfactory results on the manufacturing industry,
and they largely validate previously published results. The
advantages of this method over the one currently used
basically have to do with lower implementation costs and
greater control over the methodology employed.

The adaptive procedure was constructed independently of
the survey, and therefore there is no guarantee that the
classification is optimal for the strata content. Furthermore,
we did not study the robustness of the rule forassigning values
toaclass. Thisissueisimportant when one catries out several
successive measurements and one wants to interpret the
revisions. Clearly, further research on these classification
methods is required, in order to integrate additional
information such as the information yielded by earlier
estimates orcomprehensive surveys of the population studied.
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