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A Simple Derivation of the Linearization of the
Regression Estimator

KEES ZEELENBERG'

ABSTRACT

We show how the use of matrix calculus can simplify the derivation of the linearization of the regression coefficient

estimator and the regression estimator.
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1. INTRODUCTION

Design-based sampling variances of non-linear statistics
are often calculated by means of a linear approximation
obtained by a Taylor expansion; examples are the variances
of the general regression coefficient estimator and the re-
gression estimator. The linearizations usually need some
complicated differentiations. The purpose of this paper is to
show how matrix calculus can simplify these derivations, to
the extent that even the Taylor expansion of the regression
coefficient estimator can be derived in one line, which should
be compared with the nearly one page that Sirndal et al.
(1992, p. 205-206) need. To be honest, the use of matrix
calculus requires some more machinery to be set up, which is
not needed for traditional methods. However this set-up can
be regarded as an investment; once it has been learned, it can
be used fruitfully in many other applications. After this paper
had been written, Binder (1996) appeared, in which similar
techniques are used to derive variances by means of
linearization. The present paper can be seen as a pedagogical
note, in which the use of differentials is exposed.

2. MATRIX DIFFERENTIALS

2.1 Introduction

We will use the matrix calculus by means of differentials,
as set out by Magnus and Neudecker (1988); this calculus
differs somewhat from the usual methods, which focus on
derivatives instead of differentials. Therefore in this section
we will briefly describe the definitions and properties of
differentials (see Zeelenberg 1993, for a more extensive
survey). We first define differentials for vector functions,
and then generalize to matrix functions.

2.2 Vector Functions

Let fbe a function from an open set S < R™ to R”; let x,
be a point in S. The function fis differentiable at x, if there

exists a real n x m-matrix 4, depending on x,,, such that for
any u € R” for which x, + u € §, there holds

Sy +u) = flxg) + A, u+ o), (1)

where o(u) is a function such that limlul_olo(u)|/|u| = 0; the
matrix A is called the first derivative of fat x; it is denoted as
Df(x,) or of/o(x’ )Jx The derivative Df is equal to the
matrix of partial derlvatlves Le., Df(x); =0of, /ox,. The linear
function 07 R™—R" defined by ab’ urA, H 1s called the
differential of f at x,. Usually we write dx mstead of u so that
df, (dx) A, dx From (1) we see that the differential
corresponds {o the linear part of the function, which can also be
written as

Y=Y = Axo(x - Xp)s

where y, = f(x,). Therefore the differential of a function is the
linearization of the function: it is the equation of the
hyperplane through the origin that is parallel to the hyperplane
tangent to the graph of fat x,; so the linearized function can
be written as

J0) = f5p) + A, (& %), @

Alternatively, if B is a matrix such that df (dx) = Bdx, then
Bis the derivative of fat x, and contains the partlal derivatives
of fat x,. This one-to-one relationship between differentials
and derivatives is very useful, since differentials are easy to
manipulate.

Finally, we usually omit the subscript O in Xy, SO that we
write df = 4 dx.

2.3 Matrix Functions

A matrix function F from an open set S < R”*" to RP*? is
differentiable if vec F is differentiable. The derivative DF is
the derivative of vec F with respect to vec X, and is also
denoted by 8 vec F/o(vec X)'. The differential dF is the matrix
function defined by vec dF Xo(U) =4 x,vee U.
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2.4 Properties of Differentials

Let A be a matrix of constants, F and G differentiable
matrix functions, and a a real scalar. Then the following
properties are easily proved:

d4 =0, 3)

d(aF) = adF, @

d(F + G) = dF + dG, 5)
d(FG) = (dF)G + F(dG), (6)
dF ' = -F Y (dF)F". @)

The last property can be proved by taking the differential
of FF™' =1 and rearranging.

3. LINEARIZATION OF THE REGRESSION
COEFFICIENT ESTIMATOR

The m-estimator (Horvitz-Thompson estimator) of the
finite population regression coefficient (cf. Sérndal et al.
1992, section 5.10) is

B=7"F (3
where

Foy X%

kes nk

R Xy
'k
t=§ _
kes T[k

v, 1s the variable of interest for individual £, x, is the vector
with the auxiliary variables for individual £, 7, is the inclusion
probability for individual k, and s denotes the sample.
Taking the total differential of (8), using properties (6) and
(7), and evaluating at the point where T=T . [= t, we get

~

dB = -T ' dD)T 't + T~ (dF). )
Because of the connection between differentials and linear
approximation, as given in equation (2), it immediately

follows that (9) corresponds to the linearization of the
regression coefficient estimator:

BzB-TVT-T)T " t+T W (i-t)=B+T'(¢(-TB),

where B=T7""1.

4. LINEARIZATION OF THE REGRESSION
ESTIMATOR

The regression estimator of a population total is (cf. Sarndal
et al. 1992, section 6.6)

t)’r = tyn + (tx - txn),B’ (10)
where 7 . is the m-estimator of the variable of interest, ¢, is the
vector with the population totals of the auxiliary variables, ¢ __
is the vector with the m-estimators of the auxiliary variables,
and B is the estimator of the regression coefficient of the
auxiliary variables on the variable of interest. Taking the total
differential of (10), using properties (3) and (6), and evaluating
at the pf)mt Yvhere LY Y = t, aqd B = B, we get the linear
approximation of the regression estimator

di, =di - (di,) B,

so that

t,2t vt~ + (. -1)B= Lot @t -t,) B
Note that for the linearization of the regression estimator we do
not need that of the regression coefficient estimator B.
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