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ABSTRACT

A system of procedures that can be used to automate complicated algebraic calculations frequently encountered in sample
survey theory is introduced. It is shown that three basic techniques in sampling theory depend on the repeated application
of rules that give rise to partitions: the computation of expected values under any unistage sampling design, the
determination of unbiased or consistent estimators under these designs and the calculation of Taylor series expansions. The
methodology is illustrated here through applications to moment calculations of the sample mean, the ratio estimator and
the regression estimator under the special case of simple random sampling without replacement. The innovation presented
here is that calculations can now be performed instantaneously on a computer without error and without reliance on existing
formulae which may be long and involved. One other immediate benefit of this is that calculations can be performed where
no formulae presently exist. The computer code developed to implement this methodology is available via anonymous ftp
at fisher.stats.uwo.ca.
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estimation.

1. INTRODUCTION

In classical sampling theory two general problems concern
us. These are the determination of an unbiased estimator of
a parameter 0 and the calculation of moments of 8, the
estimator of 0.

The basic method to handle expectations and unbiased
estimation is to operate on sample and population nested sums
respectively through the inclusion probabilities, either single
or joint probabilities as appropriate. A nested sum is a sum
over the range of one or more indices such that each term in
the sum depends on indices of different value. An unbiased
estimator of any population nested sum is the associated
sample nested sum with the quantity under the summation
divided by the appropriate inclusion probability. Similarly the
expectation of any sample nested sum is the associated
population nested sum with the quantity under the summation
multiplied by the appropriate inclusion probability.

In sampling theory, as well as several other areas of
statistics, many algebraic calculations depend on a partition
of some kind. With particular reference to sampling, Wishart
(1952) showed that basic moment calculations under simple
random sampling without replacement relied heavily on
partitions. Here we will use partitions to express the sum of
products of means or totals as linear combinations of nested
sums and vice versa.

In the results presented here we consider the situation in
which 8 and 9 can be expressed as smooth functions of
means or totals, population or sample as appropriate. There
are two possibilities: the smooth function under consider-
ation can be expressed as the sum of products of means or
totals, or the smooth function cannot be so expressed. When
the second possibility is operative the function 0 is first

linearized through a Taylor expansion and 0 is expressed as
the root of an estimating equation. We use integer partitions
to obtain terms in the Taylor linearization of a function or for
the root of a function. The end result is that © and 8 can be
expressed, either exactly or approximately, as the sum of
products of means or totals. These in turn can be expressed
in terms of linear combinations of nested sums and vice versa.
Estimation of 8 or calculation of the moments of 8 is then a
three step procedure: (a) Express an estimating equation for 6
or the estimator 8 as the sum of products of means or totals,
using Taylor linearization when necessary. (b) Transform
the expression obtained in the first step to a linear combina-
tion of nested sums. Then operate on these nested sums to
obtain unbiased estimates or expectations as appropriate.
(c) Transform the resulting nested sums in the second step
back into a sum a products of means or totals.

The key to automation of sampling theory results is the use
of partitions. In general, whether these partitions are simple
partitions, like that of an integer, or more complicated, like a
full partition, each results from the repeated application of a
fundamental rule. When the rule is identified, the possibility
of automating a calculation arises. Seemingly unrelated
formulae can result from the same fundamental rule and one
computer algebra tool can be constructive in implementing
many different calculations.

The notation used in the paper is outlined in §2. A
discussion of expectation operators is given in §3. The
concept of partitioning is reviewed in §4 and a rule is
provided which leads to a simple recursive method for the
enumeration of partitions. Integer partitions and Taylor
linearization is discussed in §5. It is shown in §6 how the
enumeration of partitions leads to the automatic calculation of
expected values of products of sample means and &-statistics
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and to the derivation of unbiased estimators of products of
finite populations means and 4-statistics. Also in this section
we apply the methodology to ratio and regression estiration.

Automation of these calculations and derivations will
provide procedures which can be performed instantaneously
and without error on a computer. Also, the reliance on
formulae which may be long and involved is eliminated. A
great deal of hand written algebra can be avoided. All
computer code for the implementation of the methodology
described here was written in the symbolic package
Mathematica 2.0 which was installed on an IBM Risc 6000
with 64 megabytes of RAM. Itis available via anonymous ftp
atfisher.Stats.uwo.ca. Although we use Mathematica, imple-
mentation in other environments such as Maple, Macsyma or
Reduce is no doubt possible. For example, Kendall (1993)
describes a system, implemented in Reduce, for the
identification of invariant expressions. For a complete review
of computer algebra in probability and statistics prior to 1991,
see Kendall (1993).

2. SOME NOTATION

Consider a finite population of size N. A measurement of
interest y. is made on each unit j,j € U={1,..,N}. In
addition a single auxiliary variable x, or possibly a P x 1
vector of auxiliary variables x, may be taken on the units.
The p-th entry of this vector X is X, where p=1, ..., P.
Several kinds of finite population parameters may be defined
on the measurements y;, X,, Or X, for j =1, ..., N. Wedenote
a finite population parameter of interest by 6. Often 6 can be
expressed as a smooth function of finite population means,
central moments and k-statistics. For convenience here we
will deal only with means and £-statistics. Note that finite
population variances and covariances are also second order
k-statistics.

Not all N population elements are observed. Suppose that
a sample s of size n is chosen from the populatlon U by some
sampling scheme. An estimator of 0, given by 8, is a smooth
function of sample means and sample k-statistics.

In order to avoid much cumbersome summation notation
we adapt the index notation of McCullagh (1987) to our
purposes. For any j the vector x; contain P entries so that
each of these x-variables may be associated with one of the P
indices. Suppose {i),...,i,} is a subset of m of these P
indices. In our adaptatlon of McCullagh’s notation, x, . is
now what we called the vector x . Products of these mdexed
quantities become multidimensional arrays. For example the
product X; %, is a three-dimensional array of dimension
PxPxP.

Let M denote a finite population mean. The argument of
M shows the structure of the summand in the mean. For
example, M(y) Yeu¥/N and M(y) or equivalently
My?) = Z,eu y; ?/N. In index notation, for example,

M(x, x, x,) = Exux x, /N o)

’31

is a three-dimensional array. An element of this array is the
mean of products in one of the permutations of the P elements
taken three at a time in x. where up to three of the elements
may be alike. The (p,q,r)-th element of this array is
Zjeuxpjx X, where p,q,r =1, ..., P. The sample mean is
denoted by m so that, for example

m(x X, X, ) Z X, X%y n. 2)

For the purpose of making asymptotic expansions, since
the variance of a given estimator 0 willbe O(n~ 1, we define
a standardized variable for 0: it is the original variable 8
centered about its expectation and scaled by 1 /\/r_t . That s,

2(8) = [6- E@®)n. 3)
When necessary we use the summation convention of
McCullagh (1987), where subscripts repeated as superscripts
indicate implicit sums over that index. As a particular
example, on assuming that the x, are independent and
identically distributed vectors from some infinite super-
population, multivariate superpopulation moments can be
obtained through the moment generating function which is
expressed in this convention as

o h o
MGF(®) =1+Y. p,l...,hH 1Y, @)
h=1 j=1
where
4
l.ll.l. i, = W MGF(’)|,=0 (5)

i, 90,
By definition, the relationship between the moment generating
function and the cumulant generating function is determined
by the rule MGF(#) = exp {K(#)}, where

h .
K@) = E K, - 11 £1h! (6)
h=1 M

is the cumulant generating function, where

_
Ki] iy :9—;—3—;’;1((’”’:0

n

The finite population k-statistics, denoted by K{(-), are
defined as the unbiased (under the i.i.d. superpopulation
model) estimators of the associated model cumulants. The
number of arguments in K separated by commas denotes the
order of the k-statistic. For example, the third order A-statistic
K(xl.l,xiz,xl.s) is the model-unbiased estimate of (6), where

Ko, x )= — N
(NN - 2)
x X [x, ;- Mx, )i, =~ M)k, - M(x, )1 (7)
Jjeu

In the univariate case finite population k-statistics are
described in Wishart (1952). In particular K(y,y) and
K(y,y,y) in the current notation are K, and K, in Wishart’s
(1952) notation. The sample 4-statistics, denoted by A(-) with
the appropriate arguments, are defined as the unbiased
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estimators under simple random sampling without
replacement of the associated finite population A-statistics. As
in Wishart (1952) the sample -statistic can be obtained from
the population k-statistic upon replacing N by » and upon
taking the sum over j€s rather than all units in the finite
population. For example,

)—_L_____
T (- 1D(n-2)

x 3 b, ;- mlx)llx, - mGxx, ;- mx,)l.

Jes

k(xil’ 12

Note that if a comma is not present in the population or
sample k-statistic, then the product of elements which appear
together is required. For example, K(xy) is the first order
finite population k-statistic of a new variable which is the
product of the measurements Xx; and ¥y, forj =1,..,N;, K(x,y)
is a second order £-statistic, in particular the finite population
covariance between x and y.

3. OPERATORS

The expectation operator E can be applied directly to any
sample nested sum to obtain a finite population nested sum.
Likewise an unbiased estimator of any finite population
nested sum is a sample nested sum. In terms of triple nested
sums, for example,

I:JE xljxlzkx ] E k/xllj 12k i3l (8)

€S
and

E x iy Izkxl ! E xlj Izl(xl { jkl’ (9)

where J; is the index set {J, k, /}such that j # k # I and where
m,, is a joint inclusion probability. Parallel expressions may
be established for with replacement sampling schemes.

Note that m will be unbiased for the associated M under
simple random sampling without replacement. In general for
any sampling design of fixed size n,

Elm(x, x, x,)] = il M(x, x, x, ™)
1273 n 1 2213

and

M(x, x.

n
i\, ) ~ v m(xilxlzxizln)
where M(x, x, i ) and m(x X, X; ) are defined in (1) and (2)
respectlvely

The whole operation of finding expectation of an estimator
0 or of finding an unbiased estimator for the parameter of 0

may be represented schematically as

YII-X Y- 1I. (10)

where Y]] denotes the sum of products and Y Y denotes a
sum of nested sums. If & or  can be expressed as a Y]]
quantity, i.e., a sum of products of means, then finding an
unbiased estimator of ® or moments of & reduces to following
the schema in (10) and applying the appropriate operator, such
as those given in (8) or (9), to Y}, the middle step in the
schema. If 8 or 8 are smooth functions of means but cannot
be expressed directly as ¥ [ quantities, then an initial step is
required before applying the schema in (10). For 0 the initial
step 1s to obtain a Taylor expansion of 8. For 0 the initial
step is to obtain an estimating equation and then to solve it for
the parameter.

We illustrate the schema in (10) by considering the simple
case of finding E[{m(x, )}?] under simple random sampling
without replacement. "The first operation is to express
{ m(x,l)}2 in terms of nested sums. In particular,

{m(x,)}? = —E y -—2 DIEAE NS an

Jes n° jrkes

Thisisthe Y[ =Y step. Now the expectation operator can
be applied to Y'Y . On applying inclusion probabilities
m = n/N and Ty =n(n-1)/[N(N-1)], the expectation
operation on (11) yields

N

21 nn-1)

Xt ——— X, X, - 12
e S TP R
Now the Y'Y = Y]] step is applied. On expressn]},g the nested
sum in (12) as the sum of products, in particular ¥, _, x, Xk
ZjN,xlij 1% ZlexU ;,; » the third operation yields

JUCEIVITY

2
E[{(m(x;)}7] = N-Dn

2, N-n .2
MEE S M) a3

In (13), M(x, ) K(x, ) and M(x; )— [N/(N - 1)]K(x WX, )
K(x, )K(x ) so that (13) can be reexpressed as

E(m(x, ") = {K(x)}? + (N-mK(x, x, (Nn).  (14)

Likewise, following the schema in (10), the operations for
finding an unbiased estimator of, for example, {M(x, )}2

similar to (11), (12) and (13). The estimand {M(x, )}2 i

expressed in nested sums similar to (11). These sums will be
nested finite population sums. Similar to (12) the inclusion
probabilities are applied. In this case the finite population
sums are replaced by sample sums and summand is divided by
the appropriate inclusion probability. Finally, similar to (13)
the resulting nested sample sums are expressed as products of
sums.

Each of the elementary operations to obtain an expected
value through equations (11), (13) and (14), or to obtain an
unbiased estimator, can be carried out using partitions. These
operations are: expressing sums of products as nested sums
and vice versa, and expressing means in terms of A-statistics
and vice versa.



6 Stafford and Bellhouse: A Computer Algebra for Sample Survey Theory

4. PARTITIONS AND FUNDAMENTAL
PROCEDURES

Central to the automation of all algebraic calculations
considered here is the notion of a partition. Partitioning as a
focal point gives the appearance that the automated methods
presented here are nothing more than an integer partition or a
partition of an index set. While we assume that a partition of
an integer is understood, a full partition requires a more
formal definition.

Consider a set of m indices I ={i,..,i }. A single
partition P, of I divides the m indices into k < mmutually
exclusive and exhaustive subsets or blocks of I . We write
P_=(b,|b,]|...|b,), where the b,, ..., b, are the blocks of I .
P, is unique up to permutations of indices within the blocks
b.. The block b, is comprised of a subset of the indices of
I . Elements within a block may be constrained to an
alphabetical ordering and the blocks themselves may be
ordered such that leading elements of each block are ordered
alphabetically. This ensures the uniqueness of the partition
P_. In this case P, would be called a standard ordered
partition. Ordering the partitions in this manner does not
offer any computational advantage and hence is not a
requirement in what follows. The full partition of I_ is the
set @  of all single partitions P, of [ .

Now we may identify the full partition of /_ in an
algorithmic way via an inclusion-exclusion rule.

i. Let® ={i}.

ii. An 1nclus10n exclusion rule determines the contribution
to @, by a partition P,_, € ©,_,. In the inclusion part of
the rule, the new index i, is added as an element in turn
to each of the blocks b, ..., b, which comprise P,_,. If
P,_, has kblocks, k partitions for €, are created. In the
exclusion part of the rule a new block containing the
single index i, is added to P, _,.

For example, the full partition of I, = {i,, i,, i;} is given by the

steps
T REN ()|
i 0, ={(,5), G,]in} (15)

il 0, = {(iy5), (G5, &), (33| ), Gy [ 5555), Gy 1, )}
From step (i) to step (ii) the inclusion rule results in the
partition (i, /,) and the exclusion rule results in (7 |i,). From
step (ii) to step (iii) the inclusion rule results in the creation of
the partitions (i,,4,), (i,i;],), and (i, | i,i;). The exclusion
rule yields the partitions (i, 4, | i;) and (i, | £, | ;). This type of
construction is easy to automate since it depends on a simple
rule. Details of automating the partition of indices into full
partitions and complementary set partitions are given in
Stafford (1996).

Consider, for example, the classical problem of writing the
model moments of the random vector x, in terms of its
cumulants. As in (5) we can identify the h th moment array
by differentiating MGF(#) in (4) A times and setting ¢ equal
to the zero vector. The result is the h-th coefficient in the
expansion of MGF(z). Equivalently we can apply the same
operation to exp{K(#)}. In this case the result is a sum that

depends on the coefficients of K(#) in (6). For example, we
may write the first three moments in terms of cumulants as
follows:

. = K. .. +tK K.
i 1ty hoh

= S +K K, K, LK, tK. K. K K. K, .
pﬂﬁﬁ KHQH KHhKH KHHKb KHKHH KHKQKh

Now in each case the result is a sum over the full partitions
given in (15). These partitions arise since the multiplication
rule for differentiation mimics the inclusion-exclusion rule for
the enumeration of the full partition.

The above result is applied to sampling theory where we
consider the problem of finding the expected value of a
product of sample sums. The calculation requires expanding
the product of the sums to identify terms where the finite
population expectation operator will behave differently due
to differences in the values of inclusion probabilities and joint
inclusion probabilities.

For example, the product of sums ¥ _ x, ,ij ) stsxw

can be expressed as

Exilj 13/ Z xllj iyj lk + Z xl‘jxizkxilj
Jjes kes
M E X; kxlzjxly Z xll_] ik 131 (16)

Jrkes Jrkzles

The result corresponds to the full partition of the indices
I, = {i},i,,i;} givenby @ in (15). The order of the partitions
in @, is the same as the order given for the terms in (16). For
each partition in 93, the variables in the same block have the
same second index in the appropriate term in (16). For
example, the partition (i,4;]i,) corresponds to the term
Zpkss 1%k in (16). Each term in the result can be
identified by a partition of /; and each partition determines
the manner in which the expected value operator will behave.

In general, we want to expand products of the form
I, jes¥i > , where the product is taken over the elements 7,
of the index set I ={i,..i,}. Asin(16), the product can
be expressed in terms of the full partition of /. This is
because the iterative rule for expanding a product of sums
mimics the inclusion-exclusion rule.

The expansion of the products of sums through partitions
is demonstrated inductively as follows. Assume the product
of the first # - 1 sums can be expressed as a sum over the full
partition of the index set I,_, = {i,...,i,_,}, in particular

-1

H(Ex,)— E X, (17)

r=1 jes P €0,

In (17) the term X . is the sum identified by the partition

=(b,|...|b, k = 1 - 1. Theblocks b, indicate groups
of vanables with the same second index and so P,_,; induces
an index set J, ={j,,....j,} of second indices. We can
express X, P, 2
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Xp = E (Hij)’ (18)

"t Jy*ties \ Jed,

where X, is a product of x's defined by the block b that all
have the same second index. To illustrate (18), con51der, for
example, the third term of (16). Here P,_, = (i,4;]i,) and
J,={J, k} sothatin (18) the sumis taken over j # k€ s and the
multlpllcands of the product are X, =x, x, . and X, X -

Returning to the general discussion, when e1ther side of (17)
is multiplied by Z e/ the product of the first ¢ sums is
obtained. Now the product X Z, esXi,; €an be expressed as

X

INES IS

k
IR ICAR
jedy

Ju# e # Tt €8

¥y (HXbek) (19)

JjeJ,

The first term in (19) corresponds to the inclusion part of the
rule and the second term in (19) corresponds to the exclusion
part of the rule. When (19) is summed over all P,_ €@, _,, the
result will be a sum over the full partition of the flrst t indices
givenby /, ie, the sumoverall P €@,.

Once the product of sums, ] IE_/ES ; ;» is expanded into
a sum of nested sums, the finite populatlon expected value
operator can be applied to each term so that the expected
value of this product can be obtained. The expected value
under simple random sampling without replacement of the
product of sums results in a weighted sum of nested sums,
with each sum taken over the finite population. We then wish
to evaluate these nested sums.

In general we wish to evaluate the nested sum Y, ne
where J, is the index set {j},..../,}. The sumis taken over all
Jy#..#j, with each j =1,..,N. The summand Y, is the
product XX X, In the special case when t=3 or
Jy={j,k, I} the nested sum can be written in terms of full sums
as

N
E ijl = E E lelxl kxI[
Jy Jrkel=1 j*k*[ 1
N N N N N

zzz ) ’2] ’3] z=: 1.1x’2_/]=E x’z/ jE xl_/xlﬂ"; x’zl -
N N N N N
Z x’]fZ: xizjxigj * z_: x’bljz: xizjz_: x’;] (20)
j=1 Jj=1 J=1 J=1 J=1

Note that the full sums in the rightmost expression in (20)
result from the full partition p, in (15). The order of the
partitions in g, is the same as the order of the terms on the
right of (20). The subscripts on the right of (20) denote the
block membership in g, . For example the partition (i, i, | i,)
corresponds to the term )’ x, i, ,Zj 1%, in (20). Note also
from (20) that the determmatlon of a nested sum is
complicated by the additional determination of the
appropriate coefficients of the full sums.

In general the evaluation of finite population nested sums
results from the repeated application of the rule

This expression mimics the incluston-exclusion rule where the
first set of sums on the right follows the exclusion part of the
rule and the second set follows the inclusion part of the rule.
Repeated application of (21) yields

)N? [HX, ] >

1* =1 Pe®,

x{b}l’ [(lbk|_1)!é(,le—£x )l}

where |J,|,|P,| and | b, | are the number of indices in J,,
the number of blocks in the single partition P, and the
number of elements in the block b, respectively.

5. INTEGER PARTITIONS AND TAYLOR
LINEARIZATION

Suppose that under some sampling design an estimator )
of a parameter 0 is of interest. The methodology described
in §§2 to 4 may be used in moment calculations for 6 or to
find unbiased estimators of these moments. Only in the
simplest cases can this methodology be applied directly.
Typically & must be linearized so that it becomes a
polynomial function of sample means or sums which are
9] (1) random variables with respect to the sampling design.
Once 8 is linearized in this way the methodology of §§2 to
4 is applicable.

The objective of the linearization is to write 6 as an
asymptotic expansion where terms descend in order by 1 / \/—
specifically

6=0,+8,/Vn+8,m~.., (22)

where éi is the coefficient of the n " term. Typically Bisa

product of quantities that can also be expanded in this way.
For example, if the measurement of interest is y and one
auxiliary variable x is present then 0 might be M(y) and the
aux111ary information available is M(x) as well as X; for jes.
Then 6 = M(x)m(y)/m(x), the simple ratio estxmator is a
product of three quantities M(x),m(y) and 1/m(x) all having
asymptotic expansions of their own. The expansion of M(x)
is itself. From (3) the expansion for m(y) yields .
M) + z(m(y))/\/;z-. The expansion for 1/m(x) results from
(3) and then applying a Taylor expansion to
[M(x) + z(mx))yn] !
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In general any expansion of a function with sufficient
regularity can be found if operators are defined to expand a
function, say g(é) where € is itself an expansion. We are
interested in expanding functions of the form

s@=11¢ 23)
j=1

where ¢ itself has the expansion ¥;_se,n "2 In lincarizing 6
the basic requirement is to define an operator that returns 9
in (22). The efficiency of this operator derives solely from a
rule for expanding functions of the form given in (23). The
calculations required are functions of mteger partitions. For
example the 1/n term in the expansion of H, 1€ 18

€31€00€03 ¥ €01922603 * €01€02%23 T €11€12f13

€11€02¢13 * €01€12813 24)

Collecting first indices for each term in the sum results in a list
in which each element sums to 2: {(2,0,0), (0,2,0), (0,0,2),
(1,1,0, (1,0,1), (0,1,1)}. On noting that the order n " term
in any expansion & is actually the (i + 1)-th term in the sum
o o€ "2, we may modify the list derived from (24) so that
entrles identify the position of terms in a sum. The
modification is to add 1 to each index value in the list. In the
list derived from (25) this results in all partitions of the integer
5 into 3 blocks: {(3,1,1), (1,3,1), (1,1,3), (2,2,1), (2,1 2)
(1,2 2)} In general, the i-th term in the expansion of Hj :
or e , where p is a positive integer, is a sum over all
partmons of the integer i + p into p blocks. Consequently,
using this methodology any term in the expansion of, for
example, the ratio estimator can be found.

We illustrate this technique with ratio and regression
estimation. The ratio estimator is given by

M(x)m(y)/m(x) (25

and the regression estimator by

KD gy - kol (26)

+ b[K(x) - K = +
k() + b[K(x) - k()] = k() Krx)

in the notation of k-statistics.
~ On using (3) the ratio estimator (25) may be expressed as

-1
M(x)[M(y) : Z—\/(;)J [M(x) . %)] . @7

The expression in (27) may be expressed in terms of (24) with
p=3. The first term in (27) is the expansion ¥, oe,, n " with
ey = M(x) and e, =e, =--=0. The first term in square
brackets in (28) is the expansion Z, o€y "? where
e, =MQ), e, = z(m(y)) and e,, = ey =" = =0. The second
term in square brackets is the expansion ZZO e n "% where

e, =(-D'{z(m)}{M(x)}"!. To get the 1//n term in the
expansion of (27), in which case i =1 and p = 3, we need to
find the integer partitions of 4 in blocks of 3. This yields the
partitions (2,1,1), (1,2,1) and (1,1,2). On subtracting 1 from
each index value in the list we obtain the list (1,0,0), (0,1,0),
(0,0,1). Therefore the required term in the expansion is
(€11202%03 * €01€12€03 + 201 €0 €1 )/\/71 or  equivalently
[z(m(y)) - M(y) z(m(x))/M(x))/yn. The 1/n term is obtained
from (24) which reduces to

[MONz(0) YH{ M)} - z(x) z(p) M(x))/n.

“The regression estimator in (26) may be expressed as

Ko + ZKOD

n

K(e,y) + z(kx.)))

=

-1
ey » 2020 || 2k
z I

using (3). The terms in the square brackets in (28) can be
expanded in a similar fashion to the ratio estimator. In this
case the terms in the expansions become: e, = K(x,)),
e, =z(k(x,y)) and e, = ¢;, = 0; e, = (-1 {z(k(x,x))}/
{K(x,x)}"! fori=0, 1,2, ..;and ey, =0, e;; = z(k(x)) and

ey; =e;; =+ =0. Consequently, the 1//n term in the
expansion of the terms in the square brackets in (28) is
_ K(x,y)z(k(x))
K(x,x)yn

and the 1/n term is
LS CRICER))| I,
n[ K(x, x) K(x, x)?

These were obtained by the same argument that was used in
the ratio estimator.

6. MACHINE APPLICATIONS TO THE
CALCULATION OF EXPECTED VALUES OF
SAMPLE STATISTICS AND THE DERIVATION OF
UNBIASED ESTIMATORS

Since the machine application to the methodology
described in §83 to 5 was done in the programming language
Mathematica we give a brief description of the operation of
Mathematica. Then we describe the operators that were
developed in Mathematica to provide a computer algebra for
survey sampling theory.

Programming in Mathematica is carried out using
expressions of the form hle,, e,, ...] where the object & is
called the head of the expression and the e's are the elements
of the expression. We have developed a number of machine
expressions in Mathematica in the form of hle , e,, ...] for
operators which we apply to developing a computer algebra
for sampling. All of these operators have been devised to
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handle vectors as their arguments as well as scalars. There
are four basic operators: EV]-] for expected value, Cuml-]
for calculation of cumulants, UE[-] for unbiased estimator,
and Aexp[-] for asymptotic expansion. There is also an
operator to switch from notation using k-statistics to notation
using means and vice versa.

The expected value operator EV]-] on sample statistics
combines and carries out in Mathematica the three basic
operations shown in the schema in (10). EV]-] contains two
arguments, the first is the expression for which the expected
value is to be obtained and the second is the sampling design
which defines the inclusion probabilities. The application in
Mathematica of EV[-] to m(x,)m(x, )m(x,) under simple
random sampling without replacément y1eld3s

(N - W (K(x, ,x, )K(x,)

K (x,.])K(x,.2) K(x,z) + Nn

K(x, ,x, )K(x,) + K(x; )K(X, , x;))
+ 1 3 2 1 2 3
Nn
(N?-3Nn+ 2n")K(x, ,x,,x,)

N2n?

in the simplest expression of the output. Note that the result
is a function of the full partition of {i,i,,i;}. If the operand
is changed to {m(x, ) M(x, )}x {m(x, ) M(x, )}x
{m(x, ) M(x, )} appllcatlon of EV[] yields

(N?-3Nn +2n")K(x, ,x, ,x,)

)

N2n?

which was obtained by Nath (1968) for particular values of the
indices i},i, and i,. In fact, the results in Nath (1968, 1969)
for the products of three and four means and the exact results
in Raghunandanan and Srinivasan (1973) for up to a product
of eight means can all be reproduced automatically with the
software that has been developed.

To this point the sampling design used in each of the
examples has been simple random sampling without
replacement. Results under general sampling designs can be
obtained. We illustrate these results for the operator Cum|:]
which is used to obtain the cumulants of an estimator. Note
that the second cumulant for an estimator is also the variance.
The operator Cum[-] has three arguments. The first is an
expression for the estimator, the second is the order of the
cumulant and the third is the sampling design. Under general
sampling designs, estimators can be expressed in terms of
Y11 in the schema given by (10) and the Y]] can be
expanded to obtain } Y, the middle term in (10). There is,
however, no general simplification to obtain the final term in
(10). This is illustrated with the Horvitz-Thompson estimator
of M(y) given by (n/N)m(y/n) in the notation developed
here. Application of the operator Cum(-] under a general
sampling design to obtain the third cumulant of the Horvitz-
Thompson estimator yields

N3 N3 N3
2
N N N poyy. YN oy,
Sofi g rnl £3 00
_a i=1 i=1 j=1 (TII][j) +’2’=1 J= (TC,TC]-)
- N3 - N3
TV

(mmm)

where, for example, the term =, is the single inclusion
probability ;.

The operator Aexp(-] has two arguments, the function for
which the expansion is required and the order of the
expansion. This operator is used in combination with the
EV[-}or Cum[-] operators to obtain approximate
expectations or cumulants. This is illustrated in the case of
the multiple linear regression estimator under simple random
sampling without replacement. When there are g covariates
the resulting regression estimator is given by

ko) + b, [KG") - kx ™) (29)

using index and k-statistics notation. In (29) the coefficient
b i is the vector resulting from the product k(x, , y) ik(x", x,)
in'index notation, where the q X q array ik(x, x,z) is tﬁe
inverse of the ¢ x g array given by k(x X, ) Slmilarly we
will use JK(x,,x,) to denote the inverse of the finite
population arraly Kz(x x,). Derivation of the mean square
error of (29) requires 'faylor expansions of the elements of b,
followed by the appropriate moment calculations anc‘i
collection of terms. The Mathematica command to obtain the
approximate variance of (29) is obtained by first applying
Aexpl[-] to (29) with 2 as the order in the expansion. Then the
operator Cuml(-] is applied to the result with the following
arguments: the result from the asymptotic expansion as the
estimator, simple random sampling as the design and 2 for the
order of the cumulant. This yields

N -mKe.y) N+ mKe,, 9K, ) IK(x " x™)
Nn Nn

in index notation as output.

Estimation is achieved through the operator UE[-] which
has two arguments, the estimand and the sampling design.
For example, application of UE[-] to {M(x)}? under simple
random sampling yields

(Nn){k(x)}* + (N-nk(x, x)
Nn '
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If the estimand cannot be expressed as a sum of nested sums,
but instead can be expressed as the root of an estimating
function, then UE[-] obtains a consistent estimator.

7. DISCUSSION OF FUTURE WORK

The basic building blocks to develop a comprehensive
computer algebra for survey sampling theory have been given.
The foundation of this algebra is based on the enumeration of
partitions. Fundamental operations under partition enumer-
ation include the evaluation of nested sums and Taylor series
expansions. Once these operations have been completed then
expectations of sample statistics can be calculated or unbiased
estimators of population quantities can be determined.

The next phase in this work is to extend the unistage
results to multistage and multiphase sampling. In both multi-
stage and multiphase sampling the problem reduces to the
computer evaluation of multiple sums under an expectation
operator or the determination of an unbiased estimator of
multiple finite population sums. The problem of multistage
sampling is currently under investigation. Another current
area of inquiry is to extend the algebra to superpopulation
models.

Once the basic algebra is in place then research problems
involving algebraically complex sampling formulae can be
easily investigated.
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