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Empirical Bayes Estimation of Small Area Proportions Based
on Ordinal Outcome Variables

PATRICK J. FARRELL'

ABSTRACT

Much research has been conducted into the modelling of ordinal responses. Some authors argue that, when the response
variable is ordinal, inclusion of ordinality in the model to be estimated should improve model performance. Under the
condition of ordinality, Campbell and Donner (1989) compared the asymptotic classification error rate of the multinominal
logistic model to that of the ordinal logistic model of Anderson (1984). They showed that the ordinal logistic model had
a lower expected asymptotic error rate than the multinominal logistic model. This paper also aims to compare the
performance of ordinal and multinomial logistic models for ordinal responses. However, rather than focussing on
classification efficiency, the assessment is made in the context of an application where the objective is to estimate small area
proportions. More specifically, using multinominal and ordinal logistic models, the empirical Bayes approach proposed
by Farrell, MacGibbon and Tomberlin (1997a) for estimating small area proportions based on binomial outcome data is
extended to response variables consisting of more than two outcome categories. The properties of estimators based on these
two models are compared via a simulation study in which the empirical Bayes methods proposed here are applied to data
from the 1950 United States Census with the objective of predicting, for a small area, the proportion of individuals who
belong to the various categories of an ordinal response variable representing income level.

KEY WORDS: Bootstrap; Complex survey design; Logistic regression; Random effects models; Small area summary

statistics; Taylor series.

1. INTRODUCTION

Much research has been conducted into the modelling of
ordinal responses (see Albert and Chib 1993, Anderson
1984, Crouchley 1995, and McCullagh 1980). Some
authors argue that, when the response variable is ordinal,
inclusion of ordinality in the model to be estimated should
improve model performance. Under the condition of
ordinality, Campbell and Donner (1989) theoretically
compared the asymptotic classification error rate of the
multinomial logistic model to that of the ordinal logistic
model of Anderson (1984), demonstrating that the ordinal
model had a lower expected asymptotic error rate.
However, in a subsequent simulation study, Campbell,
Donner, and Webster (1991) illustrated that ordinal models
classify less accurately than multinomial models under a
variety of circumstances, and concluded that ordinal models
confer no advantage when the main purpose of an analysis
is classification.

This paper also aims to compare the performance of
ordinal and multinomial logistic models for ordinal
responses. However, rather than focussing on classification
efficiency, the assessment is made in the context of an
application where the objective is to estimate small area
proportions.

The estimation of small area parameters is a finite
population sampling problem which has received consi-
derable attention. An excellent review of such research
appears in Ghosh and Rao (1994). These authors demon-
strate that as a compromise between synthetic and direct

survey estimators, estimators based on empirical or
hierarchical Bayes procedures are not subject to the large
bias that is sometimes associated with a synthetic estimator
(see Gonzales 1973), nor are they as variable as a direct
survey estimator. A similar conclusion was drawn by
Farrell, MacGibbon, and Tomberlin (1997a) in a study of
the properties of an empirical Bayes estimator for small area
proportions based on a binomial outcome variable.

Despite the numerous studies aimed at predicting small
area proportions based on binomial response variables (see
Dempster and Tomberlin 1980, MacGibbon and Tomberlin
1989, Farrell 1991, Farrell et al. 1997a, Malec, Sedransk,
and Tompkins 1993, Stroud 1991, and Wong and Mason
1985), little attention has been given to estimating
proportions based on response variables with more than two
outcome categories. This paper extends the empirical
Bayes approach of Farrell et al., (1997a), to such response
variables by basing the estimates on multinomial and
ordinal logistic models. To compare the estimates of small
area proportions based on an ordinal outcome variable
using multinomial and ordinal models, the proposed
empirical Bayes methods are applied to data from the 1950
United States Census in order to predict, for a given small
area, the proportion of individuals who belong to the
various categories of an ordinal response variable
representing income level.

For such an estimation problem, there are many issues
which require attention. They include the selection of
predictor variables for the model, model diagnostics, the
sample design, and the properties of the estimators
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employed. For example, among the model diagnostics for
the multinomial and ordinal models was an assessment of
model fit which was based on residuals. For a description
of this diagnostic and others, see Farrell (1991). The
findings did not appear to indicate a lack of fit for either
model. In this study, the focus is on investigating the
properties of empirical Bayes estimators over repeated
realizations of the sample design using a simulation. For
many survey practitioners, such properties are of prime
importance.

One concemn associated with using an empirical Bayes
estimation approach is that interval estimates do not attain
the desired level of coverage, since the uncertainty that
arises from having to estimate the parameters of the prior
distribution is not accounted for. This study incorporates
the suggestion of Laird and Louis (1987) to use bootstrap
techniques for adjusting naive estimates of accuracy.
Alternatively, Prasad and Rao (1990) have developed a
procedure which attempts to account for the uncertainty not
captured by the naive estimates. Although their approach
was designed for three specific linear models containing
random effects, Cressie (1992) has made certain conjectures
as to when the procedure is appropriate. Of importance is
the constraint that the outcome variable must follow a
normal distribution.

The proposed empirical Bayes procedures based on
multinomial and ordinal logistic models are presented in
Section 2. The simulation study to compare multinomial
and ordinal logistic models for ordinal responses is
described in Section 3, while the conclusions and
discussion are presented in Section 4.

2. ESTIMATION PROCEDURES

Consider a discrete small area characteristic of interest
with M possible outcomes. The subscript m will reference
these categories, where m = 1, .. M- landm™ =1, .., M.
In addition, underlined lower case and capital letters will
designate vectors, while bold capital letters will represent
matrices.

The estimation procedures are illustrated under a two
stage sample design, where individuals are sampled from
selected local areas. Thus, local areas are the primary
sampling units here. Let p . be the proportion of
individuals in the i-th local area that belong to category m
of the response variable. Then

=3 V!N
J

where y,_  is either zero or one, depending upon whether
the j-th individual in local area i belongs to category m * of
the characteristic of interest, and W, is the population size
of the i-th local area.

The approach employed by Farrell et al., (1997a), to
estimate small area proportions based on binomial outcome
variables is extended here to allow for the estimation of
D,n.- The procedure follows the explicitly model-based
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approach proposed by Dempster and Tomberlin (1980).
Let . represent the probability that the j-th individual
within the i-th local area belongs to category m " of the
response variable. Then, according to Royall (1970), p,
in (2.1) is estimated by

BPim* :(Zyijm’ +Z ﬁijm’)/Ni’
Jes Jjes’

where S is the set of n, sampled individuals from local area
i,and S’ is the set of individuals in local area 7 not included
in the sample. Values for the &, are required. To obtain
these estimates, logistic regress1on models are used to
describe the probabilities associated with individuals in the
population.

Under a multinomial logistic model, the =, are
described as follows:

m+

(2.2)

log(m,,,, / T, =)_(;ﬁm +3,.,
§i ~1.i.d. Normal (0, D),

2.3)

where ST (8,15 s Sias-1) i = 1, ..., I, and D is an unknown
covariance matrlx In this model X is a vector of fixed
effects predictor variables, the vector ﬁ contains the fixed
effects parameters associated with the m-th category of the
outcome variable of interest, and &, is a normally
distributed random effect associated with the m-th category
of the characteristic of interest in the i-th local area. The
vector X , may include covariates at both the individual and
aggregate levels. For sample designs of more than two
stages, an analogous model would contain random effects
for the sampling units at each stage, excluding the final one.

Note that the model in (2.3), unlike a similar model
proposed by Malec et al, (1993), does not contain
interaction terms between the local area effects and the
fixed effects predictor variables. However, terms to
acknowledge such interaction could be included if they
were deemed necessary.

To obtain Bayes estimates of the model parameters,
values are assumed for the unknown parameters of the
random effects distribution. Let )g @,1,. ) be a
vector for the ij-th sampled individual® “where the component
associated with the category of the outcome variable to
which the individual belongs has a value of one. The
remaining entries are zero. If ¥ is a matrix with rows y R
then the data are distributed as:

yyl yxﬂ yijM

f¥|B,8 )aH LA A A

where BT =], ...,B] ), and 8" = (81T [T) If a flat
distribution is specified for the fixéd effects, the distribution
of the parameters is f(B,8,|D,)<exp(-¥28/D 8 ),
where D =diag(D, D, ..., D). The Jomt distribution of the
data and the parameters is determmed using f(Y|B,3,) and
f(B,8,|D_), and subsequently employed to obtain the

posterior distribution of the parameters. Unfortunately, a
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closed form for this posterior distribution cannot be derived
due to the intractable integration required to obtain the
marginal distribution of Y. A possible approach could be a
stochastic integration method such as Gibbs sampling (see
Zeger and Karim 1991). Ripley and Kirkland (1990)
indicate that the drawbacks of such an approach include the
intensive computations and questions about when the
sampling process has achieved equilibrium. Since
computing time is of particular concern for the simulation
discussed in Section 3, this approach will not be pursued
here. Alternatively, Breslow and Clayton (1993) state that
there is still room for simple, approximate methods. Many
authors have found that a multivariate normal approxi-
mation of the posterior works very well in practice (see
Farrell et al. 1997a, Laird 1978, Tomberlin 1988, and
Wong and Mason 1985). Breslow and Lin (1995) warm,
however, that such an approach might yield inconsistent
estimates for the fixed effects parameters. Thus, if D 18

to be based on fixed effects estimates obtained in thlS
manner, the same might apply to the consistency of p,
an estimator for p, ..

Following Farrell et al. (1997a), the posterior distri-
bution of the parameters is approximated as a multivariate
normal distribution having its mean at the mode and
covariance matrix equal to the inverse of the information
matrix evaluated at the mode. The information matrix here
is simply the second derivative of the posterior distribution
taken with respectto § and 8 . When values are specified
for the unknown parametérs of the random effects
distribution, the resulting mode and covariance matrix
constitute an initial set of estimates of the model
parameters. Empirical Bayes estimates are then obtained by
using the EM algorithm described by Dempster, Laird, and
Rubin (1977) to determine estimates for the parameters of
the random effects distribution. The algorithm converges
quickly, taking only a few minutes in real time. For details
on how the empirical Bayes estimates are obtained for a
model based on a two stage sample design and a binomial
response variable, see MacGibbon and Tomberlin (1989).

The empirical Bayes estimates of the model parameters
are used in (2.2) to determine p, .. In developing an
expression for the uncertainty of g, , N, is assumed to be
known. Since the approach being used is model-based and
predictive in nature, the uncertainty in p,  arises solely
from the Y} &, . term; the Yy, i+ term has zero variance.
Thus, the mean square error of p. . as a predictor for p
can be estimated as

A~ A~ ; ﬁij’" v
MSE(p, .)=Var| <

1
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For sampled local areas, where n, is greater than zero, the
first term of (2.4) is of order 1/n,, while the second term is
of order 1/N,. In this study, the approximation of the mean
square error of p, _ is based on the first term only, which
yields a useful approximation provided that N, is large
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compared to n,. For nonsampled local areas, the first term
in (2.4) is of order 1; therefore it always dominates the
second term.

To estimate the uncertainty of p,_, which is expressed
as a non-linear function of the estimators of the fixed and
random effects, the expression for p, . is linearized by
taking a first order multivariate Taylor series expansion
about the realized values of the fixed and random effects.
The variance of the resulting expression, call it Var(®, ),
is taken as an estimate of the uncertainty of p, .. Details of
the Taylor series expansion are given in Farrell ef al,
(1997a), for a binomial outcome variable.

When population micro-data for auxiliary variables are
not available, p,  in (2.2) cannot be determined. For non-
linear models such as (2.3), prediction is not straight-
forward in this situation. However, an alternative estimator
to p, .. say p, ., which requires only local area summary
statistics (a mean vector and finite population covariance
matrix) for both continuous and categorical variables can be
obtained by extending the approach proposed by Farrell,
MacGibbon, and Tomberlin (1997b) for achieving this
objective when estimating binomial small area parameters.
The same Taylor series expansion that was used to estimate
the accuracy of p,, , can be employed to obtain a measure
of the uncertainty for p, ,, Var(@, ,).

The approach described in this section can also be used
to develop point and interval estimates for small area
proportions based on p, . and p, . when an ordinal model
is used. In this study, a fixed and random effects model is
proposed for the =, which is based on the ordinal model
proposed by McCullagh (1980)

log[ nij1+ .t Tczjm

Tijom+1y™ =+ Ty

) =Bom X[ B +3,,
Y (2.5)

§i ~ ii.d. Normal (0, D).

The vector X, contains the values of the fixed effects
predictor variables for the jj-th individual, while B
represents a vector of fixed effects parameters. Associated
with the m-th category of the response variable is a constant
term, B, . The random effects are again assumed to be
normally distributed. Note that an important feature of the
model in (2.5) is that the restriction By, ., =~ By, 2 §,, -
8,1y Must hold in order for =, ., >0. A discussion
concerning this constraint is given in Section 3.

The approach used to approximate the uncertainty in
P, and p_ when m is based on either (2.3) or (2.5)
can be described as naive, since Var(p, ,) and Var(p, )
do not account for the uncertainty which results from
estimating the parameters of the random effects distribu-
ti/on. Thus, inte;vgl estimates for p,  that are based on
Var(p, ,) and Var(p, ) are typically too short. Many
approaches have been proposed for addressing this issue
(see Carlin and Gelfand 1990, and Laird and Louis 1987).
In this study, the Type III bootstrap proposed by Laird and
Louis (1987) is used to adjust naively-estimated measures
of uncertainty. The procedure is described in Farrell ef al.,
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(1997a), for a binomial outcome variable. It can be
extended to (2.3) and (2.5), and is applicable regardless of
whether estimation is basedon g, or p, ..

The procedure requires that a number of bootstrap
samples, N,, be generated from a given set of data.
Suppose that small area estimation is to be based on p, ..
For the b-th bootstrap sample, an estimate p, . for p, .
based on (2.3) or (2.5), along with a naive estimate of the
variability of p”""/*k@ (Pims) ATE obtained. The quan-
tities p,, ., and Var (p,,,.) are determined for each of N,
bootstrap samples, and used to calculate a bootstrap-
adjusted estimate of the variability associated with p,_ :

P
N ~ ~{Bl2
o~ E Var(pbim ') E (pbim’ _p,'m*)
v {B} , » ) b

a (P, = + ,

N, N, 1
E ﬁ bim”*
where ﬁianf = —bT—
B

Note that even though individuals are not selected by
simple random sampling without replacement in this study,
survey weights have not been attached to the records.
However, in practice, the weights attached to a record will
vary due to features of the survey design, such as
differential nonresponse and clustering. In this study, the
models account for the effects of these features. Further
research is necessary to determine what impact the
incorporation of survey weights into the models would have
on the bootstrapping procedure.

3. ADATA EXAMPLE

A comparison of the estimates for small area proportions
based on multinomial and ordinal logistic models was
carried out using a simulation study where the response
variable was ordinal. The data set is based on a 1% sample
of the 1950 United States Census (United States Bureau of
the Census 1984). Data based on the 1950 Census is used
since it constitutes a public use microdata sample, and none
of the more recent census data is available in this form.
Thus, the results below for the multinomial and ordinal
models are obtained by using predictor variable data for
each individual within a local area. For a discussion of the
difficulties encountered in obtaining microdata, see
Bethlehem, Keller, and Pannekoek (1990).

The application considered is the estimation of the
proportion of individuals in a given local area associated
with each of the three categories of an ordinal outcome
variable representing total personal income, where a local
area is typically specified to be a state. This variable
encompasses all sources of income, including wages and
salaries, business income, and net income from other
sources. An individual is regarded as having a low (less
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than $2,500), medium ($2,500 to under $10,000) or high
($10,000 and over) level of total personal income during
1949. Thus, m = 1 for low income (Category 1), m =2 for
medium income (Category 2), and m = 3 for high income
(Category 3). The multinomial and ordinal models were
each used to obtain point and interval estimates for 42 local
areas. Twenty of these areas were sampled, the others were
not. Note that individuals with no income were included in
Category 1. An alternative approach would have been a
two stage model; a first stage logistic model for the
probability of non-zero income, and a second stage
multinomial or ordinal model for income -category
conditional on non-zero income.

In practice, historical data are often available for survey
planning purposes. For example, variable selection for
purposes of model predictions could be based on previous
census data. To emulate this situation, a random sample of
size 2,000 was selected from the 1% sample. Variables for
model prediction were determined by applying a stepwise
logistic regression procedure. The variables selected were
age, gender, and race. With regards to race, individuals
were categorized as white, negro, or other.

Thus, the multinomial and ordinal models used in this
study included four individual level predictor variables for
age, gender, and race (two indicator variables were required
to code the various races). However, they also contained
four local area variables representing average age, the
proportion of males, the proportion of whites, and the
proportion of negroes. Regardless of which model is
considered, these local area variables are necessary since,
when they are excluded, a relationship is noted between the
expected value of p, . and its bias, where as the expected
value increases, the bias increases from large negative to
large positive values. The inclusion of domain level
covariates removes this correlation. Therefore, since local
area variables are also included in the models, the
multinomial model contains eighteen fixed effects para-
meters (two for each of the individual level and local area
predictor variables, and two constant terms) and forty
random effects (two for each of the twenty sampled local
areas), while the ordinal model contains ten fixed effects
parameters (one for each of the individual level and local
area predictor variables, and two constant terms) and forty
random effects (two for each of the twenty sampled local
areas). For a detailed study comparing logistic regression
models for estimating small area proportions with and
without domain level covariates which uses binomial
outcome data, see Farrell ef al., (1997a).

The data for estimating the proportions of individuals in
each local area belonging to the various income level
categories were obtained from the 1% sample using a self-
weighting two stage sample design. In the first stage, 20
out of 42 local areas were selected, without replacement,
using probabilities proportional to size (PPS). More
specifically, the approach used to select these local areas
was randomized systematic selection of primary sampling
units with PPS (see Kish 1965, p. 230). Then, at the second
stage, 50 individuals were randomly selected from each
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chosen local area. A total of 500 samples were drawn using
this two stage design; however, resampling was not
performed at the local area selection stage. Thus, the same
20 local areas were sampled in each of the 500 replicates.
For these 20 sampled local areas, the average local area
proportions for Categories 1, 2, and 3 of income level are
0.7142, 0.2260, and 0.0598.

Note that for the ordinal model, the constraint B, -
By, 2 8, — 8, must hold in order for 7, > 0. A check of
this constraint for each of the 500 samples using the
estimates for the constant terms and the random effects
indicated that it held at all times. In fact, it was discovered
that in each of the 500 samples taken, the difference in the
estimates for the constant terms was always positive, at
least two orders of magnitude larger than the majority of the
absolute differences of the random effects estimates, and
always one order of magnitude bigger. Thus, the constant
terms in the model dominate over the random effects.

To compare the properties of estimators for small area
proportions over repeated realizations of the sample design,
for each of the 500 /@mples selected the quantities
A ~ (B}, a . .

Dipes Var(®, ), and Var”'(®,,..) associated with each
income level category were obtained for each local area,
sampled or not, using both the multinomial and ordinal
models. For each model, the estimates for Var(p, ) and
Var? )(p‘iw) were used to construct naive and bootstrap-
adjusted empirical Bayes symmetric 93% confidence
intervals, respectively. Estimates for Var? )(ﬁ,m) were
obtained by using the bootstrap procedure to generate 100
bootstrap samples from each of the 500 simulation samples.

Note that for the ordinal model, the constraint B, -
By, > 8, — 8,, must also hold in the bootstrap procedure for
random effects generated from an estimated distribution;
otherwise negative estimates for some of the probabilities & .
will result when creating bootstrap samples. Over the
course of the simulation for the application considered here,
no negative probabilities were encountered when
bootstrapping. One approach for assessing the likelihood of
negative probabilities during the bootstrap procedure is to
consider the ratio of the difference B, - [, to the
estimated prior standard deviation of the difference
0, ~ 0,,. This ratio was determined for each sampled local
area in each of the 500 simulation samples taken. The
average of this entire set of ratios was 6.8, and none were
found to be less than 5.8. Thus, the difference By, - By,
was determined to always be at least 5.8 times the estimated
standard deviation of the difference o, - 0,,. Based on the
empirical rule, a rule of thumb would be to conclude that
when the ratio described above is at least three, it is highly
unlikely that negative probabilities will arise when
bootstrapping.

Table 1 presents average summary statistics over the 500
simulation samples obtained for the multinomial and
ordinal models across all sampled local areas for each of
three income level categories. A study of the stability of
these statistics was conducted by investigating how they
changed as additional samples were taken. Only slight
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changes were observed once 150 samples had been reached.
Table 1 includes the summary statistics obtained for the
first 200 samples in brackets for comparative purposes.

For each income category, two summary statistics shown
in Table 1 were evaluated to compare the design bias of
p,,. for the multinomial and ordinal models; the average
bias of p, ., and the average absolute bias of p, . The
average bias is simply the mean over all sampled local areas
of the differences obtained when the actual proportion,
p,,., for the i-th local area is subtracted from the average
point estimate for the area over the 500 simulation samples.
The average absolute bias is defined similarly, except that
the absolute value of each difference is used. Generally
speaking, the results obtained for these two summary
statistics were slightly better for the ordinal model,
regardless of the income category considered. However,
the multinomial model did result in a somewhat smaller
average bias for p, . for the low income category.

For each sampled local area, empirical root mean square
errors (RMSE’s) were computed over the 500 simulation
samples under each model for the three income categories.
For each model and income level combination, the
appropriate empirical RMSE’s were averaged over all
sampled local areas, resulting in the average empirical
RMSE’s presented in Table 1. Once again, the perfor-
mance of the ordinal model is slightly better for all three
income level categories.

To study the reduction in empirical RMSE when a
model-based approach to estimation is used instead of a
classical design unbiased method, average empirical
RMSE’s analogous to those in Table 1 based on the 500
samples were computed using the observed local area
sample proportions in place of p, .. The average empirical
RMSE’s obtained were substantially larger (0.0617, 0.0564,
and 0.0311 for the low, medium, and high income level
categories) than those based on p, . under either model.

Table 1 also includes summary statistics over all sampled
local areas which relate naive and bootstrap measures of
variability in p,, to average empirical RMSE. For each
income level category, the average relative bias and the
ayerage absolute relative bias of the square root of
Var(p, ,) as an estimate of empirical RMSE are shown in
Table 1 for the multinomial and ordinal models. The
average relative bias is simply the mean over all sampled
local areas of the values obtained when the difference
resulting from the subtraction of the empirical RMSE for
the i-th local area from the average of the square root of
Var(p,,,) for the area over the 500 simulation samples is
divided by the empirical RMSE. The average absolute bias
is defined similarly, expect that the absolute value of each
difference is used. The table also presents similar averages
for_the bootstrap-adjusted measures of variability,
Var'®? )(ﬁiw). For both the multinomial and ordinal logistic
models, the average relative bias and average absolute
relative bias of the bootstrap-adjusted estimates of
variability are substantially smaller in magnitude than their
naive counterparts for all three income level categories. In
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Table 1
Average Summary Statistics based on 500 Simulation Samples for the Multinomial and Ordinal Logistic Models
across all Sampled Local Areas for each Income Level Category.
The average summary statistics obtained over the first 200 simulation samples are included in brackets for comparative purposes

Low Income Level

Medium Income Level High Income Level

Average Multinomial _ Ordinal Multinomial Ordinal Multinomial Ordinal
Bias of B -0.0004 -0.0005 -0.0007 -0.0004 0.0011 0.0009
Pip. (-0.0004)  (-0.0006) (-0.0006) (-0.0003) (0.0010) (0.0009)
. . 0.0076 0.0051 0.0089 0.0048 0.0108 0.0074
Absolute Bias of p, (0.0078)  (0.0055) (0.0085) (0.0046) (0.0106) (0.0073)
. 0.0479 0.0467 0.0417 0.0401 0.0236 0.0231
Empirical RMSE (0.0483)  (0.0469) (0.0414) (0.0402) (0.0233) (0.0229)
Relative Bias of -0.1192 -0.1125 -0.1273 -0.1180 -0.1524 -0.1376
0.1197 -0.1128 -0.1276 -0.1186 -0.1521 -0.1372
m) ( ) ( ) ( ) ( ) ( ) ( )
Absolute Relative Bias of 0.1192 0.1125 0.1273 0.1180 0.1524 0.1376
(0.1197) (0.1128) (0.1276) (0.1186) (0.1521) (0.1372)
Var(p, )
Relative Bias of -0.0275 -0.0173 -0.0309 -0.0204 -0.0391 -0.0273
7 (-0.0272)  (-0.0175) (-0.0314) (-0.0207) (-0.0393) (-0.0269)
\/Var (ﬁ,_m)
Absolute Relative Bias of 0.0294 0.0227 0.0349 0.0263 0.0450 0.0353
5 (0.0290) (0.0228) (0.0343) (0.0265) (0.0446) (0.0347)
yVar @, )

. 91.35 91.91 91.19 91.78 90.67 91.26
Naive Coverage Rate 91.325) (91.875) (91.225) (91.750) (90.650) (91.300)
Absolute Deviation of Naive 3.65 3.09 3.81 3.22 4.33 3.74

Coverage from the 95% Nominal Rate (3.675) (3.125) 3.775) (3.250) (4.350) (3.700)

. 94.44 94.75 94.37 94.68 93.91 94.40
Adjusted Coverage Rate (94.400)  (94.775) (94.350) (94.650) (93.925) (94.375)
Absolute Deviation of Adjusted 1.58 1.43 1.71 1.50 1.91 1.62

Coverage from the 95% Nominal Rate  (1.600) (1.425) (1.725) (1.525) (1.900) (1.650)

addition, these bootstrap-adjusted average summary
statistics are all very small, which indicates that the
bootstrap-adjusted estimates of variability are capable of
incorporating most of the uncertainty that arises from
having to estimate the distribution of the random effects.
For each sampled local area, naive and bootstrap-
adjusted coverage rates based on 95% interval estimates
were computed over the 500 samples under each model for
the three income level categories. Over all income level
and model combinations, the bootstrap-adjusted coverage
rates for individual local areas ranged from 92.2% to
97.6%. Since an approximate bound for the Monte Carlo
error is 3 4/(0.95)(0.05)/500, or 0.029, all bootstrap-
adjusted coverage rates are within 3 standard errors of 95%.
For each model and income level combination, the
appropriate coverage rates were averaged over all sampled
local areas, resulting in the average naive and bootstrap-
adjusted coverage rates in Table 1. A number of
observations can be made which hold for each income level
category. For both multinomial and ordinal models, the
average coverage rates for the bootstrap-adjusted intervals
are much closer to the 95% nominal rate than those
associated with the naive intervals. However, both the
average naive and bootstrap-adjusted coverage rates for the

ordinal model are slightly better than counterparts for the
multinomial model. This is also the case for the average
absolute deviation of both the naive and bootstrap-adjusted
coverage rates from the 95% nominal rate. The average
absolute deviation of the naive coverage rates from the 95%
nominal rate is simply the mean over all sampled local areas
of the absolute values of the differences obtained when the
95% nominal rate is subtracted from the naive coverage
rates for the sampled local areas over the 500 simulation
samples. The average absolute deviation of the bootstrap-
adjusted coverage rates from the 95% nominal rate is
defined analogously.

Twenty-two local areas were not sampled. Estimates for
the proportion of individuals associated with each income
level category were also obtained for these areas using the
multinomial and ordinal models. The findings were similar
to those for sampled local areas. However, the performance
of the models deteriorated somewhat, since nonsampled
local areas constitute a holdout sample. For a detailed
evaluation of results associated with nonsampled local
areas, see Farrell et al. (1997a).

A comparison of the estimates for the three income level
categories based on micro-data, g, ,, with those based on

local area summary statistics, p, ., was also made for each
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model. For both models, the results obtained for p, , were
gratifyingly close to those obtained using p, ,, although
those obtained for p, = were slightly better. Similar
findings were obtained by Farrell ef al., (1997b) in a de-
tailed comparison of p, . and p, . for a binomial outcome
variable.

4. CONCLUSION

Using multinomial and ordinal logistic models, the
empirical Bayes approach proposed by Farrell et al.,
(1997a), for estimating small area proportions based on
binomial outcome data has been extended to accommodate
outcome variables with more than two categories. It was
found that the performance of the approach is preserved for
multicategorical outcome data.

To compare the estimates of small area proportions
based on an ordinal outcome variable using multinomial
and ordinal logistic models, the proposed empirical Bayes
methods based on these two models were applied to data
from the 1950 United States Census with the objective of
predicting, for a small area, the proportion of individuals
who belong to the various categories of an ordinal response
variable representing income level. The estimates based on
the ordinal model were only slightly better in terms of
design bias, empirical RMSE, and coverage rates. In
addition, an important feature of the ordinal logistic model
is that the constraint By, .., = By, 2 9, ~ must hold
in order for m, ., >0. Since the resufts for the
multinomial and ordinal models in the simulation were very
similar, a multinomial model could be used for estimating
small area proportions based on ordinal outcome variables
when there is concern that fitting an ordinal model may
result in negative estimates for some of these probabilities.
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