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Instrumental Variable Estimation of Gross Flows in the Presence
of Measurement Error

K. HUMPHREYS and C. J. SKINNER'

ABSTRACT

The problem of estimating transition rates from longitudinal survey data in the presence of misclassification error is
considered. Approaches which use external information on misclassification rates are reviewed, together with alternative
models for measurement error. We define categorical instrumental variables and propose methods for the identification and
estimation of models including such variables by viewing the model as a restricted latent class model. The numerical
properties of the implied instrumental variable estimators of flow rates are studied using data from the Panel Study of

Income Dynamics.

KEY WORDS: Latent class; Longitudinal; Misclassification; Transition rate.

1.” INTRODUCTION

One of the major benefits of longitudinal surveys is that
they permit the estimation of gross flows, for example flows
out of unemployment into employment (see e.g., Hogue and
Flaim 1986). A key problem when estimating flows is the
bias induced by measurement error. For the estimation of
cross-sectional proportions, misclassification into and out of
states may tend to cancel out (Chua and Fuller 1987). Such
compensation tends not to occur, however, when estimating
longitudinal flows.

The first response to the problem of measurement error
should clearly be to attempt to reduce the error in the survey
measurement procedures. Relevant approaches are discussed
by Biemer, Groves, Lyberg, Mathiowetz and Sudman (1991),
but will not be considered here. Even with the “best” survey
procedures, however, some measurement error will inevitably
arise and there will remain a need to compensate for the effect
of error in the survey analysis.

Methods for compensating for measurement error are
generally based on some assumed model of the error process.
Some models which have been proposed in the literature will
be referred to in Section 2. In order to identify and estimate
these models it is generally necessary to use additional
auxiliary information, such as provided by reinterview studies
(e.g., Meyer 1988). Since reinterview studies are costly,
however, and since in practice their aim is often not to
estimate the characteristics of the measurement error
distribution (Forsman and Schreiner 1991), there remains a
need for alternative procedures which may be used when no
reinterview data is available. For measurement error on
continuous variables, a common approach employed in the
absence of auxiliary information about the measurement error
distribution is the method of instrumental variable estimation
(e.g., Fuller 1987, Sect. 1.4). An instrumental variable is a
variable included in the survey dataset which is related to the

true variable measured with error but is uncorrelated with the
measurement error. These and associated assumptions supply
information which replaces that provided by reinterview
studies and enables parameters of the model involving the
true variable to be identified and estimated. The aim of this
paper is to investigate how the instrumental variable
estimation method may be adapted to estimate flows among
discrete states. We find that latent class models (e.g.,
Bartholomew 1987, Ch. 2) provide a general framework
within which the assumptions about the instrumental variable
correspond to certain restrictions on the model parameters.
Our approach is thus related to other approaches which
impose restrictions on latent class models (e.g., van de Pol
and de Leeuw 1986; van de Pol and Langeheine 1990).

2. MODELS

We consider only the case of two occasions =1 and
t = 2. Let the number of states into which each individual can
be classified at each occasion be r. Denote the classified
states at =1 and t=2 by X and Y respectively and the
corresponding true states by x and y. We assume a model in
which the vectors of values of (X, Y, x, y) are generated as
independent outcomes of a common random vector with
distribution pr(X =i, Y =j,x =u,y =v).

The first assumption about this distribution, made by a
number of authors (e.g., Abowd and Zellner 1985; Poterba
and Summers 1986 and Chua and Fuller 1987) and which we
shall also make, is that the classification errors on the two
occasions are conditionally independent given the true states,
that is

priX=iY=j|x=uy=v)=

priX=i|lx=uy=vpr(Y=i|x=uy=v). (A1)
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Such an assumption is common in general latent variable
models (e.g., Anderson 1959). It seems a reasonable initial
assumption when the survey measurement procedures are
independent on the two occasions. On the other hand, if X is
obtained retrospectively from the same interview in which ¥
is measured then it seems likely that the tendency for
respondents to give over-consistent responses in a single
interview may tend to induce positive association between
classification errors. See, for example, Marquis and Moore
(1990) on evidence from the Survey of Income and Program
Participation. A further reason for doubting the conditional
independence assumption is the possibility of individual
heterogeneity in misclassification probabilities, for example
some respondents may be more reliable than others. See
Skinner and Torelli (1993) and Singh and Rao (1995). In
Section 4 we shall allow for heterogeneity by assuming only
that the model holds within cells of a cross-classification of
observed variables.

Our next basic assumption is that classification error only
depends on current true state so that

priX=i|x=uy=v)=pr(X=i|x=u)=K_,say,

pr(Y =jx=uy=v)=pr(Y=j[y=v)=K ,say. (A2)

The K, and K  define r x r misclassification matrices
K =[K,] and Ky = [Kij]. Letting P denote the » x r matrix
with jj-th element pr(X =/, Y =) and I the r x r matrix with

uv-th element pr(x = u, y = v) we have the matrix equation
P= le'IKy’. 4

The matrix IT contains the parameters of interest, whereas
it is the matrix P which may be estimated consistently from
sample X and Y values. If auxiliary estimates of K and K,
are available and these are non-singular then we can solve
equation (1) to obtain estimates of I1. If it is possible to
ascertain the true states in reinterview studies then K _and K
may be estimated directly (Abowd and Zellner 1985). On the
other hand, if the reinterview study only provides independent
reclassifications then it is only possible to estimate the
interview-reinterview matrices

K. AK and K A K/

where A_=diag{pr(x =u)], Ay =diag[pr(y =v)] (Chua and
Fuller 1987). Each interview-reinterview matrix is symmetric
with elements summing to one and so only contains
r(r+1)/2-1 “independent” items of information. Since each
column of each K matrix and the diagonal of each A matrix
sum to one, the number of unknown parameters on each
occasionis #(r— 1) +#-1=r%-1. The excess of parameters
over items of information is therefore #2-1-r(r+1)/2+1=
r(r-1)/2 at each occasion and so the model is
underidentified for » > 2. Chua and Fuller (1987) suggest
that a natural extra assumption to make to help achieve
identification is to suppose that the measurement errors arc
unbiased on each occasion in the sense that

pr(x=0)=pr(X=0), pr(y=0) =pr(¥Y=0) i=1,...,r. 2)

In this case false positives and false negatives tend to
compensate for each other in cross-sectional estimates of
proportions.  This assumption reduces the number of
parameters by r -1 on each occasion. Even under this
assumption the model remains underidentified for » > 3 and
Chua and Fuller (1987) have to introduce further
assumptions.

Let us now consider how the model might be identified
when no reinterview data is available. For simple linear
regression with measurement error in the covariate, the
instrumental variable approach (Fuller 1987, Sect. 1.4)
assumes the availability of an observed “instrumental”
variable W, which is correlated with the covariate, but is
independent of the measurement error and independent of the
error in the regression equation. We extend this assumption
to our framework by defining W to be an instrumental
variable if it is not independent of x and if

W and (X Y) are conditionally independent given (x,y), (A3)
W and y are conditionally independent given x. (A4)

In general we shall allow W to be a categorical variable
with an arbitrary number s of categories, although since we
shall desire W to be closely related to x, we shall usually have
s =r in practice. One specific possibility is to take W as the
classified state at time ¢ - 1. This use of a lagged value of a
“covariate” as an instrumental variable may be traced back to
the earliest discussions of instrumental variable estimation
(e.g., Reiersol 1941; Durbin 1954). In this case, assumption
A4 follows if the true states obey a Markov process and the
classification errors are conditionally independent, as in Al.

The model resulting from assumptions (A1)-(A4) may be
represented by the conditional independence graph in Figure 1.
Each vertex in the graph represents a variable. Edges between
pairs of vertices are absent if the corresponding variables are
conditionally independent given the remaining variables.
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Figure 1. Conditional Independence Graph of Basic Model

The model is an example of a restricted latent class model
(Goodman 1974), where the observed variables X, ¥ and W
are conditionally independent given the latent variables x and
¥, that is they are independent within the 2 latent classes
defined by the pairs of values of (x,y). There are
2(r= 1) r?+(s- 1)r* + (r2- 1) parameters of this model given
by the (r-1)r? parameters pr(X =i|x=u,y=v), the
(r-Dr? parameters pr(Y=j|x=u,y=v), the (s- r?
paramcters pr(W=k|x=u,y=v) and the r2-1 free
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parameters pr(x =u,y=v). These parameters are subject to
the 2r(r-1)* restrictions in (A2) and the (s- )r(r-1)
restrictions implied by (A4). We first restrict attention to the
case r = 2. Inthis case there are 4s + 7 parameters subject to
2s + 2 restrictions, leaving 2s + 5 free parameters

{Kx2u ’

K

ﬂu,(pz”,...,(om,ﬁu,ﬂ; u=12v= 1,2},

where ¢, =pr(W=k|x=u), 6, =pr(y =2 |x =u), and =
pr(x = 2). The number of “free” cell probabilities in the
observed table of X by ¥ by Wis ris-1, or 4s-1 when
r=2. Hence a necessary condition for identification when
r=2isthat 4s- 1>2s+5 or s > 3. Unfortunately, this is not
a sufficient condition. For let

y2v Cu

R =pr(r=2|x=w=y K, 0, '1-6" 3
v=1

Then
priX=0Y=jW=k) =

2 , »
YK o R (-RYTa M- 4
u=1

Hence the 4s - 1 free cell probabilities are determined by just
the 25 +3 parameters

(Ko 920100 R u = 1,2}

so a necessary condition for identification of these parameters
is that 4s-1>2s+3 or s=2. In fact this is also a
sufficient condition for identification of these parameters,
except for certain exceptional combinations of these
parameters. (See Madansky (1960) for the case s =2 and
Goodman (1974) for the case of general s > 2.)

However, even though the above 2s + 3 parameters are in
general identified for s > 2 itis not possible to determine the
4 parameters Kyzv Kﬂz, 0, and 0, since they are related to
only two identified parameters, R, and R,, via equation (3).
In particular the key parameters of interest 6, and 6, remain
underidentified whatever the value of s.

It is therefore necessary to impose at least 2 further
restrictions on the model to identify 6, and ¢,. Following
Chua and Fuller (1987), one idea would be to assume
unbiased measurement errors as in (2) which imposes the two
constraints

n=Kg(1-m)+Kyn (©))

6(1-my+6m=R(1-m+ R,m. (6)

Unfortunately the first constraint only applies to the
parameters which are already identified for s > 2 so these
constraints are insufficient to identify 6, and 6,. An
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alternative assumption which we shall make is that the error
process is constant over time so that

K. = Kym =K, say, foriu-= 1,2,..,r. (AS)
This seems a natural basic assumption if the same survey
measurement procedure is used over time. The under-
identification problem for the case r = 2 discussed above is

removed by this assumption since, given the identification of
K =K, and R, we can determine &, from (3) by

X1

0,=R,- KKy, - K, @)

(excluding the trivial case when the measured variables are
independent of the true variables so that K,, = K,,).

In summary, when assumptions (A1) - (A5) hold and
r=2, our model has 2s+3 free parameters
{Kyp @ -r Py 0, M5 w = 1,2} which are identified if s > 2,
except in exceptional cases such as discussed by Madansky
(1960).

Finally, let us return to the case of general r. Since (AS)
imposes (r - 1)r restrictions, the number of free parameters
becomes 2(r- D)r2+(s- Dr2+ (- D-[2r(r- 1) +(s-1)
rr-1D]-@-1Dr=2r*+sr-2r-1. Thereare r’s -1 free
cell probabilities in the table of X by ¥ by W so the model will
in- general be identified if r(r- 1)(s - 2)>0. Thus the
condition for identification of these parameters remains s > 2,
for any value of » > 2. Furthermore we can write

R, =Pr(Y=j|x=u)= E} K9,
where 6, =pr(y =v |x =u). Hence, provided the matrix
[K 1is non-singular, the 6, may be determined from the RJ "
and K and hence are also identified. Thus for general 7, the
model is identified under assumptions (A1)-(AS5), except for
exceptional cases as discussed by Goodman (1974).

3. ESTIMATION

We shall suppose that for a sample of size » we observe
counts n,, in the cells of the » x r x s contingency table of
X x Yx W, and that these are multinomially distributed with
parameters nand p; = pr(X = i,Y = j, W = k). The implied log
likelihood is

/= E E zk: ny logp,,.
i

Under a complex sampling design, we may take the n,, to
be weighted counts, giving a pseudo log likelihood (Skinner
1989). The estimators of the parameters obtained by
maximising / will be called instrumental variable (IV)
estimators.

For the remainder of this paper we shall only consider the
case » = s =2 when the model is just identified (except for
exceptional values of the parameters). In this case we might
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attempt to set p,, = n, ./n and then solve equations (6) and (7)
for the unknown parameters. If the resulting solutions lie
within the feasible parameter space, that is probabilities lie in
the range [0,1], then these solutions will be the IV estimates.
However, in practice we have found that, for moderate sample
sizes, infeasible solutions can often arise. Furthermore the
solution of these equations is not computationally straight-
forward. Hence we have found it easier to maximise / directly
using the numerical procedures in the package GAUSS
(Edlefsen and Jones 1984) or else by using packages which fit
latent class models using the EM algorithm such as
PANMARK (van de Pol, Langeheine and de Jong 1991). For
a latent class package it would be possible to fit an
unrestricted two class model and then to estimate 6, and 6,
via (7). However, there would be no guarantee that the
resulting estimates would lie in the feasible range [0,1] with
this approach. Furthermore there would be the additional
complication of determining standard errors for the estimates
of 6, and 6, from the covariance matrix of the estimates of
(R,, R, K,,, K,,). Hence we have found it more convenient
to fit the model directly as a restricted latent class model.. A
further advantage of this approach is that it extends naturally
to the fitting of similar models across subgroups subject to
possible constraints that some parameters are constant across
subgroups. This possibility is explored further in Section 4.

Under multinomial assumptions, standard errors may be
based on the second derivatives of the log-likelihood
evaluated at the I'V estimates. This approach becomes proble-
matic, however, if the maximum of /is at the boundary of
the parameter space. One approach then is simply to treat the
values of the parameters at the boundary as known. However,
this is likely to lead to underestimation of uncertainty. Baker
and Laird (1988) consider two alternative approaches to
obtaining interval estimates for individual parameters in such
circumstances: a bootstrap method and a profile likelihood
method. The bootstrap method involves drawing repeated
multinomial samples with Py set equal to ",jk/” and
recording the distribution of parameter estimates across
repeated bootstrap samples. Interval estimates for given
parameters are obtained by the profile likelihood methods as
the sets of values of the parameter which are not rejected by
a likelihood ratio test. These methods are illustrated at the
end of Section 4.

4. NUMERICAL ILLUSTRATIONS

For the purpose of numerical illustration we use data from
the equal probability subsample of the US Panel Study of
Income Dynamics (PSID). See Hill (1992). We consider the
two states employed and not employed, coded 1 and 2
respectively, thus restricting attention again to the binary
variable case. For simplicity, we ignore non-response and
consider the sample of 5,357 individuals aged 18-64 in 1986
with complete values on the variables: employment status in
1985, 1986 and 1987, car ownership, age, sex and education.

We assess the properties of the IV estimator in two ways.
First, in Section 4.1, we compare the bias and standard error
of the IV estimator with the “unadjusted” estimator for
hypothetical instrumental variables, with a range of different
associations with x. Second, in Section 4.2, we consider the
impact of using different actual PSID variables as
instrumental variables.

4.1 Bias and Standard Error Properties of Estimators
for Hypothetical Instrumental Variables

The parameters of primary interest are the joint
probabilities pr(x =i,y =) or the conditional probabilities
pr(y =J | x = i) derived from these. The simple “unadjusted”
estimators of these parameters are based on the corresponding
sample proportions for the classified variables X and Y and
have expectations pr(X = i, ¥ = j) under multinomial sampling.
Since Pr(X =i, Y =j) differs in general from pr(x =/, y =) the
unadjusted estimators are typically biased. Provided the
model assumptions (A1)-(AS) hold, the IV estimators of
pr(x =4, y =j) will be asymptotically unbiased although their
variances may be larger than those of the unadjusted
estimators. The aim of this section is to investigate the extent
to which there exists a trade-off in practice between the bias
of the unadjusted estimators and the increased variance of the
IV estimators. It wiil be assumed that the model assumptions
(A1)-(A5) hold and that the sample is large enough for the IV
estimator to be treated as unbiased.

For the numerical investigation in this section we wish to
use some “realistic”” parameter values. These were determined
by rounding the values of estimates for annual flows between
the years 1986 and 1987 from analyses in Section 4.2
(reported in Table 3). The values of the five free model
parameters not involving W were set to be K, =0.03, K,, =
0.94,pr(x =2) == =022, pr(y =2,x = 1) =6,(1-n) = 0.03
and pr(y =2,x =2) =0,n =0.19. Different values of the
remaining two free parameters ¢, =pr(W=1|x=1) and
¢,,= pr(W=1|x=2) are set in the different columns of
Table 1. Cramér’s V statistic, which measures the association
between two binary variables, essentially by scaling the chi-
square statistic to a [0,1] interval, is provided as a summary of
the strength of association between the variables ¥ and x.
For each of the choices of parameter values, Table 1 displays
the estimated standard errors of the IV estimators for the
PSID sample size n = 5,357. Table 1 also contains the biases
and standard errors of the unadjusted estimator for the same
parameter values X, , K,,, m, 0, and ¢, and the same sample
size.

To illustrate the calculation of the biases of the unadjusted
estimators, consider pr(x =1,y =1). The expectation of the
unadjusted estimator of this parameter is pr(X=1,Y=1),
which is calculated from the given values of K, K, m, 0]
and 6, and assumptions (A1)-(A5) as 0.71. This compares
with the assumed value of pr(x =1, y=1) of 0.75. The bias is
thus 0.71 — 0.75 = -0.04. The biases of the IV estimators are,
as noted above, assumed to be zero. The standard errors of the
unadjusted estimators are obtained from standard binomial
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Table 1
Biases and Standard Errors under Alternative Hypothetical IVs

Parameter Values Assumed for IV estimator

pr(W=1] x=1) 10 01 01 01 03 01 05

pr(W=1]|x=2) 0.0 0.9 0.7 0.5 0.7 0.3 0.3

Cramér’s V 1.0 0.74 0.59 042 0.34 024 0.17
Standard Errors (x 100)

Parameter Bias (X,IOO) Unadjusted .

Estimated of Ur?adjusted Estimator IV Estimator

Estimator

prix=1,y=1) -4.0 0.62 0.68 0.75 0.88 1.13 1.16 1.82 2.05

prix=1,y=2) 3.0 0.32 0.39 043 0.51 0.64 0.69 1.03 1.24

prix=2,y=1) 3.0 0.32 0.32 0.37 0.44 0.57 0.66 0.95 1.27

pr(x=2,y=2) -2.0 0.51 0.59 0.65 0.73 0.89 1.06 1.42 1.99

pry=1lx=1) -39 0.37 0.50 0.55 0.64 0.81 0.88 1.30 1.58

priy=1|x=2) 12.4 0.60 1.40 1.63 1.95 2.56 2.90 4.30 5.55

Note: 1 = employed, 2 = not employed; n = 5,357; muitinomial sampling assumed; biases of IV estimators are zero.

formulae. For example, the standard error of the unadjusted
estimator of pr(x=1,y=1) is y0.71 x 0.29/5,357 = 0.0062,
where 0.71 is the valueof Pr(X=1,Y=1). The standard
errors of the IV estimators are obtained from the inverse of
the expected information matrix, which is given by
nyp,H, where H, is the 7 x7 matrix of second
derivatives of logp,, with respect to the seven free para-
meters. Following differentiation, these parameters are set
equal to their assumed values, as indicated above. Note that
the standard errors obtained from the multinomial information
matrix are likely to be under-estimates because of the
complex sampling design employed in the PSID.

There is a clear pattern of the standard errors of the IV
estimator increasing as the association between W and x
decreases. The amount of increase is fairly similar across all
parameters, for example the ratio for V = 0.20 versus V = 1.00
lies between 3 and 4 for all parameters. In all cases the
standard error of the IV estimator is greater than that of the
unadjusted estimator. The loss of efficiency of the “pest” IV
estimator (with perfect association between W and x)
compared to the adjusted estimator varies between parame-
ters. Roughly speaking, the loss is greater for the conditional
parameters than for the unconditional parameters. This loss
of efficiency might be interpreted as the effect of adjusting
for measurement error in y, which is still necessary even when
x is perfectly measured by /. Under this interpretation, the
greater relative loss of efficiency for the conditional
parameters seems plausible since these are “less dependent”
on the parameters of the marginal x distribution which the W
information helps to estimate.

To examine the trade-off between the bias of the
unadjusted estimator and the increased variance of the IV
estimator we have calculated the minimum value of the
sample size n necessary for the MSE of the IV estimator to be

less than that of the unadjusted estimator. For complex
designs the sample sizes should be interpreted as effective
sample sizes. Table 2 gives these minimum values under a
variety of strengths of association between W and x. If there
were no misclassification the entries would all be infinity
since the unadjusted estimators would always be more
efficient than the IV estimators. For the assumed amount of
misclassification given by K, =0.03 and K|, =0.06, the
sample size required increases rapidly as V decreases. The
differences between the rows of Table 2 are partly accounted
for by the differences between the rows of Table 1 and partly
by differences between the biases of the unadjusted estimator.
Thus, the bias of the unadjusted estimator of pr(x=2,y=2)
is relatively small and this leads to the large values in the
corresponding row of Table 2. Note that the value of 1 for
pr(x =2,y = 1) and Cramér’s V = 1 arises because in this
case the standard errors of the two estimators are equal (see
Table 1) and so the bias of the unadjusted estimators implies
that the IV estimator has smaller MSE for any n>1.

The main conclusion we wish to draw from Table 2,
however, is simply that we may expect there to be a number
of practical situations where IV estimation will be worth-
while provided the model assumptions hold, even if the
necessary sample sizes are inflated somewhat to allow for
complex sampling designs.

4.2 Results for Actual Instrumental Variables

The results in the previous section were based on
hypothetical instrumental variables. To provide a more
realistic illustration we now consider possible real
instrumental variables. The key problem is how to choose a
variable W which obeys (A3) and (A4). It seems easier to
find a variable which satisfies (A3) than (A4), in particular
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Table 2
Sample Size Necessary for MSE of IV Estimator to be less than that of Unadjusted Estimator
(Multinomial Sampling)

Value of Cramér's V assumed for IV estimators

1.0 0.74 0.59 042 0.34 0.24 0.17
Par'a meter Sample size n required
Estimated
prix=1,y=1) 28 59 132 300 320 971 1273
prix=1,y=2) 31 50 91 184 219 573 843
prix=2,y=1) 1 20 51 129 198 476 811
prix=2,y=2) 112 227 366 720 1184 2397 5070
pry=1]| x=1) 42 60 97 183 219 541 818
pry=1] x=2) 57 81 121 216 281 633 1061

measured without error obey (A3). However, it seems more
difficult to find variables which one is sure are not related to
change in employment status and hence obey (A4).

For illustration, we have considered two possibilities. First
we have taken W as car ownership (W = 2 if the individual
owns a car, W = 1 if not). This variable is likely to be
measured with some error but it seems a reasonable first
assumption that this error is unrelated to errors in measuring
employment status. For example, in an analysis of errors in
recording car ownership in the 1981 British Census, Britton
and Birch (1985, p. 67) conclude that “the main problems
associated with the small number of discrepancies were those
connected with either vehicles out of use or vehicles
temporarily available — for example, those hired...” and it
seems at least plausible that such errors need have little
relation to the kinds of errors in recording employment status.
On the other hand, it is plausible that car ownership acts as a
proxy for some kind of social or economic status which is
related to change in employment status so assumption (A4)
seems more questionable. However, for our illustrative
purpose we assume (A3) and (A4) hold.

As a second illustration we have taken W to be the lagged
employment status in 1985. A problem here is that (A4)
effectively implies that individual employment histories
follow Markov processes with common transition rates. In
fact, transition rates will vary among individuals and this will
invalidate assumption (A4) (e.g., van de Pol and Langeheine
1990). Therefore, to allow for departures from assumption
(A4), we disaggregated the sample into 16 groups defined by
cross-classifying age (4 groups), sex and education (up to
college level or not). We then assumed the model held within
subgroups and used likelihood ratio tests to assess what
parameters were constant across subgroups. These tests only
provide a very rough guide since they ignore the complex
sampling design of the PSID. There was no significant
evidence of differences in the misclassification probabilities Kij
across subgroups. Furthermore, within each of the 8 sub-
groups defined by age x sex there was no significant
evidence of differences in Pr(W | x, subgroup) between the

2 education subgroups. Assuming equality of these
parameters gave a non-significant likelihood-ratio goodness-
of-fit chi-squared value of 52.9 on 46 df (46 is obtained as
the number of cells =16 x 8 =128, less 2K,.I. parameters, less
16 x4 =64 pr(x, y,subgroup) parameters, less 8x2 =16
pr(W | x, subgroup) parameters). Combining the parameter
estimates for the disaggregated model appropriately gives
estimates of the overall flows pr(x, y).

Table 3 contains estimates of the key parameters for the
two choices of instrumental variable and for the disaggregated
version of the second choice. We note first that the standard
errors for the IV estimator based on car ownership are
relatively high. This may be expected from Table 1 since the
association between x and W is low (Cramér’s V is 0.12).
Even so, the resulting adjustments increasing the estimates
for the diagonal entries are plausible and the confidence
intervals resulting from this IV estimator seem more realistic
than those for the unadjusted estimator.

Table 3
Unadjusted and IV Estimates for PSID Data
IV Estimates
Unadjusted
Parameter Estimates IV=Car IV=Llagged IV=Lagged
Ownership Employment  Employment
(Disaggregated)
prx=1,y=1) 0.719 0.773 0.766 0.757
(0.006) (0.033) (0.008) (0.007)
prix=1,y=2) 0.055 0.011 0.017 0.025
(0.003) (0.020) (0.005) (0.003)
prix=2,y=1) 0.061 0.018 0.024 0.032
(0.003) (0.019) (0.004) (0.003)
prix=2,y=2) 0.166 0.198 0.193 0.186
(0.005) (0.027) (0.007) (0.006)
Note: Standard errors under multinomial assumptions in paren-

theses. Disaggregation is by age (4 groups), sex and
education (2 groups).
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The standard errors for the second choice of instrumental
variable are smaller, as expected since the association with X
is now higher (Cramér's V is 0.73). Indeed these standard
errors are not much larger than those for the unadjusted
estimator. The (2 standard error) confidence intervals now do
not overlap with the corresponding intervals for the
unadjusted estimator for any of the four parameters.

As noted earlier, assumption (A4) is questionable for the
lagged employment variable. The disaggregated version of
this estimator makes “weaker” assumptions by only requiring
(A4) to hold within subgroups. The resulting estimates are
seen to be fairly close to the original IV estimator and to have
slightly smaller standard errors, perhaps attributable to the use
of the additional information on sex, age and education (but
see later discussion). It is interesting that the effect of the
disaggregation is to diminish the effect of adjustment by a
relatively small amount in each case. It seems plausible that
departures from (A4) may tend to lead to overadjustment in
the IV estimator and that the disaggregation approach here
helps to overcome this bias and, for alternative choices of
disaggregating variables, enables an assessment of the
sensitivity of results to the model specification.

As noted in Section 3 we have often come across IV
estimates on the boundary of the interval [0,1]. Of the
analyses reported in Table 3 in fact only the disaggregated
analysis involved boundary estimates. For the 64 parameters
pr(x = i,y =j,subgroup) for i, j = 1,2, subgroup =1, ..., 16,
five of the estimates were on the boundary (none of the
estimates of the remaining 18 parameters, pr(W=1|X=1)
and so forth, were). The standard errors reported in Table 3
treat these parameters as known and hence may underesti-
mate the uncertainty in the estimates of the aggregate
pr(x = i,y =) parameters.

Table 4
Alternative Estimates of Standard Errors
for Males Aged 26-35 with no College Education

Estimated Standard Error

Parameter IV estimates Standard Bootstrap
pr(W=1|x=1) 0.947 0.011 0.011
pr(W=1|x=2) 0.107 0.089 0.091
priX=1|x=1) 0.969 0.006 0.007
priX=1|x=2) 0.084 0.088 0.075
prx=1,y=1) 0.953 0.011 0.012
prix=1,y=2) 0 * *

prx=2,y=1) 0.006 0.007 0.006
prx=2,y=2) 0.041 0.012 0.011
pr(x =1) 0.953 0.011 0.011
pry=1|x=1) 1 * *

pry=1|x=2) 0.128 0.139 0.117

Note: n = 455; “standard” estimators based on observed infor-
mation matrix, treating parameters estimated at the boundary
as known; 10,000 replications of bootstrap; multinomial
assumptions.
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Table 4 presents alternative estimates of the standard
errors for one subgroup, males aged 26-35 with no college
education. The estimate of pr(x =1, y=2) as well as derived
estimates, such as pr(y=1|x=1) lie on the boundary. The
“standard” estimates of the standard errors are, as in Table 3,
based on the observed information matrix, treating parameters
estimated at the boundary as known. Bootstrap standard error
estimates (for 10,000 replications) are found to be very close
to these standard estimates for parameters with estimates not
on the boundary. For the IV estimate of pr(x =1, y=2) at the
boundary no standard estimate of the standard error is
available. Indeed it seems to make little sense to estimate the
standard deviation of the sampling distribution in this case.
It seems more sensible to derive a one-sided confidence
interval which may be done either using the profile likelihood
method, which gives [0, .016], or using the bootstrap percen-
tile method, which gives [0, .009]. The corresponding inter-
vals for pr(y=1|x=1) are {.983, 1] and [.990, 1].

5. CONCLUSION

The presence of measurement error can induce substantial
bias into standard estimates of transition rates from
longitudinal data. If external estimates of misclassification
rates are available then a variety of adjustment methods exist.
If no such information is available then this paper shows how
adjustment for measurement error alternatively can be carried
out using instrumental variable estimation.

The main problem, as in conventional instrumental
variable estimation, is finding a variable which one can be
confident satisfies the conditions required of an instrumental
variable. Even if the conditions are satisfied then it is
desirable, in order to obtain reasonable precision, that there be
a fairly strong association between this variable and the true
state. If such a variable can be found then instrumental
variable estimation may be useful.
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