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Variable Selection for Regression Estimation
in Finite Populations

PEDRO L.D. NASCIMENTO SILVA and CHRIS J. SKINNER'

ABSTRACT

The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random
sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of
practical importance when the number of variables available is large. An approach is developed in which a mean squared-
error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables,
a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The
proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects
the properties of standard variance estimators and thus leads to a problem of variance estimation.
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1. INTRODUCTION

Regression estimation is widely used in sample surveys for
incorporating auxiliary population information (Cochran
1977, chap. 7). For the basic case when the population mean X
of a vector of variables x, is known and simple random
sampling is used, the regression estimator of the population
mean Y of a survey variable y, takes the form

y,=y+X-X)b ey

where ¥ and x are the sample means of y, and x,
respectively, and b is the sample vector of linear regression
coefficients of y; on x;.

Regression estimation is useful for at least three reasons.
First, it is flexible. Any number of population means of
continuous or binary variables can, in principle, be
incorporated into X. In particular, poststratification arises as
a special case (Sarndal, Swensson and Wretman 1992, sec.
7.6). The procedure also extends to handle complex sampling
designs. Second, regression estimation has certain optimal
efficiency properties. See, for example, Isaki and Fuller
(1982, Theorem 3). Third, y, has the “calibration” property
that if y, is one of the variables of x; so that ¥ is known then
y, =Y (Deville and Sérndal 1992).

In this paper we consider the question of how to select the
x variables for use in the regression estimator. This question
is of interest for at least two reasons. First, there is simply the
practical reason that in some circumstances the number of
potential variables in x, may be very large. For example, in
population censuses in a number of countries values of some
variables are recorded on a “short form” for all individuals
and values of other variables are collected on a “long form”
for a sample. The population means of the short form
variables together with their squares, cubes, products and so

forth will thus be known. Small area identification will also
typically be available. Thus the dimension of x; as a vector
containing functions of the short form variables together with
dummy variables representing each small area could easily
run into the thousands. In such cases, the selection of x
variables becomes a practical necessity.

A second reason is more fundamental for a model-assisted
or model-based approach to survey sampling. These
approaches may be characterised as follows in the context of
regression estimation. First a regression model is selected
which has “good predictive power”, so that the regression
estimator will have “good efficiency”. Then, either a design-
based approach to inference is adopted in the model-assisted
approach (S#rndal et al. 1992) or model-based prediction is
employed in the model-based approach. Although the
literature on the latter problem of inference is vast, there
seems remarkably little formal attention devoted to the former
model selection problem. In practice, the most that seems to
happen is that the “main” x variables which account for “most
of” the sample R? are chosen (¢f. Sirndal et al. 1992,
sec. 7.9.1). However, more theoretical guidance seems
needed, especially when a large number of x variables is
available.

A further reason for considering the variable selection
problem more formally is that it may help clarify the issue of
the impact of variable selection on inference. The problem
that sample-based selection of estimators may affect the
properties of the selected estimator has long been recognized
(Hansen and Tepping 1969, App.) but little study seems to
have been made of what the effects may be.

In this paper we consider a variable selection approach
aimed at minimising the mean squared error of y,. First,
however, we study the dependence of the mean squared error
of y, on the number of x variables in section 2 and then
consider alternative estimators of the mean squared error of y,
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in section 3. Variable selection procedures based on these
estimators are then proposed in section 4.

We contrast our variable selection approach with four
existing approaches. First, we consider the traditional
approach of using a fixed subset of auxiliary variables
regardless of the observed sample. Next, we consider a
“condition number reduction procedure” inspired by work of
Bankier (1990), in which auxiliary variables are discarded in
order to reduce the condition number of a certain cross-
products matrix of the x variables.

Third, we follow Bardsley and Chambers (1984) and
consider a ridge regression approach. This does not involve
variable selection but instead addresses the possible problem
of multicollinearity in the regression estimator by modifying
the estimator, allowing for some calibration error. Both the
ridge regression and condition number reduction procedures
have the advantage that they do not require specification of a
response variable y, because they aim to provide a single set
of “calibration” weights to be used for all survey variables.
However, they do not guarantee gains in efficiency. Their
results are separated by a line from the results for the other
procedures in the tables presented in section 6 to indicate that
they differ.

Fourth, we consider variable selection following
conventional significance test criteria. Our general view is
that the objective of variable selection in regression
estimation for finite populations is quite different from the
objective of parameter estimation or prediction of y values for
single observations in classical regression (Miller 1990).
However, it seems desirable to treat such an approach as one
benchmark for comparison.

In section 5 we consider properties of the regression
estimator following variable selection on the basis of
estimated variances. Section 6 describes an empirical study
carried out to compare our proposed variable selection
procedures with the competing procedures described above.
This study used data from a test census carried out in the
municipality of Limeira, Brasil, as part of the preparation for
the 1991 Brazilian Population Census. Section 7 presents our
conclusions and some directions for further research.

2. THE DEPENDENCE OF THE VARIANCE OF
THE REGRESSION ESTIMATOR ON THE
NUMBER OF x VARIABLES

We begin by defining some notation. Let U = {1,...,N}
denote a finite population of N distinguishable elements and
let s < U denote a sample of » distinct elements drawn from
U according to a simple random sampling without
replacement design. Let x, = (x,,, ...,x,.q)' be the g x 1 vector
of auxiliary variables associated with the i-th population
element. It is assumed that the sample values of x,(i € s),
together with the population mean vector X=N" IZ, <X, are

known. The vector of sample means is denoted ¥ =n "1y _ x..

Let y, denote the value of a survey variable y for the i-th
population element and suppose the values of y, are only
observed for i € 5. The aim is to estimate the population mean

lzleUy

The regression esnmator of Y is givenby y y, inequation (1),
wherey = n Y y.b=S S S =n71Y,., & - D), - %),
and S =n’'y (x, - x)(y y)

ThlS estimator may be motivated by the underlying linear
model

i€s

Yi=Bytx; B¢, )

where the €; are mdependent disturbances with zero means
and common variance 67, since we may write y, = BO +X'B,
where [30 7~ %'b and P = b are the least squares estimators
of B, and B, respectively. Under this model the variance of
¥, - Y conditional on the x, may be written

Var, 7, - ¥|x)=6*n'[1- N + (X - 2)'S. (X - ©)]. )

The final term may be interpreted as the effect of
estimating B by b. As the number g of x variables increases
the residual vanance 6? may be expected to decrease but the
term (X - %) S (X X) may increase as S ! becomes more
unstable. An altematlve way to interpret this term istowrite y,
as a welghted estimator y_ =n IE,Esg Y, where g =1+
X-x) S (x - x). Then we may write (3) alternatively as

Var,,(7,- ¥ |x) =o’n i1 - nIN +c}) @)

where ¢ A is the sample coefficient of variation of the g;.

To study the expected dependence of cg2 on g we now
extend the model by supposing that the x; are independently
and identically normally distributed. Notmg the independence
of (X - X) andS and alsothat E, (7, - Y| x;) =0, we obtain
the uncond1t10na1 variance

VarM()_’,‘ 1_/)
= o’n Y1 - nIN + tr[E, (X - ©)(X - %)']
= o’n ' (1 - nIN)[1 + g/(n - q - 2)]

using the fact that n ! Sx_1 has an inverse Wishart distribution
(Mardia, Kent and Bibby 1979, p. 69 and 85). This result
holds for larzge n even without normality, in the sense that
[1-n/N+c ]/(1 - n/N)[1 + g/(n - q - 2)] still converges to
lasn mcreases for fixed ¢ (under weak conditions).
Expression (5) makes the dependence on g explicit. As g
increases we may expect 6° todecrease but £ wlc ; ) toincrease.
The reduction of 6% may be expected to be small after a few
important x variables are included and thus the variance may be
expected to start increasing at some point where the number of
x variables is a nonnegligible fraction of the sample size.
Results (4) and (5) are based on strong modelling
assumptions and hence provided us only with motivation. In
the general case ¥ - X = 0, (n 12y (under the randomization
distribution with standard regularity conditions) so that the

ES.H1) (5)
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last term of (3) is of O (n “2). A more general second order
asymptotic approxlmatlon for the design mean squared error
of ¥, when model (2) need not hold may be obtained by
generalising Theorem 4.1 of Deng and Wu (1987). Details are
given in Silva (1996).

Our aim is to develop a variable selection procedure that
minimizes the estimatéd mean squared error of y, and
estimators of this mean squared error are considered next.

3. ESTIMATION OF THE MEAN SQUARED
ERROR OF THE MULTIPLE REGRESSION
ESTIMATOR

A simple estimator of the mean squared error of y , 18
obtained by generalizing expression (7.29) of Cochran (1977,
p. 195) to the case of several auxiliary variables:

:1'fs"

(6

whereS =(n-g-1) ZIE:‘, and é, = (y,- y) - (x;- X)'b.

This estimator makes no allowance for the O(n “2)
component of the mean squared error, however. Thus, as a
second mean squared error estimator, we generalize the
estimator v, studied in Deng and Wu (1987) to the case of
general g. This is a special case of the model-based, bias-
robust variance estimator G, originally proposed by Royall
and Cumberland (1978), for the case where the residual
variances in the model (2) are constant. This estimator is
given by

_1-f

VvV, T ——— e e,
-

)

where
o; =(g,42 =28, f+ -1 - (x;- f)’S',_l(xi- X)/(n- 1]}

We originally conjectured that v, would be second order
unbiased, as Deng and Wu (1987, eq. 4.4) show that it is for
the case of ¢ = 1. However this turns out not to be the case
for general ¢ > 1, although it may be expected that the bias of
. v,is smaller than that of v,, as indicated by the second order
bias expressions for v, and v, obtained by Silva (1996).

A difficulty with v, as a variance estimator is that it does
not generalize easily to complex survey designs. Thus we
consider as a third variance estimator a modified version of an
estimator proposed by Sirndal, Swensson and Wretman
(1989), defined as:

_ 1-f 2,52
KR L ®

This estlmator may be expected to behave similarly to v, since
Q =g’+0 (1 12y In the terminology of Sérndal e al. (1992,
p. 232), the g, are the appropriate g-weights under simple

25

random sampling if (2) is adopted as the underlying model.
Expression (8) differs from the corresponding estimator
proposed by Sirndal et al. (1989, example 4.4) in that we use
the denominator (n - g - 1) instead of the original (n - 1).

4. VARIABLE SELECTION PROCEDURES

We consider two basic variable selection procedures. First,
an all subsets approach that involves computing one of the
mean squared error estimators v_,v,, or v, of section 3 for all 27
possible subsets of the g auxiliary variables (always including

“the intercept) and choosing that subset corresponding to the

smallest mean squared error estimate. This procedure can
clearly involve considerable computation if g is large. Thus as
a second procedure, we consider a forward selection
approach which starts with the sample mean as an estimator,
then adds that variable which minimizes the mean squared
error estimate. The procedure is repeated until the mean
squared error estimate starts to increase, at which point the
subset of variables which gave the minimum mean squared
error estimate is selected.

These procedures may be contrasted with an approach
inspired by the work of Bankier and his associates — see
Bankier (1990) and Bankier, Rathwell and Majkowski (1992).
We call this a condition number reduction approach. To
describe the approach, first note that the regression estimator
in (1) can alternatively be expressed as

7, =y + (NX" - n2"y (X" X)) X,y YN 9)

where X is the nx(g+1) matrix with x''=
(1,x,, ...,)_(?‘.q)' =(1:x/) as its i-th row, X*=(1:X")" and
X" =(1:X")" are the sample and population mean vectors of
x; respectively, and y, is the nx 1 vector with the sample
observations of the response.

The regression estimator thus depends on the inversion of
the cross-products matrix X,’X,, a matrix which can
sometimes become ill-conditioned and thereby inflate the
variance of the regression estimator.

Bankier (1990) proposed a two-step procedure for
computing regression estimators of means (or totals) in which
columns of the auxiliary data matrix X, were eliminated in
order to reduce the condition number of the cross-products
matrix X,’X,, as well as to avoid undesirable situations
(negative or outlying weights, rare characteristics, or exact
linear dependence between columns). Bankier et al. (1992)
describe in detail the procedure as applied to the 1991
Canadian Population Census. It is worth noting that the
approach developed by Bankier and associates, although
incorporating variable selection, is not targeted at achieving
efficiency for a particular survey variable. Its main focus is on
calibration, while at the same time providing a single set of
weights that are used for all survey variables.
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The condition number reduction approach that we consider
can be described by the algorithm below, which adopts a
backward elimination procedure to discard auxiliary variables
generating large condition numbers for the cross-products
matrix CP =X,"X", instead of the forward inclusion of
variables described by Bankier ef al. (1992).

1)  Compute the cross-products matrix CP =X,"X,
considering all the columns initially available
(saturated subset).

2) Compute the Hermite canonical form of CP, say H (see
Rao 1973, p.18), and check for singularity by looking
at the diagonal elements of H. Any zero diagonal
elements in H indicate that the corresponding columns
of X,'X, (and X,) are linearly dependent on other
columns (see Rao 1973, p. 27). Each of these columns
is eliminated by deleting the corresponding rows and
columns from XX,

3) After removing any linearly dependent columns, the
condition number ¢ =A__ /A . of the reduced CP
matrix is computed, where A and A__  are the largest
and smallest of the eigenvalues of CP, respectively. If
¢ < L, a specified value, stop and use all the auxiliary

variables remaining.

4) Otherwise perform backward elimination as follows.
For every £, drop the k-th row and column from CP,
and recompute the eigenvalues and the condition
number of the reduced matrix. Compute the condition
number reductions r,=c-c, where ¢, is the
condition number after dropping the %-th row and
column from CP. Determine r_ . =max, (r,)and
k. ={kr,,, =r,) and eliminate the column k__ by
deleting the k£ row and column from CP. Make
¢ =c, and iterate while ¢ > L and ¢ 2, starting each
new iteration with the reduced CP matrix resulting
from the previous one.

One further approach that we consider is the ridge
regression estimator of Bardsley and Chambers (1984). It
does not rely on selecting subsets from the auxiliary variables
available, but rather on relaxing the calibration properties of
the regression estimator in favour of more stable estimates.
The ridge regression estimator is given by

Ppe =y + NX" - nx") AC' + X X)Xy UN  (10)

where A is a scalar ridging parameter and C is a diagonal
matrix of “cost” coefficients associated with the calibration
errors tolerated when estimating totals of the auxiliary
variables using y .

Bardsley and Chambers (1984) suggested that the
specification of the matrix C could be used to control the
influence of each auxiliary variable on the resulting estimator
of the response mean, thus imitating the subset selection
process. As for the ridging parameter A, they suggested
taking the smallest value such that all the implicit case
weights are not smaller than 1/N (or 1 for estimating totals).

5. PROPERTIES OF REGRESSION ESTIMATORS
AFTER VARIABLE SELECTION

For our basic variable selection procedures, a set of
estimation strategies § = {(3",v"); yeI'} is considered, where
y' and v" are the regression estimator and an estimator of its
variance respectively for a subset y of the g auxiliary variables
available, and I is the set of all subsets. The variable selection
procedure selects a subset y* from I' according to a rule
which is determined by the data and by §, and the resulting
point estimator is y” .

For each fixed subset y, it follows under standard
regularity conditions (Isaki and Fuller 1982) that y' is
consistent for the population mean Y, thatis y" - Y= o, (D).
Now, for given $>0, | 5 - Y | > & implies |y, - ¥|> 9 for
some v, and so we have

Pr(|7 - ¥|>8) < ¥ Pr(| .- ¥|>9) (1)

yel

and because I is finite, the right hand side of (11) con-
verges to zero, and it follows that ¥ is also consistent.

The distribution of 3’ will, however, depend on the
selection rule in a complex way. See Grimes and Sukhatme
(1980) for an investigation of the efficiency of y” in the
simplest case when there are just two possible estimators: a
regression estimator with one x variable and a difference
estimator (a special case of which is the mean) and the
variables are jointly normally distributed.

In contrast to the consistency of y , there is no reason
why v should be consistent for Var(y"), even if v? is
consistent for Var(y?) for each fixed y. In particular we may
expect v¥ to underestimate Var(y" ) if the selection rule is
such that v?" is the minimum of the v?. This effect is similar
to the well known overestimation of R? after subset selection
in standard multiple linear regression (Miller 1990, p. 7-10).

6. A SIMULATION STUDY

In this section we present a small simulation study carried
out to evaluate the performance of the alternative variable
selection procedures considered. We took as our simulation
population a data set comprising 426 records for heads of
household surveyed using the sample (long) questionnaire
during the 1988 Test Population Census of Limeira, in Sdo
Paulo state, Brasil.

This test was carried out as a pilot survey during the
preparation for the 1991 Brazilian Population Census. The
test consisted of two rounds of data collection. In the first
round, each enumerator would visit all the occupied
households in a given enumeration area (an area with between
200 and 300 households on average) and would fill in a short
questionnaire. This form contained a few questions about
characteristics of the household and about each member of
the household (sex, age, relationship to head of household
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and literacy). For heads of household only, a question on
education and another about monthly total income were also
included. The reported monthly total income for heads of
household provides only a proxy to the actual income, due to
the limitations of the interviewing process in this first round
of data collection.

Then a second round of data collection was undertaken in
each enumeration area. The same enumerators would visit a
sample of 1 in 10 of the households (selected systematically
from the list of occupied households compiled in the first
round of data collection) to obtain information using a long
(more detailed) questionnaire, which contained all the
questions asked in the short form plus many other questions.

The size of the surveyed population was approximately
44,000 households with 188,000 individuals. The sample size
was roughly 10% of the population size. For reasons of
computational cost, we used in our simulation study a sub-
population comprising all the sample records for 426 heads of
household living in 20 of the 170 enumeration arcas. We
chose these records as our simulation population because they
contain all the detailed information provided in the sample
questionnaire, as well as the proxy information available from
the first round interviews using the short form.

We considered total monthly income, as obtained from the
long form, as the main response variable (y) together with
11 potential auxiliary variables, namely:

X, = indicator of sex of head of household equal male;
x, = indicator of age of head of household less than or equal
to 35;

x, = indicator of age of head of household greater than 35
and less than or equal to 55;

= total number of rooms in household;

xs = total number of bathrooms in household;

x, = indicator of ownership of household;

x, = indicator that household type is house;
xg = indicator of ownership of at least one car in household;
x, = indicator of ownership of colour TV in household;

x,, = Years of study of head of household;
x,, = proxy of total monthly income of head of household.

From these 11 variables, we constructed two alternative
sets of auxiliary variables for our simulations. The first set
was defined by taking five auxiliary variables, namely
x,....x, and x,,, that have reasonable explanatory power in
predicting y, especially due to the presence of the proxy
income x,,. The second set we considered contained ten
auxiliary variables, namely x,,...,x, which due to the
exclusion of x,,, has smaller predictive power than the
previous one. For reference, the population correlation matrix
for the survey variable y and the 11 auxiliary variables in the
population is given in Table 3.

We then selected 1,000 samples of size 100 from this
simulation population by simple random sampling without
replacement.

27

Before proceeding to examine the detailed simulation
results, we first consider the potential for gains from variable
selection following the motivating model-based discussion of
section 2. Recall from equation (4) that under model (2) the
conditional variance of , is inflated by a term ¢, 2 because of
estimation of B. We evaluated the distribution of ¢t ¢ over the
1,000 samples for both the cases of five and ten auxiliary
variables. For the case of five auxiliary variables, the median
value of cg2 was 0.036, with upper quartile of 0.056 and
maximum 0.255. This accords roughly with equation (5)
which implies that under the model the expected value of c:
is (1 - n/N)q/(n- q - 2) = 0.041. Note that the wide varia-
tion of ¢, across samples suggests that it may be sensible to
adopt a procedure which selects a different set of variables for
each sample. The variation of cg2 is even greater for the case
of ten auxiliary variables, when the median was 0.078, the
upper quartile was 0.107 and the maximum was 0.329, which
also accords roughly with the expected value under the model
of 0.087, according to equation (5). This interpretation
clearly depends on the validity of the model (2), which is
doubtful for these data, but it does suggest that there are
potential efficiency gains to be made from variable selection.

Another way to assess the potential for efficiency gains
from variable selection is to compute approximations to the
variance of the regression estimator considering various
subsets of the auxiliary variables available, using all the
population records. Figure 1 displays a plot of the
approximation given by a finite population version of
equation (5) computed for increasing subsets of the ten
auxiliary variables, where the variable added at each step is
the one yielding the biggest decrease in the approximation.
The values of the standard first order design-based
approximation (1 - )S/n are also plotted for reference,
although as has already been noted, this approximation is
monotone non-increasing when new auxiliary variables are
added. Simulation estimates of the mean squared error for the
regression estimator corresponding to each subset are also
plotted. The plot shows clearly that if a standard regression
estimator with a fixed set of auxiliary variables is to be used,
the subset with five predictors would be the best choice when

30~=+03—-%x010TVD MUK

Number of auxiliary variables Included

F=First order N=Normal model S=Simulation

Figure 1. Finite population approximations and simulation estimations for
the MSSE of the regression estimator computed for increasing
subsets of the ten auxiliary variables.
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the normal approximation for the variance based on
expression (5) was considered, whereas the saturated subset
would be chosen in case the standard design-based
approximation for the variance was considered. The plot also
reveals that the simulation estimates of the mean squared
error agree more closely with the normal model approxima-
tion than with the standard first order approximation,
especially for larger subsets of auxiliary variables. Similar
results are achieved when corresponding variance approxima-
tions are computed given the set of five auxiliary variables.

Hence both the simulation distributions of c: and the
finite population approximations to the variance of the
regression estimator indicate that there are potential efficiency
gains to be made from variable selection for this population.
To investigate this for our data we now proceed to describe
the details of the simulation study.

For each sample replicate (say s) and for each of the two
alternative sets of auxiliary variables considered, estimates of
the population mean of total monthly income were computed,
as well as corresponding variance estimates, using a number
of estimation strategies. Each estimation strategy is defined
as a combination of a subset selection procedure, an estimator
for the mean and a corresponding variance estimator. The list
of all strategies considered follows.

SM) Sample mean estimator, with no auxiliary variables
(7,v,). This strategy provides the standard against
which all the others will be compared.

Fs)  Forward selection of auxiliary variables with (¥,,v ).

Fd) Forward selection of auxiliary variables with (¥ ,v ).

Fg) Forward selection of auxiliary variables with (vr,vg).

Bs) Best subset selection from all subsets of auxiliary
variables with (¥,,v)).

Bd) Best subset selection from all subsets of auxiliary
variables with (¥ ,,v,).

Bg) Best subset selection from all subsets of auxiliary
variables with (¥,,v g).

FI)  Fixed subset of auxiliary variables with (¥,,v ).

SS) Saturated subset of auxiliary variables with (¥ ,v ).

FR) Forward subset selection using SAS PROC REG, with
(P r? vs) -

CN) Condition number reduction subset selection procedure
with (¥ ,v).

RI) Ridge regression estimator with saturated subset of
auxiliary variables and a variance estimator that we
denote v,., proposed by Dunstan and Chambers
(1986), OV 50 Vpe)-

Strategies Fs to Bg are variations of the two procedures we
proposed for subset selection arising from the use of the three
mean squared error estimators considered in section 3.
Strategies FI and SS use the same set of auxiliary variables
irrespective of the sample selected. In SS the saturated subset
including all auxiliary variables available is always used. In
FI a subset was chosen from each of the two sets with five
(x,,x,,x,,chosen) or ten (x,,%,, X5, Xg, X, o chosen) auxiliary

variables considered, by applying a standard forward subset
selection regression procedure to the population dataset. The
selected subsets were then used for every sample, thus the
name “fixed subset” strategy for FI. This strategy would not
be feasible in practice because the population information
would not be available for the response, but it was considered
as a theoretical “best possible scenario” under the traditional
approach.

For the strategy FR, SAS PROC REG was used “naively”
to perform a standard forward subset selection for each
sample. The p-value used to decide whether a new variable
should be included was the default of the procedure, namely
0.50. For more details, see SAS (1990, p. 1397).

For the condition number reduction subset selection
strategy CN, the value used for the parameter L that controls
the method was 1,000. For the ridge regression estimator
strategy RI, the cost coefficients associated with calibration
errors for different variables were all set equal to 1. After
having chosen the value of X that guarantees all the weights
are not less than 1/N, the weights were rescaled such that they
sum to exactly 1, in order to ensure exact calibration when
estimating the population size.

For any estimation strategy, the estimates of the population
mean and its mean squared error for the sample s are denoted
by ¥(s) and v{y(s)] respectively. The simulation results for
each estimation strategy were summarised by computing
estimates of the bias, mean squared error (MSE), and average
of mean squared error estimates (AVMSE) from the set of
1,000 sample replicates, given respectively by

BIAS =) [¥(s) - ¥1/1,000 12)
MSE = Y [7(s) - ¥1%/1,000 (13)
AVMSE = Y v[7(s))/1,000. (14)

A measure of efficiency was also calculated for each
strategy by dividing the corresponding simulation mean
squared error by the simulation mean squared error for the
sample mean (strategy SM) and multiplying the result by 100.
Empirical coverage rates for 95% confidence intervals based
on asymptotic normal theory were also computed for each
estimation strategy and these rates, expressed as percentages,
are presented in the last columns of Tables 1 and 2.

Table 1 displays the simulation results for estimation of the
population mean of the response variable given the set of five
auxiliary variables (x, - x,,x,) with larger predictive power.
In this case, the use of the regression estimator greatly
improves precision for every estimation strategy employed,
except for subset selection using condition number reduction
(CN). The bias was negligible (less than 1% in terms of the
absolute relative bias) for all estimation strategies (the
population mean of y is 194.34) except perhaps RI, which
displayed a slight bias.
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. Table 1
Bias, Mean Squared Error, Average of Mean Squared Error Estimates, Efficiency and Empirical Coverage of Alternative Estimation
Strategies for the Mean of Response Variable y with Five Auxiliary Variables (x, - x,, %) Available

Estimation strategy BIAS MSE AVMSE osefflgi&nf% ) CE\T&S;ZST‘%;)
SM) Sample mean (7,v,) 0.25 620.09 619.05 100.00 91.8
Fs) Forward (¥ ,,v.) 0.40 233.78 239.62 37.70 82.7
Fd) Forward (¥ ,,v,) -1.25 188.08 196.88 30.33 82.0
~ Fg) Forward ()7,,vg) -1.28 188.38 192.73 30.38 81.1
Bs) Best (¥ ,,v) 0.44 236.90 239.49 38.20 82.7
Bd) Best (y,v,) -1.22 190.52 196.84 30.72 82.0
Bg) Best @r,vg) -1.24 190.83 192.71 30.77 81.1
FI) Fixed (7 ,,v) 0.29 227.90 241.24 36.75 83.3
SS) Saturated (¥,,v,) 0.30 233.58 242.32 37.67 82.5
FR) PROCREG (¥,.v) . 0.38 235.86 240.26 38.04 82.5
CN) Cond. num. red. (¥ ,v) 0.34 507.33 483.63 81.82 89.8
RI) Ridge (¥ o Vpe) 2.12 304.95 257.07 49.18 82.5

! Nominal 95% coverage.

There was no difference between the results for strategies
based on forward selection (Fs-Fg) and corresponding stra-
tegies based on selection from all possible subsets (Bs-Bg).
Hence the faster and cheaper forward selection procedures are
preferable.

Amongst the strategies using forward subset selection, Fd
and Fg (with v, and v, as the mean squared error estimators
respectively) yielded greater efficiency, and performed very
similarly. Note also that Fd and Fg performed better than FI
and SS, the strategies that adopted the regression estimator
with a fixed subset of the five auxiliary variables for every
sample. This is true both for the saturated subset (SS) and
when the fixed subset was chosen using information from the
whole population (FI). This shows that one can do better than
the traditional approach of using the regression estimator with
a fixed set of auxiliary variables, by using an adaptive
procedure that chooses the “best” regression estimator
(subset) for each given sample, at least when the target
response variable is the one considered for subset selection.
This property was suggested by the wide variation in the
values of ¢? between samples, where we may expect to
benefit from a strategy which selects fewer x variables for
samples with the largest values of c; .

Comparison with the adaptive strategy FR, which used the
standard subset selection available in PROC REG of SAS,
shows that a criterion using an appropriate estimator of the
mean squared error of the regression estimator makes some
difference. FR yielded similar efficiency to that of traditional
fixed subset strategies (FI-SS).

A more striking result is the low efficiency achieved by the
subset selection procedure based on condition number
reduction (CN) compared to all the other strategies based on
the regression estimator. This was not unexpected, because
that procedure did not take the response variable into account.

This favours the argument that when the mean of some
specified response variable is the main target for inference,
this should be taken into account when selecting the auxiliary
variables to use in connection with the regression estimator.

When the set of five auxiliary variables was considered,
we also observed that, for every sample, the first variable
eliminated to reduce the condition number was proxy income
(x,,)- This happened because eigenvalues (and hence condi-
tion numbers) of the CP matrix are dependent on the units of
measurement of the auxiliary variables. Because all other
auxiliary variables are counts of some kind, proxy income is
the variable with the largest variance by far. Its exclusion for
every sample provides some explanation for the poor
performance of this approach, because it is the best single
predictor for the response.

This difficulty was not apparent in Bankier’s work, because
in the target application of his procedure, the sample data
from the 1991 Canadian Population Census, all the auxiliary
variables considered were counts of persons, families or
households, thus measured in similar units.

Unlike the eigenvalues of the CP matrix, the regression
estimator is invariant to location and scale transformation of
the auxiliary variables. To remove the arbitrary dependence
of the condition number approach on the units of the auxiliary
variables, it is therefore natural to standardise these variables
first and to compute the condition number of the sample
correlation matrix R_ rather than X, X". However this was
tried and even modest values of L (100) failed to cause
elimination of any auxiliary variables, which resulted in the
saturated set being used every time, so that CN reduced to SS.

The strategy based on the ridge regression estimator (RI)
performed worse than the saturated subset strategy (SS) in
terms of efficiency. It also displayed some bias for estimating
the mean squared error. This loss of efficiency is due to the
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requirement that all the weights should be greater than or
equal to 1/N, which was imposed only under this strategy. On
the other hand, it performed much better than the condition
number reduction strategy CN in terms of efficiency.

In terms of the empirical coverage rates, only the condition
number reduction strategy CN performed close to SM
(sample mean), both leading to modest undercoverage. All the
other strategies based on regression estimation yielded similar
coverage rates, well below the target of 95%.

Results for the simulation carried out with the set of ten
auxiliary variables (x, - x,,) are displayed in Table 2 below.
As expected, these results show that the strategies that use the
regression estimator still provide some gain in efficiency over
the sample mean. However these gains are not as large as
those reported in Table 1, when there are five auxiliary
variables with higher explanatory power. As before, adaptive
strategies based on forward subset selection performed
similarly to their counterparts based on best subset selection
from all possible subsets. Adaptive strategies using v, or v,
as the estimator of the mean squared error were again slightly
more efficient than the corresponding strategies based on v,
although in this case at the expense of larger undercoverage
of the corresponding nominal 95% confidence intervals.

The more efficient adaptive estimation strategies (Fd, Fg,
Bd and Bg) display nonnegligible bias for both the population
mean and for the mean squared error. In contrast, strategies FI
and SS present no significant bias for the mean, although
there is some bias in the mean squared error estimation under
strategy SS. Note particularly the large negative bias of the
estimators of the mean squared error, as indicated by the
differences between the columns labelled MSE and AVMSE
in Table 2. This appears to be worse for strategies Fd, Fg, Bd
and Bg, followed by Fs and Bs, and not so bad for SS, FR
and CN.

Comparing Fd and Fg with CN, there is a moderate gain in
efficiency over the condition number reduction procedure, at
the expense of some increased bias in both the mean and
mean squared error estimators. Thus, even when the
predictive power of the available auxiliary variables is not
large, it is still possible to gain efficiency over strategy CN.

A bad choice of fixed subset (as for example, the saturated
subset used in strategy SS) could yield poor results in terms
of efficiency and also some bias in the mean squared error
estimation. However, if for example v, was used as the
estimator for the mean squared error under strategy SS instead
of v_, there would be no apparent bias (the AVMSE observed
in that case was 459.67, hence much closer to the estimated
simulation mean squared error of 462.71).

The ridge regression estimator was again slightly inferior
to the saturated subset strategy (SS), but now without any
apparent bias in estimating the mean or the mean squared
error. It outperformed the condition number reduction strate-
gy CN once again in terms of efficiency, albeit by a smaller
margin. It also performed well in terms of empirical coverage.

Strategy FR performed similarly to the fixed subset strate-
gies FI and SS again, and so was outperformed by strategies
using a specialized criterion based on an estimator of the mean
squared error of the regression estimator such as v, or Ve

These results suggest that, when estimating the population
mean of a single response, the proposed adaptive procedures
combining the regression estimator with some form of subset
selection based on an appropriate mean squared error estima-
ator can offer some useful improvements in efficiency
against its competitors. However such strategies may
introduce some bias when the predictive power of the
auxiliary variables available is not large, and the
corresponding MSE estimators may be substantially biased,
leading to poor coverage.

Table 2
Bias, Mean Squared Error, Average of Mean Squared Error Estimates, Efficiency and Empirical Coverage of Alternative Estimation
Strategies for the Mean of Response Variable y with Ten Auxiliary Variables (x, -x,,) Available

Estimation strategy BIAS MSE AVMSE 0132?‘;3“2(3;0) le)r‘lllgri;igiazi%)
SM) Sample mean (7,v,) 0.25 620.09 619.05 100.00 91.8
Fs) Forward (¥ ,,v) 0.06 468.46 397..99 75.55 86.7
Fd) Forward (fr, v,) -8.12 434.27 338.90 70.03 81.7
Fg) Forward (Vr,vg) -7.90 433.71 328.46 69.94 81.6
Bs) Best (¥,,v) -0.00 466.16 397.59 75.18 86.6
Bd) Best (¥,v) ~7.90 434.54 336.88 70.08 81.5
Bg) Best (¥, vg) -7.60 433.26 326.05 69.87 81.6
FI) Fixed (¥,,v)) 0.45 490.49 461.86 79.10 89.0
SS) Saturated (¥ ,,v,) -0.20 462.71 413.17 74.62 86.9
FR) PROCREG (¥,,v) -0.07 466.13 399.34 75.17 86.4
CN) Cond. num. red. (¥,,v,) 3.49 562.91 450.36 90.78 87.3
RD Ridge (Ppe Vp) 1.05 480.18 472.82 77.44 89.4

! Nominal 95% coverage.
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Correlation Matrix for Variables Used in theg?;l:lgtion Study with the 1988 Census Population
Variable y X, x, X5 x, X5 X x, Xg X, X0
x, 0.23
x, -0.04 0.20
X, 0.17 0.07 -040
X, 0.47 0.13  -0.15 0.12
X 0.48 009 -0.11 0.15 0.83
X 005 -0.09 -032 -0.03 0.22 0.20
x, -0.17 001 -012 -0.01 -0.17 -031 0.16
Xg 0.38 0.29 0.07 0.17 0.44 041 013 -0.20
X, 0.20 008 -0.06 0.04 0.30 0.25 0.16 -0.13 0.37
Xy 0.43 0.23 0.33 0.17 0.39 039 -0.10 -030 0.49 0.26
x 0.78 023 -0.00 0.22 0.54 0.54 001 -0.19 0.41 0.21 0.49

7. CONCLUSIONS AND FUTURE DIRECTIONS

Our results suggest that, when using regression estimation,
there is potential for some gain in efficiency by adopting a
variable selection procedure based on one of the mean
squared error estimators v, or V- Under SRS, and
considering the limited simulation evidence, there seems little
to choose between these two mean squared error estimators.

Forward subset selection procedures were as effective as
those based on searches carried out considering all possible
subsets, which involve much more computation. Our results
also indicate that it is possible to improve over subset
selection procedures based on condition number reduction
whenever a specific response variable is of interest.

One problem with a variable selection approach is that the
associated variance estimation is likely to become biased for
the estimation of the overall mean squared error of the
regression estimator following variable selection, thus leading
to poor coverage of standard confidence interval procedures.
Further research is necessary to investigate possible
alternative variance estimation procedures.

This paper has focused on the use of regression estimation
to reduce sampling variance in the classical sampling context.
In practice, regression estimation is widely used to correct for
biases arising from non-sampling errors. In such applications
the question of how many auxiliary variables to use is also an
important one. Some variables might be included for reasons
unrelated to sampling error, for example because they are
known to be important determinants of nonresponse.
Nevertheless, as the number of auxiliary variables increases
the sampling variance may also eventually increase and we
suggest that a decision rule to limit the number of auxiliary
variables employed might still usefully be based on sampling
variance considerations. In the presence of nonsampling bias,
the difference between X and X will generally be of O,1)
not O,(n""?) and so the results of this paper are not directly

applicable. Further research is therefore needed to consider
the extension of our approach to this case.

Further research is also necessary to extend our approach
to complex sampling designs. One possible approach for the
general regression estimators, considered e.g. by Sdrndal et al.
(1992, sec. 6.4), would be to replace the weights g, by the
“generalized” weights, described by Sarndal et al. (1992,
eq. 6.5.9), and to base variable selection on the minimization
of the generalized version of v, given by Sérndal et al. (1992,
eq. 6.6.4).
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