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Applications of Spatial Smoothing to Survey Data

ANN COWLING, RAY CHAMBERS, RAY LINDSAY and BHAMATHY PARAMESWARAN'

ABSTRACT

In this paper we present two applications of spatial smoothing using data collected in a large scale economic survey of
Australian farms: one a small area and the other a large area application. In the small area application, we describe how the
sample weights can be spatially smoothed in order to improve small area estimates. In the large area application, we give
a method for spatially smoothing and then mapping the survey data. The standard method of weighting in the survey is a
variant of linear regression weighting. For the small area application, this method is modified by introducing a constraint
on the spatial variability of the weights. Results from a small scale empirical study indicate that this decreases the variance
of the small area estimators as expected, but at the cost of an increase in their bias. In the large area application, we describe
the nonparametric regression method used to spatially smooth the survey data as well as techniques for mapping this
smoothed data using a Geographic Information System (GIS) package. We also present the results of a simulation study
conducted to determine the most appropriate method and level of smoothing for use in the maps.
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1. INTRODUCTION

The Australian Bureau of Agricultural and Resource
Economics (ABARE) is the applied economic research
organisation attached to the Department of Primary Industries
and Energy. Amongst its information gathering activities,
ABARE conducts annual surveys of selected Australian
agricultural industries which provide a broad range of
information on the economic and physical characteristics of
farm business units.

The largest survey is the Australian Agricultural and
Grazing Industries Survey (AAGIS), which covers farm
establishments with an estimated value of agricultural opera-
tions (EVAO) of $A22,500 or more in the last agricultural
census that are classified to one of the broadacre industries —
that is, cereal crop production, beef cattle production, and
sheep and wool production. For the last two years, around
1650 farms have been included in the AAGIS sample, which
is stratified by geographic area, industry, and EVAO. The
sample farms are located throughout Australia with a
non-uniform density. The latitude and longitude of the sample
farms (defined in terms of the location of the farm “gate”) is
recorded as a regular part of the collection. This knowledge
of the location of the surveyed farms enables the spatial
smoothing techniques described in this paper to be used.

Traditionally, AAGIS estimates have been presented only
as tables of numbers showing averages for all Australia, each
state, and industries within states. However, the concern of
rural industry and government about the combined impact of
drought in some areas of Australia and the decline in certain
commodity prices has highlighted the need for timely and
detailed information on regional trends in farm performance.

In particular, there has been a perceived need for information
which portrays the spatial distribution of farm performance,
reflecting actual variability in climate and production across
Australia.

A highly effective way of presenting information on a
spatial basis is to map the regional variation in economic
performance of the surveyed farms. We use a nonparametric
regression method to spatially smooth the farm level survey
data, which is then presented in the form of a map. Recent
improvement in computing power and the availability of high
quality and affordable GIS packages have made this form of
presentation a practical alternative to the traditional tabular
method of presenting survey results.

Maps have been found to be a successful form of
exposition for a number of reasons. First, estimates presented
in a map are easily interpreted; when presented with too many
tables it is very easy for a client to overlook local variations
or be “swamped” by numbers. Next, maps make it easy for a
client to relate the geographic variation in one variable with
that of another. Finally, a colour map has great visual impact.

This demand for information on a spatial basis has resulted
in an increased emphasis on small area estimates. One method
of small area estimation (which originated naturally from
smoothing survey data for presentation in maps) is to spatially
smooth the sample weights. This reduces the variability of the
small area estimates.

In Section 2, we examine a method of integrating
geographical location into ABARE’s survey weighting
methods in order to make our small area estimates less
variable. It is applied to sub-regional estimation within two
Agricultural Regions in Section 3. In Section 4, we describe
how kernel regression techniques can be used to produce
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maps which give a good indication of the local geographic
variation of a surveyed variable. Two methods of mapping the
smoothed data are discussed, both of which use ARC/INFO,
a GIS software package. The results of a simulation study
comparing various kernel regression methodologies for use in
ABARE’s maps are summarised in the Appendix.

2. SMALL AREA ESTIMATION BY
SPATIALLY SMOOTHING
SAMPLE WEIGHTS

The standard method used to compute sample weights at
ABARE is described in Bardsley and Chambers (1984). It
rests on the assumption that at some appropriate level of
aggregation (say, Agricultural Region) the variable Y follows
a linear model of the form

Y=Xp+V (2.1)

where Y is the N-vector of values of Y at this level of aggrega-
tion, X is a N X p matrix of values of a set of p benchmark
variables, 3 is an unknown p-vector of regression coefficients
and V is a N-vector of errors satisfying E(V) = 0 and
var(V) = 0°Q, where ¢ is an unknown scale parameter and
Qis aknown N x N diagonal matrix having as its elements the
measure of size of each farm, EVAO, introduced in the
previous section.

Since this model is a multipurpose model, with the same
set of benchmark variables used for each survey variable, the
column dimension, p, of X is usually large. Typically, X
consists of between 3 and 7 variables related to the main
agricultural commodities produced by farms in the region
together with dummy variables indicating industry strata
within the region. Best linear unbiased estimation of the
population total of a survey variable on the basis of such an
overspecified model typically results in weights that are
highly variable and often negative.

As discussed in Bardsley and Chambers (1984), negative
weights are highly undesirable in a multi-purpose survey like
AAGIS. In particular, such weights can lead to negative
estimates of intrinsically positive quantities. This problem has
been pointed out in the literature a number of times (see for
example, Deville and Sérndal 1992; Bankier, Rathwell and
Majkowski 1992; and Fuller, Loughin and Baker 1994). The
method used at ABARE to control for strictly positive sample
weights is based on the ridge-type modification to the best
linear unbiased weights suggested by Bardsley and Chambers
(1984).

Given a sample of size n from a particular region, the ridge
weighting approach determines the sample weight vector w
by minimising the mean squared error criterion

Q=A"'BTCB +(w - Do - 1). (2.2)

Here B=T-x™w is a p-vector of benchmark biases,
corresponding to the differences between the (known)

population totals T of the p benchmark variables making up
X and the corresponding survey estimates x“w of these
totals, C isa p x p diagonal matrix of non-negative relative
“costs” associated with these biases, w is the sample
component of €, x is the sample component of X, 1is a
n-vector of ones and A is a scaling constant which is chosen
by the survey analyst. The value of w minimising Q is

w=1+wx(AC" +xTw %) (T - x"). 2.3

The scale constant A is called the ridge parameter
associated with these weights. As A increases from zero, the
sample weights in w move away from their best linear
unbiased values under the model (2.1) (namely, their values
at A = 0) and become less and less variable. That is, as A
increases, the variances of the survey estimates based on
these weights decrease. On the other hand, as A increases,
these estimates become more biased under (2.1), so the
components of B move away from their zero values at A =0
(where the sample weights define unbiased estimates under
(2.1)). These components become larger and larger (in
absolute terms) as A increases.

The survey analyst makes a tradeoff between these two
competing sources of “error”’ by choosing the smallest value
of A such that the sample weights in w stabilise at strictly
positive values as close as possible to their best linear
unbiased values under (2.1). This ensures that the components
of B are as small as possible subject to this stability
requirement. At ABARE, the value of A is chosen so that the
sample weights are at least unity.

Recent small area estimation research in ABARE has
focussed on a method of modifying this ridge weighting
procedure to create sample weights that are less spatially
variable. We achieve this by modifying the mean squared
error criterion @ in (2.2) to include a constraint on spatial
variability, while continuing to regard the elements of the
variable Y as being independent.

Let K be an n x n matrix reflecting Euclidean distance
between sample farms, such that K is symmetric and
non-negative, K, =1 for all i and K,.j 1 Q as the distance
between farm i and farm j increases. Put # = w - 1. The aim
is then to choose u so that when K, is large, the difference
between u ;and u i is small. That is, we seek to minimise a
quantity of the form

Y Y K, -u)=2®)K1-22"Ku  (2.4)

ies jes

where (#®), = (u,)*. An appropriate modification to the
mean squared error criterion (2.2) leads to minimisation of

Q0 =A"'B'CB + u"wu + (u® K1 - u"Ku.
Minimising with respect to u leads to

u=n"x(AC" +xTnx) (T -x"1)
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provided n! exists, where

n =diag(K1) -K + w. (2.5)

Clearly, then,
w=1+n"x(AC" +x™lx) (T -x"1). (2.6)

It can be seen that the modified mean squared error
criterion Q* equally weights the spatial smoothness criterion
given in (2.4), and the term corresponding to the variance of
the prediction error of the sample estimates, uTou. As the
scale of K was arbitrarily specified, the comparative
weighting of the two criteria must be modified by “scaling
up”’ the spatial matrix {diag(K1) - K} by a factor ¢ in order
to make it comparable in size with the heteroscedasticity
matrix w, and by adding a parameter o, 0 < o < 1, to the
expression for 1 in equation (2.5), so that

n=(1-a)@{diag(K1) - K} + aw.

These spatially smoothed sample weights can be derived
in a second way, providing deeper insight into how they
should be interpreted. This follows from noting that

2
Oyt X; K, -K,, -K,,
2
| Ky oty Ky, - -K,,
n= m=2
2
_Knl _KnZ On * E Knm

can be expressed as =S Jl S, where S is a diagonal matrix
with S, =(o’ +¥, K, ) ,and R is a correlation matrix
with

1 if i=j

R, = R
y _Ktj{(of +Z Kim)(aj'2+z ij)} if L#J

m#i m#j

Thus the spatially smoothed sample weights can alter-
natively be derived as ridge-type regression weights based on
the assumption that the variable ¥ follows a linear model of
the form (2.1), with V redefined as satisfying E(V) = 0,
var(Y,)=o; +Y, K, and cov(¥,,¥)) = -K, for i #}.
The usual ridge weighting procedure then leads directly to
(2.6) with 1 defined by (2.5). Note that under this implied
model neighbouring farms are negatively correlated.

This second method of derivation shows clearly that the
introduction of spatial smoothness for the survey weights is
at odds with standard concepts of statistical efficiency as far
as estimation at the aggregate level is concerned. Since the
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spatial correlation between neighbouring farms will typically
be positive, efficient survey estimation at the aggregate level
will involve weighting based on (2.3) with w replaced by a
non-diagonal variance/covariance matrix reflecting this
positive spatial correlation. These are not the weights that
result when one imposes as spatial similarity constraint.
Consequently, one could expect that such “large area
efficient” weights would tend to be more dissimilar for
neighbouring farms than they would be for farms that are far
apart. That is, there is a price to pay in weighting — if less
variable aggregate level estimates are required, then this tends
to lead to more variable small area estimates. Conversely, if
(2.6) is adopted as the method of weighting because of its
desirable small area properties, then it can be expected that
aggregate level estimates obtained by summing these small
area estimates will be less efficient.

The spatially smooth sample weights (2.6) have been
implemented using

Kij=exp(—d||zi‘zj“), (27)

where |z, -z . | is the distance between farm i and farmj and
d is a constant controlling the radius of circle around the i-th
farm within which spatial smoothing is applied. The smaller
the value of d, the larger the radius of spatial smoothing. At
present, the “scaling up” constant ¢ is computed as the ratio
of the determinants of the K and w matrices, raised to the
power n'2. An empirical evaluation of this method is
described in the following Section.

3. ANAPPLICATION OF SPATIALLY
SMOOTHED SAMPLE
WEIGHTING

Initial results from an evaluation of the first method of
spatially smoothed ridge weighting described in the previous
section are set out in Tables 1 to 3. These results are for two
Agricultural Regions. The first, Region A, is in New South
Wales. In spatial terms, this region is relatively homogeneous,
being located in the southwestern corner of the state. The
principal agricultural activities are wheat and rice production
and wool and lamb production. The second, Region B, is in
Western Australia. This region is more spatially hetero-
geneous, ranging from established cropping and wool pro-
duction farms in the central west of the state to much larger
livestock and cropping farms on marginal farming land in the
south east of the state. The principal agricultural activities are
wheat and legumes production and wool production.

Six variations of the spatially smoothed ridge weights (2.6)
with K given by (2.7) were used in the evaluation, defined by
values of d = 0.05 (weak spatial effects) and d = 0.005 (strong
spatial effects), and values of o = 0.9 (most emphasis on the
standard ridge weights), ¢ = 0.5 (equal emphasis on standard
ridge weights and spatially smooth weights) and o = 0.1 (most
emphasis on spatially smooth weights).
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Table 1
Values (in relative percentage terms) of the biases associated
with estimation of the benchmark variables corresponding to
the principal agricultural commodities produced in Region A
(sample size n = 101 farms) and Region B
(sample size n = 85 farms) using the standard ridge weights (2.3)
and the spatially smooth ridge weights (2.6)

Wheat Sheep Rice
Region A
Standard ridge weights -0.50 5.0 13.0
Spatially smoothed ridge weights
d=0.05 =09 -0.50 4.6 11.9
a=05 -0.46 47 12.4
a=0.1 0.07 6.2 17.4
d =0.005 a=0.9 -0.40 4.9 12.7
=05 0.80 8.9 28.0
a=0.1 9.20 25.0 60.0
Wheat Sheep Legumes
Region B
Standard ridge weights 0.43 -1.25 1.49
Spatially smoothed ridge weights
d=0.05 =09 0.42 -1.16 137
=05 0.44 -1.14 1.40
a=0.1 0.69 -1.25 2.53
d =0.005 =09 0.50 -1.20 1.68
=05 1.51 1.14 9.73
a=0.1 26.57 19.61 45.46

Table 1 shows the relative biases associated with esti-
mation of the population totals of the main commodity related
benchmarks for each region under these different weighting
systems, as well as the corresponding biases associated with
the standard ridge weights. The increase in these biases as the
amount of spatial smoothing in the weights is increased is
evident. Since these production benchmarks are positively
correlated with most of the economic variables measured in
the survey, these benchmark biases can be expected to be
translated into a corresponding upward bias in survey
estimates based on these weights.

Figures 1 to 4 show the difference between the smoothed
weights and the standard ridge weights for the two “extreme”
combinations of « and d in both regions changes as the size
(measured in terms of the logarithm of the estimated value of
agricultural operations, or log(EVAO)) of the sample farms
changes.

Observe that for relatively strong spatial smoothing
(Figures 1 and 3), the effect of smoothing is to increase the
weights of most of the larger sample farms, while dramat-
ically decreasing the weights of a small number of smaller
sample farms. Weak spatial smoothing (Figures 2 and 4)
changes the weights much less, and there is little relationship
between the size of the farm and the direction of weight
change. Consequently, an upward shift in survey estimates
for these regions could be expected with the introduction of
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Figure 1. Difference between smoothed weight with & = 0.1 and
d = 0.005 and standard ridge weight, Region A
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Figure 2. Difference between smoothed weight with ¢ = 0.9 and
d = 0.05 and standard ridge weight, Region A
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Figure 3. Difference between smoothed weight with ¢ = 0.1 and
d =0.005 and standard ridge weight, Region B
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Figure 4. Difference between smoothed weight with ¢ = 0.9 and
d = 0.05 and standard ridge weight, Region B

strongly spatially smoothed sample weights. Given the
increased positive biases indicated in Table 1, this upward
shift would be expected to be essentially due to the intro-
duction of a positive bias in these estimates.

Is this increased bias compensated for by a lower standard
error? To evaluate this question, survey estimates and
estimated standard errors were computed for a key financial
variable, total cash costs. These estimates are set out in
Table 2 (Region A) and Table 3 (Region B). Estimates are
provided both for each region and for small areas within each
region, denoted SR-i in the table, with the index i ranging
between 1 and 6 for Region A and between 1 and 7 for
Region B.

Table 2
Estimates (with corresponding estimated standard errors in
parentheses) of the average value of ¥ = total cash costs
in subregions SR-1 to SR-6, making up Region A
(sample size n = 101 farms), using the standard ridge
weights (2.3) and the spatially smooth ridge weights (2.6)

Spatially smoothed ridge weights

in subregions SR-1 to SR-7, making up Region B
(sample size n = 85 farms), using the standard ridge

Table 3
Estimates (with corresponding estimated standard errors in
parentheses) of the average value of Y = total cash costs
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weights (2.3) and the spatially smooth ridge weights (2.6)

Standard
weights

Spatially smoothed weights

d=0.05

d =0.005

=09

=05

a=0.1

a=09

a=0.5

a=0.1

SR-7

Region B

183,194
(64,851)

261,952
(70,989)

113,499
(30,304)

242,220
(26,160)

134,524
(32,420)

176,540
(60,377)

205,287
(44,137)

176,283
(19,039)

183,262
(64,325)

261,487
(70,601)

113,441
(30,289)

242,182
(25,671)

134,970
(32,528)

176,977
(60,703)

205,644
(44,008)

176,342
(18,869)

183,528
(64,051)

261,119
(70,502)

113,742
(30,255)

242,208
(26,159)

135,700
(32,432)

175,708
(59,214)

205,433
(43,963)

176,397
(18,874)

186,151
(64,967)

261,182
(73,131)

116,847
(30,731)

242,221
(26,160)

139,122
(30,607)

163,241
(46,361)

202,039
(44,044)

176,822
(18,213)

184,287
(64,132)

261,938
(70,723)

114,631
(30,377)

242,163
(26,154)

134,734
(32,202)

172,076
(55,925)

204,519
(43,972)

176,294
(18,511)

195,138
(69,859)

276,912
(79,751)

125,525
(31,507)

242,439
(24,244)

131,448
(27,867)

148,434
(36,218)

194,998
(45,434)

179,998
(18,540)

257,652
(59,518)

331,805
(67,356)

157,007
(32,500)

250,871
(24,836)

148,629
(27,942)

171,856
(39,527)

219,959
(51,690)

216,445
(17,099)

Standard
weights

d=0.05

d=0.005

a=0.1

a=0.9

a=0.5

a=0.1

SR-1

SR-2

SR-3

SR-6

Region A

100,618
(24,551)

115,320
(26,754)

167,524
(28,479)

182,940
(106,471)

132,050
(25,089)

132,493
(44,385)

134,114
(15,691)

100,453
(24,511)

115,417
(26,661)

167,453
(28,467)

180,317
(105,485)

132,083
(25,096)

132,184
(44,546)

133,807
(15,655)

101,297
(23,906)

116,002
(26,448)

167,486
(28,473)

177,838
(101,012)

132,389
(25,154)

133,204
(44,757)

134,141
(15,426)

107,263
(20,487)

120,362
(25,637)

168,257
(28,426)

163,556
(74,418)

134,786
(25,475)

141,623
(46,736)

137,080
(13,845)

102,059
(23,474)

116,917
(26,423)

167,709
(28,175)

176,257
(97.823)

132,490
(25,173)

133,763
(45,078)

134,506
(15,199)

112,635
(18,923

126,165
(25,990)

170,781
(26,471)

174,077
(69,109)

136,369
(24,410)

147,652
(46,953)

142,040
(13,494)

135,419
(18,011)

153,707
(27,975)

187,683
(24,211)

192,296
(43,651)

151,046
(23,110)

192,781
(53,105)

166,432
(12,815)

It is seen that, in general, the answer to the question posed
above is yes. The estimated standard errors of the survey
estimates decrease as the degree of spatial smoothness of the
weights increases (from left to right across the tables).
However, as expected, the estimates themselves also increase
in size, becoming more and more positively biased. Overall,
the gain due to reduced standard error seems to cancel out the
increase in bias, except for the heaviest spatial smoothing
(o = 0.1, d = 0.005). In this latter case the increase in bias
outweighs the reduction in standard error. The choice & = 0.1
and d = 0.05 seems a good compromise, leading to reasonable
(but not spectacular) bias-variance tradeoffs in Region A, and
little change in the estimates in Region B.

4. ESTIMATION AND MAPPING
OF LOCAL AVERAGES

A survey data map is a two-dimensional surface which
estimates the spatial mean function of the survey variable in
the population. In practice, such a map is obtained by
applying a nonparametric regression technique to the
weighted unit record data obtained in the survey.

At ABARE, we use kernel regression (a nonparametric
technique) to produce maps which show the spatial varia-
tion of the estimated spatial mean function surfaces of key
survey variables. These surfaces are obtained by replacing
the observed sample values of these variables by locally
weighted averages. In addition, for each local average map, a
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corresponding map is produced which shows an estimate of
the local variability of the variable of interest. We give below
a brief outline of the technique: for clarity of exposition we
deal only with the univariate case. See Ruppert and Wand
(1994), Wand and Jones (1995, p140), and the references
therein, for discussion of the multivariate case.

We assume that the finite population is generated as an iid
sample {(Z,,Y,),i=1, .., N} froma super population where
Y, is the value of a response variable Y observed at location Z,.
We suppose that the observations follow the model

Y,=m(Z) +€, i=1,.,N

where m(z) = E(Y| Z = z) is the conditional mean of Y given
Z, and the €, are independent random variables with zero
mean and variance 02(z) . Suppose that the error terms €, are
independent of the process by which the sample is selected,
so that the sample values {(Z,,Y),i=1,..,n} follow the
same model, and write f for the density of Z,, ..., Z,, .

A natural choice for the local average at any point z is then
the mean of the values of the response variable for those
observations with locations close to z, since observations
from points far away will tend to have very different mean
values. The local average is defined as a weighted mean

A@=n"Y W)Y,
i=1

where the weights {W,(z)} depend on the locations {Z;} of
the sample observations, and 7i(z) estimates m(z).

The weights are constructed using a function K known
as the kernel, which is continuous, bounded, symmetric
and integrates to one. Various weight sequences have
been proposed: the traditional Nadaraya-Watson weights
(Nadaraya 1964 and Watson 1964) are

W.(2)=h'K{( wZ,~)/h}/ (nh)fli K{(z-Z)/h}|,
j=1

where £ is a scale factor known as the bandwidth. The kernel
function K gives an observation close to z relatively more
influence on the local average at this location than it gives to
an observation further from z.

Where observations are sparse, a fixed-bandwidth window
may contain few points and the corresponding estimator may
therefore have a very high variance. This may be avoided
by using the k-nearest-neighbour method in which a different
bandwidth is used at each estimation point z. The band-
width at z is the distance to the k-th nearest neighbour of z, so
that there are always exactly & points in the bandwidth
window. Let h, be the distance between z and its k-th

nearest neighbour. The k-nearest-neighbour Nadaraya-Watson
weights are

W, @ =h K{@-Z)Ih) / [(nhk)“ Y K{z-Z)/h}|.
j=1

We show in Table 4 the asymptotic mean squared error
(MSE) properties of the usual (fixed-bandwidth) and
k-nearest-neighbour estimators as given in Hirdle (1990,
p. 46).

Table 4
Asymptotic bias and variance of Nadaraya-Watson estimators;
ck = [ K¥(u)du, dy = | W’ K(u)du

Fixed-bandwidth k-nearest-neighbour

Bias p2 ' 2m )G ( 5]2 (m"f < 2m )
2f (0 K n 873(x) K
Variance o’ (v) ¢ 20°(x) ¢
nhf(x) ¥ % K

Clearly, the bias of the estimated regression function can
be reduced by using a smaller bandwidth A (number of
nearest-neighbours k), but this leads to a noisy estimate #
with local detail masking global features of the curve (s has
high variance). If h(k) is large, i is smoother but the global
features are dampened (/% has high bias and low variance).
The bias, then, can only be reduced at the expense of variance
and vice versa, with the bandwidth A determining the ratio of
(squared) bias to variance.

In reality, the survey design and the spatial distribution of
a survey variable Y will not be independent, so simple local
averages for Y derived from the sample data will be
misleading as estimates of the local population means of this
variable. To overcome this problem the kernel weights are
multiplied by the survey weights to get the final smoothing
weights used for calculating the local average. This is
equivalent to estimating the local population mean m(z) of Y
under the assumption that it is locally linear in the same
benchmark variables as those used to model the overall
population mean of Y.

A wide array of alternative kernel smoothing procedures
have been discussed in the literature. As well as various
sequences of smoothing weights {W,}, there are different
types of bandwidths, and several automatic bandwidth selec-
tion methods. A simulation study was therefore conducted to
determine the most appropriate kernel methodology for use in
ABARE’s maps. This is described in the Appendix.

Uncertainty about the estimate of the spatial mean derived
via kernel-based spatial smoothing can be represented by
mapping the local variability of the variable of interest. Areas
of high local variability correspond to areas where the map of
the mean function is less precise and vice versa for areas of
low local variability.

The usual method of determining confidence regions for
a kernel curve estimate is the bootstrap; see Hirdle (1990),
Hall (1992), and references therein. However, for com-
putational efficiency, we use the expectiles (Newey and
Powell 1987) of the spatial distribution of Y to describe this
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Key:

[ no data

E} less than -27000
-27000 — -25000
[l -25000 — -24000
B -24000 — -21000
. greater than -21000

Figure 5. Polygon map of farm business profit in 1991-1992, all
broadacre farm ($)

Key:

[ no data

less than 29000
I 29000 — 32000
32000 — 42500
[l 22500 — 46500
Il greater than 46500

Figure 6. Polygon map of interexpectile range of farm business
profit in 1991-1992, all broadacre farms ($)

local variability. An expectile bears the same relationship to
the mean as the corresponding quantile does to the median. In
particular, the difference between the 75th and 25th expectiles
of a distribution is a measure of the spread of the distribution
in the same way as the interquartile range is a measure of this
spread. The smoothing program contains a module for non-
parametric M-quantile regression (Breckling and Chambers
1988) which is used to fit a smooth surface to the expectiles
of the Y-distribution at any location. The difference between
the smoothed 75th and 25th expectile surfaces (the smooth
expectile analogue of the interquartile range) is then mapped
to show areas of high and low variability in the data.

Not surprisingly, this smooth interexpectile range tends to
be highest in areas where the farms are sparsely located and
the farm-to-farm variability in Y is therefore highest. The
interexpectile range map corresponding to Figure 5 is shown
in Figure 6. Note that these smoothed interexpectile range
maps provide similar information to confidence bands at any
particular point on the map. However, they do not have the
same repeated sampling interpretation as confidence intervals,
and hence should be treated as guides to, rather than measures
of, the uncertainty associated with a particular map.
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For confidentiality reasons, care must be taken when
mapping the smoothed data for publication to ensure that the
locations of the surveyed farms are not revealed. Another
requirement is output quality compatible with desktop
publication packages. Two procedures for generating the final
maps that satisfy these requirements have been developed
using ARC/INFO.

In the first method, a Thiessen polygon is constructed
around each farm. The polygon defines the area closer to that
farm than to any other farm. The farm location is not in the
centre of its polygon, and the polygon shape does not
resemble the shape of the farm, so the polygons conceal the
locations of the survey farms, as shown in Figure 7. The
whole of each polygon is coloured according to the smoothed
value of Y at the farm location in that polygon. Usually ten
colours are used in each map and the estimated population
deciles of the smoothed data are used as boundaries for the
colour area. The maps shown in this paper are black-and-
white analogues of these colour maps.

Figure 7. Thiessen polygons constructed around selected ABARE
survey farms. Farm location is shown as a small square
within each polygon

In the second method, smoothed values on a dense
rectangular grid are used in place of smoothed values at the
farm locations, and a further minor interpolation of the data
is carried out in ARC/INFO. A continuous 3-dimensional
surface which passes through the smoothed values at the grid
points is built in two steps. As a first approximation, a faceted
surface of triangles obtained by Delauney triangulation is
constructed, and then a bivariate fifth degree polynomial is
fitted within each triangle using Akima’s algorithm (Akima
1978). The resulting continuous surface is then contoured
using the estimated population deciles. Figure 8 is an example.

In this second method of presentation, the locations of the
survey farms are not used in any way, thereby completely
concealing the location of each survey farm. It also gives
smooth contours, and the result is not as patchy as the
polygon based map. Moreover, it is preferred by ABARE’s
graphics staff because it reduces the number of areas to be
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Key:

[ no data

less than -27000
B -27000 — -25000
B -25000 — -24000
M -24000 - -21000
I oreater than -21000

Figure 8. Contour map of farm business profit in 1991-1992, all
broadacre farms ($)

separately coloured and has lower storage requirements,
enabling the maps to be more readily manipulated in desktop
publishing packages. Its disadvantage is that it uses more
computing time in the ARC/INFO stage.

Since the above procedures interpolate across all of
Australia, including areas where there is no agricultural
activity, the final stage of the map production in ARC/INFO
is the “blanking out” of those areas of Australia where there
are few or no farms involved in the particular broadacre
industry represented by the map. As Figure 9 shows, different
areas are blanked out for different industries.

Key:

[ no data

less than -180
-180 — 0
Eo-135

W 135 - 250

I greater than 250

Figure 9. Polygon map showing expected change in wool
production, 1991-92 to 1992-93, farms with 100 or more
sheep in 1991-92 (kg)

5. DISCUSSION

In this paper we have demonstrated that when survey data
has a spatial dimension, as in the case of the AAGIS, spatial
smoothness concepts may be useful to the analyst. The
concept can be used to modify survey weights to ensure less
variable small area survey estimates. It may also be used to
smooth the data along spatial dimensions before mapping the
spatial mean function. )

Because we describe mapping in this paper, we have only
considered smoothing along spatial dimensions. However, it
is clearly possible to use the same techniques to smooth along
other dimensions. Thus, if there is reason to expect the
presence of strong serial correlation when the underlying
population is ordered according to some variable, then one
can consider applying the methods described in this paper to
mapping the “change” in the survey variables relative to the
change in this variable. In doing so, it should be noted that
such “maps” are nothing more than nonparametric estimates
of the conditional means of the survey variables given this
“ordering” or “smoothing” variable. The analyst should, how-
ever, remember the “curse of dimensionality”: the effective
sample size drops sharply with each additional smoothing
variable used in these nonparametric techniques.

Finally, in mapping the survey data, we have used kernel-
based estimation techniques. However, spline smoothing, or
even parametric methods could also be used. We regard the
choice of smoothing technology as somewhat subjective and
purpose specific, as there are no definitive objective reasons
for preferring one method over another.
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APPENDIX

In the last few years a number of optimality properties
have been established for the locally-linear kernel weights
(see for example Wand and Jones (1995) and references
therein). We therefore compared Nadaraya-Watson (NW) and
locally-linear (LL) weight sequences using fixed (FBW) and
k-nearest-neighbour (NN) bandwidths with each weight
sequence. For each of these combinations, we selected the
bandwidth using least-squares cross-validation (CV), and an
ad hoc method (detailed in the last paragraph of this section)
aimed at reducing the speckledness of a map (SF).

Two criteria were used to evaluate the performance of each
methodology. The first, MSE, is the obvious statistical
criterion for assessing a biased estimator. The second
criterion is more ABARE specific. As estimates are produced
both in tables (by State) and in maps, the impression of the
state average given by the map should be close to the
tabulated value. We therefore used a weighted sum of the
squared differences between the state averages of the raw and
smoothed survey data (SB?). This measure was also calculated
at regional rather than state level (RB? there are between one
and nine regions in each state).

Data were generated at the survey farm locations using
three smooth functions with varying degrees of smoothness
(measured by [m"”) and normal mixture errors. For example,
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m,(z) = 6.25 x 10* x cos
2.25

3

[ 7, +275
1.75

where z, and z, are the longitude and latitude of the point z.
The functions m(z) were scaled to have the same range as the
smoothed values of a key survey variable, and the errors were
scaled to have the same range as the residuals of the same
variable after smoothing. Large variances were generated at
locations with high residuals, and small variances at locations
with low residuals. The simulation results based on the
smooth function are given in Table 5.

Using MSE as the criterion for assessing methodology, the
results were not consistent for the three functions m(z).
However, when either RB? or SB? was used as the perfor-
mance measure, the LL estimator with k-nearest-neighbour
bandwidth selected using SF outperformed the other methods
by at least ten percent for each function mgfz), and is
therefore the currently preferred methodology for producing
ABARE’s maps.

Table 5
Comparison of locally-linear (LL) and Nadaraya-Watson (NW)
weight sequences, using fixed (FBW) and k-nearest-neighbour (NN)
bandwidths selected by least-squares cross-validation (CV)

and the criterion detailed below (SF). The results were obtained

from 400 independent samples with mean function

and normal mixture errors. The MSE values were

calculated using the average over the finite population

of (y - m(z))?

MSE x 1077 RB?x 1077 SB2x 107

Ccv SF (647 SF Ccv SF

LL FBW 39.64 9393 444 167 133 039
NN 20.50 22.83 222 135 037 014

NW FBW 4191 5278 329 177 034 017
NN 2177 2222 3.03 233 062 041

The bandwidth selection method aimed at reducing the
speckledness of a map (SF) is a measure of the smoothness of
the map: it measures how similar the smoothed value is at any
farm to that of its neighbours. Let p(i) be the survey estimate
of the percentile of the smoothed variable at the i-th farm. Let
S; be the set of indices of the six farms closest to the i-th
farm. In this method, the value of

SF(h) = (6m) ' |p @) - p(k)|

1
ke,
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is calculated. It is scale-free, and decreases monotonically as
the bandwidth decreases. The chosen bandwidth is the
smallest bandwidth with a sufficiently small (< €) rate of
decrease of SF. The value of € was chosen subjectively
following detailed examination of maps of five key variables
for five values of €.
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