Survey Methodology, December 1996
Vol. 22, No. 2, pp. 199-204
Statistics Canada

199

Optimal Sample Redesign Under GREG in Skewed
Populations With Application

GURUPDESH S. PANDHER '

ABSTRACT

Within a survey re-engineering context, the combined methodology developed in the paper addresses the problem of finding
the minimal sample size for the generalized regression estimator in skewed survey populations (e.g., business, institutional,
agriculture populations). Three components necessary in identifying an efficient sample redesign strategy involve
i) constructing an efficient partitioning between the “take-all” and “sampled” groups, ii) identifying an efficient sample
selection scheme, and iii) finding the minimal sample size required to meet the desired precision constraint(s). A scheme
named the “Transfer Algorithm” is devised to address the first issue (Pandher 1995) and is integrated with the other two
components to arrive at a combined iterative procedure that converges to a globally minimat sample size and population
partitioning under the imposed precision constraint. An equivalence result is obtained allowing the solution to the proposed
algorithm to be alternatively determined in terms of simple quantities computable directly from the population auxiliary
data. Results from the application of the proposed sample redesign methodology to the Local Government Survey in Ontario
are reported. A 52% reduction in the total sample size is achieved for the regression estimator of the total at a minimum
coefficient of variation of 2%.

KEY WORDS: Minimal sample size; Optimal sample selection; Precision constraint; Sampled group; Take-all group.

1. INTRODUCTION

In many survey situations additional information is
available on all population units before the survey is
undertaken. This auxiliary information is frequently useful in
devising a more efficient sample design and estimation
strategy. In a survey redesign context, the most optimal
strategy holds the promise of offering the largest reduction in
survey costs by requiring the lowest sample size necessary to
meet the desired precision constraint on the estimates. In
repeat surveys of skewed populations, an efficient sample
design and estimation strategy may be realized by exploiting
a) the correlation structure between the size-based auxiliary
information x (e.g., population of municipality, employees
in a firm, farm acreage) and the survey variables y (e.g.,
municipality expenditures, value of shipments, farm yield)
and b) the variance relationship between the survey variable
and the auxiliary size information.

In this paper, a comprehensive sample redesign meth-
odology is developed for skewed populations with the
ultimate objective of bringing about maximal reductions in
the current sample size while ensuring a desired level of
precision for the generalized regression estimator of the total.
This work was motivated by the redesign of the Local
Government Finance Survey (LGFS) conducted by Statistics
Canada's Public Institutions Division. Financial information
(e.g., revenues, expenditures, debt, efc.) obtained from local
government units is used in the estimation and publication of
financial statistics on a provincial and national basis.

Although the work presented in this paper is motivated by a
concrete application, the sample design methodology devised
applies generally to all surveys based on skewed populations
(e.g., agricultural, business, and institutional surveys).

In identifying an efficient new sample design, the overall
methodology addresses and integrates the solution to three
problems:

1) Creation of the ‘“Take-all” and “Sampled Groups”

Since the variability of the survey response y, tends to
increase with the size of the unit x,, it is common in skewed
populations to sample the largest x-valued units with certainty
in order to improve the efficiency of the population
estimators. The demarcation of the population into the non-
overlapping “take-all” U,= {1, ..., N,} and “sampled” groups
U,={1,...,N,} is obtained through a new scheme named the
“Transfer Algorithm”.

2) Choosing an Efficient Sample Selection Scheme

Let p(s; A) = (p,(s,), P(s,; A)) represent the complete sample
design where the sample design parameter A determines the
type of sample selection implemented in the sampled group U, .
The sample inclusion probabilities due to p,(s,; A) may be
expressed as 7, (A) = nb(x,f" "2 y bejm), ke U,. Note that the
parameter A defines a broad class of sample designs with SRS
(A =0) and pps (A = 2) as particular cases. Design optimality
results (Godambe and Joshi 1965) allow the identification of
the most optimal value for the sample design parameter A.
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3) Minimal Sample Size Determination

The third component of the overall methodology is aimed
at finding the minimal sample size required to meet the
imposed precision constraints for the estimator.

The combined procedure devised integrates these
components to allow a new globally minimal sample size and
optimal population partitioning to be determined under a
flexible range of sample selection strategies (e.g., SRS, pps,
generalized pps). Firstly, the “Transfer Algorithm” is
proposed which finds an optimal population allocation
between the take-all and sampled population groups in the
sense of minimizing the variance of the generalized
regression estimator (GREG) of the total. Desirable math-
ematical properties of this algorithm such as existence and
optimality of solution along with an equivalence result were
established in Pandher (1995). The equivalence result allows
the solution to be determined in terms of simple quantities
computable directly from the population auxiliary data.

The Transfer Algorithm in then synthesized iteratively
with the sample size determination step to find the minimal
sample size needed to satisfy the imposed precision
constraints through an iterative procedure. The combined
methodology produces a sequence of sample sizes and
population partitionings which converge to a globally optimal
solution where further reductions in the sample size are not
possible given the imposed precision constraint. An
application of the procedure is given for Ontario using
provincial data from the Local Government Finance Survey.

Lavallée and Hidiroglou (1988), Hidiroglou and Srinath
(1993) (subsequently denoted as L&H and H&S, respec-
tively), and Glasser (1962) have proposed alternative
methodologies for constructing the take-all and sampled
groups within the context of stratified SRS design. The
proposed approach differs from other methods in three
respects. Firstly, the population demarcation is obtained under
a flexible range of sample selection strategies (e.g., SRS, pps,
generalized pps). Secondly, the criterion for constructing the
population demarcation is based on minimizing the variance
of the GREG estimator of the total under the desired sample
selection strategy (Glasser and L&H base their allocation on
minimizing the within-stratum sum-of-squares x; H&S use the
total regression sum-of-squares under a regression model with
a compulsory intercept assuming SRS). Thirdly, the proposed
methodology explicitly captures the size-induced hete-
roscedasticity present in skewed survey populations which
has been ignored in other frameworks.

Lastly, it is useful to qualify the sense in which the term
“optimal” is used. Since, the redesign uses auxiliary infor-
mation from a previous cycle of the survey to estimate the
design parameters, there is a level of sub-optimality
introduced in the redesign methodology by this lag. But as a
practical matter, using the data from the most recent survey is
the best that can be done. Once the design parameters have
been estimated or are known however, the cut-offs and
sample sizes required to achieve the desired precision yield
the lowest anticipated design variance given that the estimates

are true (or close to it). It is therefore, in this sense that the
word “optimal” is used.

2. SURVEY FRAMEWORK

The model assisted survey framework is adopted for the
skewed population whose auxiliary and survey characteristics
are denoted by Cp, = {(x;, »,), ..., (Xy, Y»)}. In this framework,
underlying the class of generalized regression estimators for
the population total are regression models (Sdrndal 1992,
p. 255) exploiting the correlation between the survey variables y
and the auxiliary covariates x. Different model assumptions
on the deterministic and stochastic components of the under-
lying model lead to different regression estimators for the pop-
ulation total. For example, a ratio-form heteroscedastic model

Y= Bx, €, 2.1

with the error €~ ©, ok) and the variance structure given
by ok ka (y is the heteroscedasticity parameter) leads to
the following GREG estimator:

- “ - X l*?)
fp = ; xB+Y O 5B (2.2)
b

Sp T

where B = (X, /) (Y x,/m,) is the sample-based prob-
ability weighted estimate of the population regression para-
meter B.

Given this estimation framework, the total across both
groups ¢t = t, + t, is estimated by {= t,+ be where fa =
t,= ZU y, since all units are sampled in the take-all group and
ARb is the GREG estimator under the relevant model. The
anticipated variance of t r, (defined as the variance with
respect to both the design and the model, denoted p and g,
respectively) is expressible as

(OREAAORED D [ < 1) % @3
keU, T

Furthermore, if oi depends on the auxiliary measure x;
according to the formulation oi = cx,f (2.4), then design
optimality (Godambe and Joshi 1965) 1mphes that the optimal
sample inclusion probabilities are 7, J(Y) = xk , keU,.
Therefore, the sample design p, (sb,)» Y) in the sampled
sub- populauon deﬁmng the first order inclusion probabilities
n k(y) n(xk /ZU)CY 2) keU,, minimizes the anticipated
variance V(tRb)

In the model assisted framework used in this paper, the
auxiliary measure x, is assumed to be a scalar. As noted by a
referee, the more general case where x, is a vector could be
handled by fitting the appropriate parametric relationship
ok =[x Ty )Yand using the estimated &, in lieu of x, in
defining the mclusmn probabilities. The approach for the
multivariate x, seems intuitively sound and is mentioned here
for completeness but requires further study and investigation.
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Three methods for estimating the heteroscedasticity
parameter y from past survey data called the “Least Squares
Method”, the “Maximum Likelihood Method”, and the
“Graphical Method” are described in Appendix A of Pandher
(1995).

3. TRANSFER ALGORITHM

In this section, an iterative scheme named the “Transfer
Algorithm” is proposed to determine the optimal demarcation
between the take-all and sampled sub-populations under the
sample design p(s;A). The criterion for this construction is
based on finding a population partitioning minimizing the
estimated anticipated variance of be. An equivalence result
from Pandher (1995) is used to find an alternative and simpler
method of solution based entirely on quantities defined on the
auxiliary population data.

The proposed scheme for constructing the take-all and
sampled sub-populations, U, and U,, respectively, is based on
the following idea. Initially, place all population units in the
sampled group, 1abelling it U,fo) (the superscript [ represents
the iteration cycle). Hence, the take-all group is an empty set

U {50) ={o}. The resulting population and sample size
allocation at I = 0 is given by N,fo) =0, n‘fo) =0, N,fo) =N,
and n,fo):n0 where n, is the current sample size.

In a repeat survey setting, the variances oi in (2.3) can be
empirically modelled using the relation 0: = cx; (2.4) where
y and c are estimated from previous sample data as mentioned
before. Using the estimated version of (2.4) in (2.3) yields the
following estimator for V®(t,,; ):

Ao O O _ 1
VOl NPy = 1 (

kev® \ T *)

- 1) e G

where the largest [ x-valued units have been removed from
Ulfo). Note that A is used here to parameterize the sample
design to allow greater generality when A = v.

In the iterative algorithm, we start initially with all
population units placed in U,fo). Then for each iteration
l,0 < I<n, the largest [ + 1 x-valued unit x , , is transferred
from U;D to U, :D and the difference

AW =V A N-1-1,n-1-1)

A

-VOU A N-Ln-1) (3.2)
is computed. Negative values of A (/) mean that the transfer
of the unit corresponding to the ordered value x., , lead to
a decrease in the variance. Moreover, such transfers continue
to result in a reduction in the variance of be as long as
A()<0. In general, for any iteration [, the relationship
between the population and sample size allocations is
described by the following relations: N, ,§’> =N-I, n;l) =n-1,
and Nél): ”,5[): 1. These relations hold because the overall
population and sample sizes must remain constant
(N= Na(l)+ N,fl) and n= na(l) + nlfl)) for all iterations.
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The solution is also constrained by the condition
m,(A)<1,ke U, (I*). Let I" (1), 0 < I" < n, represent the
solution to the Transfer Algorithm. Given the discussion
above, the solution to the Transfer Algorithm under the
sample design p(s;A) may be formulated as

1"(A) = mlin{l: [n(N_[)(k) <1] and

~

A = V" P (i 0) - V2 (G 1)1 2 0,0 < I<n}. (3.3)

The optimal population allocation to the take-all group
Ua*(l *) is then given by the population units coinciding with
the I” ordered units transferred to the take-all auxiliary vector
X, = (Xy17y> Xv-1-+1)» -+ Xqv) ; correspondingly the sampled
group U, (I") consists of the units corresponding to X, =
(x(l), Xy ...,.x(N_, *-1)_) . o o .
Transferring a unit from U,” to U,” causes two opposite
effects on the variance V®(7,,;-). The reduction in the
population size (N, ISM) =N, ,fl) - 1)has the impact of decreasing
the variance, while the equivalent reduction in the sample size
(n,f“i) = n,fl) - 1) has the reverse effect of increasing
VO(tp,: ). Somewhere in this process, a critical value
I°, 0 < I" < n, exists which gives the optimal breakdown
{U;(l D, U b*(l ")}. Moreover, in Theorem 3 of Pandher
(1995), it is shown that as long as the conditions
2y = x> 0and (e 32 - x473%) 2 0,0 < 1< n, hold,
a solution to the Transfer Algorithm exists and that the system
remains stable (optimal) upon reaching *. Stability further
implies that the solution is optimal since the conditions leading
to the solution do not change in the range I < I < n . These
two properties may be more precisely defined as follows:

Existence: 317,0< 1" <n, such that V& - v > 0
and nil f 4 < 1.

Stability: If V& - V® 5 0 then V¢*V - VO 5 0
and ”g\)/—z)< 1for0<!"<l<n.

An example of the application of the Transfer Algorithm to
the LGF survey population of local municipalities in Ontario
(with N=793,n =108, y =2, and A = 1) is given in Figure 1.
The curves are plotted for [ > 8 because in the interval
0 < < 8, the first condition of (3.3), narrAlelyA[n(N_,)()») <1},
is not satisfied. The minimum value of V™ (¢,,) is achieved
atl” =57 where A(") = V¢ "V -y 0,
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Figure 1. Changes in variance of regression estimator
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Theorem 2 from the complete paper is an important result
which allows the solution to the Transfer Algorithm to be
equivalently expressed in terms of simpler quantities based on
the auxiliary data. A brief sketch of the development of this
theorem is given in the Appendix.

Theorem 2. Equivalent Solution to the Transfer
Algorithm

The solution [*(1) to the Transfer Algorithm stated in (3.3)
in terms of V® - V¥V and ng\),_,)()t) may also be equivalently
expressed as

mlin{l:n—lsR(l;y—A/Z),Osl<n},OsA<y
1"(h) = mlin{l:n—lsR(l;y/Z),Osl<n},)»=y
m;'n{l:n—lsR(l;k/Z),Osl<n},y<ks2y

where R(LY - M2) = Yo x ixley and  R(A2) =

Yol &;zlx&f  define the critical values.

This use of this theorem to find the optimal population
allocation is illustrated graphically in Figure 2 (Ontario data).
In this case, 0 < A < v, and the solution is determined by the
behaviour of the functions R(J; y - A/2) (the lower curve in
the graph) and n - . The same solution I” = 57 is obtained as
before.

4

J

40 30 120 160 200 240 280 320

. 20 a0 [ 1) 100 120
{ (unils transferred)

Figure 2. Use of R(l; y - A/2), R(l;A/2), and (n - I) to construct

optimal take-all/sampled groups (Ontario)

4. SAMPLE SIZE DETERMINATION
AND COMBINED
ITERATIVE PROCEDURE

Given a sample design p(s, 1), 0 < A < 2y, with sample size
n, the Transfer Algorithm yields an optimal construction of the
take-all and sampled sub-populations, Ua*(l ") and Ub*(l M,
respectively. Next, an expression for finding the minimal
sample size is obtained which meets the imposed precision
constraint — expressed in terms of the coefficient of variation
CV_,.. The sample determination step is then integrated with
the Transfer Algorithm to develop a combined procedure
which allows the survey designer to find the globally minimal
sample size and optimal population partitioning.

4.1 Expression for New Sample Size

Let g represent the iteration cycle for the combined proce-
dure and n, = n,,+ n,, denote the total minimal sample size
required to satisfy the precision constraint. Given the sample
design P, (s, A, l (A, nq)) current sample size n,, and the
populatlon partltlomng {U (l 9, U, q(l I}, the prec1510n
constraint for t =1+ tRb may be stated formally as

*

U2~ T
. 0y "y N = 1y = 1) @
tR

CV

Solving this inequality for n b*q gives the following expression
for the minimal sample size needed in the sampled group
U,,(1,) to meet the precision constraint:

_ XU, M) XA, - M)e
e Vo + X, 9)é

Ny, =n,- 1 (n, 4.2)

where X(1,02) = Thy xi2, X(;A - M2) = Do 2y 2,
and t may be estimated from past survey data corresponding
to the period of the auxiliary information. The total new
minimal sample size required to meet the precision constraint
is then given by

* * * * *
ng =Ny + My, =1l () +my,. 4.3)

4.2 Combined Sample Redesign Methodology

Next, note that the solution to the Transfer Algorithm r
depends on the current total sample 51ze l “(A)= !, “(A,n )
Once the new mlmmal sample sizen, is determmed the
existing partitioning { U, (l , qu(l ")} which was optimal at
n, is no longer opt1ma1 at the new rmmmal sample size n
because l "(A,n, Y1, n) if n, %n Therefore, 1ett1ng
n, =ng,a new populatlon partmomng from the Transfer
Algonthm based on lqﬂ()» nqq) given by {U, qﬂ(qu),
Ub qﬂ(qu)} is required to optimize the construction of
the take-all and sampled sub-populations. Next, applying
4.2) over U,,q+1(lq+1) gives a new minimal sample size
nqﬁl q+1(nq+1)+ n, g1 required to achieve the desired
precision CV_;,. Proceeding in this fashion, the combined
scheme produces a sequence of population partitionings,
sample sizes, and sample allocations
A" Gun ), (ny, =1, =n, - 1),

q q q

(N =1 Ny =N = 1), (ny =1,,m)), ¢ =0,1,... (4.4)
with n_ =n =n, +n, and the initial value n, (current
q*1 "q " ag q 0
survey sample size). The combined procedure is repeated
until further reductions in the minimal sample size can no
longer be achieved. This leads to the stopping rule

q*:min{q:nq*ﬂ_
q

nq* > O} (45)
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The optimality of the combined procedure can be
established using Theorem 2 and is omitted here due to space
(see Pandher 1995). The main result is that the combined
procedure converges to a globally optimal solution along the
path defined by (4.4) to a point where further reductions in
the sample size are not possible (by reconstructing Ua* and
U, b*) given the imposed precision constraint.

5. APPLICATION

The combined sample design procedure described above
is now applied to the redesign of the Local Government
Finance Survey in the province of Ontario. The survey
response y in this application is the actual expenditures
reported for sampled local government units for Ontario in
1989. The actual estimates are prepared 30 months after the
end of the survey year from financial statements submitted by
the local government units to the Department of Municipal
Affairs (provincial). Population counts for the local
government units from the nearest census (1991) are used as
the auxiliary variable x. The population of local-level
municipalities for Ontario consists of a total of 793 units of
which a sample of 108 units is currently taken.

The results of applying the combined methodology to
Ontario LGFS data are reported in Table 1. The level of
desired precision CV ;, was set at 2% for the total regression
estimator t =t,+ tR »- Using the methods of Pandher (1995),
the best value for the heteroscedasticity parameter y in
Ontario was determined to be § = 2; the corresponding pro-
portionality constant was estimated to be ¢ =.0825. The near
optimal sample design defined by A =9 (p(s; ¥)) was used.

Table 1

Application of Combined Methodology to LGF Survey Data
(Ontario, 1989)

* * *

Iteration (g) n, (A, n) Moy My, n,
0 108 39 39 18 57
1 57 i6 16 34 50
2 50 12 12 38 50

For Ontario the combined scheme stopped at iteration
g = 2. The globally optimal population partitioning between
the take-all and sampled groups is Na*: 16 and Nb*: 777.
The new minimal total sample size is n” = 50 with allocations
n, “= 16 and nb* 34. A total sample size reduction of
Hy - n, =108 - 50 =58 is achxeved at the desired CV of 2%
for the regression estimator t =t + tRb

6. CONCLUDING REMARKS

This paper provides a comprehensive methodology for
identifying and implementing an efficient sample design for
recurrent surveys of skewed populations. The combined
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procedure integrates the solution to the following three
problems: i) identifying an efficient sample selection scheme,
ii) constructing an efficient demarcation between the take-
all and sampled population groups at a given sample size, and
iii) determining the minimal sample size required to meet the
precision constraint(s).

The equivalence result to the Transfer Algorithm (Pandher
1995) was used to create the take-all and sampled groups. The
first two components were then combined with a sample size
determination step through an iterative procedure. Under the
stoping rule, the combined iterative procedure converges to a
globally minimal sample size and optimal population
partitioning. Results from the application of the proposed
sample redesign methodology to the Local Government
Survey in Ontario were reported. A 52% reduction in the total
sample size was achieved for the regression estimator of the
total (fR =1+ be) at the desired precision of CV = 2%.
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APPENDIX

A brief sketch of the development behind Theorem 2
(Equivalence Result) is given here; for technical details see
Pandher (1995). The same paper also establishes the desirable
mathematical properties of the Transfer Algorithm such as
existence and optimality of solution as well as the optimality
of the combined procedure.

Using the expression for the variance of VO(f,,; ) given
in (3.1), the difference V*? - V® may be expressed as

P po_ __AD B (A1)
n-)(n-1-1)
where
A= Z 5ot - (- Dxps,
and
M2 -
B()= z xl R

The condition B(l) < 0 may also be expressed as

- I>R(l;y - M2) where R(l;0) = Y3 lx(k)/x(,v _py- Similarly,
the condition A(!) > 0 corresponds to n - [ < R(I; A/2). All
possible states of the system defined by the Transfer
Algorithm are summarized in Table A.1.
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Table A.1
Outcomes for VD - VP <« and V¢V - v
inTermsof n® =n -1

veED _yo <o

Behavi fA and B
cehaviour of A an Conditionon n® =n - |

A(D>0 RU;y - M2)<n-1<R(;M2)
B()<0 (T1)

AD<O RU;M2)<n-1<R(;y- AM2)
B()>0 (T.3)

y&eb _y® s 0
Conditionon n® =n -1

A()>0 n- 1< min{R(;M2), Ry - M2)}
B() =0 (T2)

AD <0 n-1>max{R(;A2), RU;y - M2)}
B() <0 (T.4)

The first column describes the behaviour of A(l) and B(J)
leading to the outcome V¢V - V@ <0 and V¢V - v 0,
respectively. The second column describes the equivalent
condition in terms of n¥ =n - I, R(l; vy - A/2), and R(I; A/2)
corresponding to VO -v¢ D<o and VvP-vED,; 0,
respectively. An important condition required for the solution
to the Transfer Algorithm [ *(1) is that Ty l)()») <1 hold. It
is easy to verify that n(N_l)()») <1+ A(l)>0. In terms of the
description for the Transfer Algorithm given in Table A.1,
this condition means that the solution can occur only when
both A(J) > 0 and B(I) > O or, equivalently, when n ~ [
satisfies condition (T.2).

Table A.1 completely enumerates all possible states of the
system defined by the Transfer Algorithm. The correspon-
dence between the internal cell quantities (computable
directly from the auxiliary data and estimated parameters) and
the margins (A(), B(l), V%"V - V?) represents a tautology

which leads directly to Theorem 2 (Equivalence Result). The
behaviour of the system described in the table also depends
on the sample design p(s; A) employed. The three relevant
cases are:

a) 0<A<y—I[R(LY - A2) <R M),
b) A=y = [R(;y - M2) =R(; M2)], and
c) Yy<A=[R(; v - A2) >R, A/2)].

In case a) the system starts (I = 0) in state (T.4), moves to
(T.1) and then finally rests in state (T.2); state (T.3) is
infeasible here. The solution to the Transfer Algorithm I*(1)
is given by the smallest / leading the system to move into state
(T.2). In case b), the system starts in state (T.4) and moves to
(T.2); (T.1) and (T.3) do not apply. Finally, in case c), the
transition path is from (T.4) to (T.3) to (T.2); here (T.1) is
invalid.
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