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Asymptotic Variance for Sequential Sampling Without
Replacement With Unequal Probabilities

YVES G. BERGER'

ABSTRACT

We propose a second-order inclusion probability approximation for the Chao plan (1982) to obtain an approximate variance
estimator for the Horvitz and Thompson estimator. We will then compare this variance with other approximations provided
for the randomized systematic sampling plan (Hartley and Rao 1962), the rejective sampling plan (Hdjek 1964) and the
Rao-Sampford sampling plan (Rao 1965 and Sampford 1967). Our conclusion will be that these approximations are
equivalent if the first-order inclusion probabilities are small and if the size of the sample is large.

KEY WORDS: Sampling with replacement; Randomized systematic sampling plan; Rejective sampling plan; Rao-
Sampford sampling plan; Inclusion probabilities; Horvitz-Thompson; Yates-Grundy.

1. INTRODUCTION

Consider a finite population U, containing N units and a
subset U, of Uy comprising the first units k of U,. Let 7,
denote the first-order inclusion probabilities for a population
U,. We assume that they are proportional to an auxiliary
variable. These probabilities have two arguments: the size k
of the population and the serial number  of the unit within the
population. We assume that 7, ;, < 1 for all i and that all
k > n. This hypothesis has more chance of breaking down
when k is small, i.e., close to n. We can solve this problem by
assuming that the values of the auxiliary variable show little
dispersion for those units occurring at the beginning of the
population.

Let 7., denote the second-order inclusion probability of
units i and j for a population U,. These probabilities are
dependent on the sampling plan used.

We will use the Horvitz-Thompson estimator (1951) to
estimate the total Zﬁl Y, of a variable Y. This estimator is
given by

Y.
=Y, ——; (1)

ieSN n(N;i)

where S, is a sample of U,. We assume that the size of Sy is
constant and equal to n.

Given that the size of the sample is fixed, a variance
estimator of (1) is given by the Yates-Grundy estimator
(1953),
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Aviiy = Teviy ~ T Tavor 3

Let us consider the sample size sequence {n,, n,, ..., n,, ...}
and the population size sequence {N,, N,, ..., N,, ...}, where
n, and N, increase whenever v ~ «. To simplify the problem
we eliminate the index v.

The asymptotic approach used here is that of Héjek (1964):

N
d= Z; Tavpll =~ Tl
=

whictheans that n - « and (N - n) - «, given that
d<Y  [1-n(N:)] =N-nandthat d< ¥ w(N;j) = n.

In section 2, we introduce the Chao sampling plan (1982)
as well as three results linked to first and second-order
inclusion probabilities. In section 3, we provide an approxi-
mation of 7, ;. In section 4, we propose an approximation
of the Yates-Grundy variance. Section 5 compares this
variance approximation with other approximations proposed
for the randomized systematic plan, the rejective plan and the
Rao-Sampford plan. Two numerical examples are provided in
section 6.

2. CHAO SAMPLING PLAN

This is a sampling plan without replacement with unequal
probabilities, of fixed size. This method is a generalization of
the method used by McLeod and Bellhouse (1983) for a
simple plan.

Let Sy denote a sample of size n of U, with aset {m, ,: ie U}
of first-order inclusion probabilities. The Chao plan provides
for a sample S§,,, of size n of U,,, with a set {1y, i € Uy, }
of first-order inclusion probabilities. The method entails
selecting the (k + 1)-th unit with the probability 7., ;. If
this unit is not selected, then we take S,,; = S,; otherwise we
take S,,; = S, u {k + 1}\{j}, where j is a unit selected at
random within S;. The procedure starts from an initial sample
§, = U, comprising the first units n of the population.
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The Chao plan provides the advantage of being sequential.
In fact, it allows us to select a sample through a simple
sequential run of the population. The systematic plan is
another sequential plan that is often used. However, the latter
is inconvenient in that it induces zero second-order inclusion
probabilities. We can avoid this problem by randomizing the
systematic plan. In such a case, the population is ordered at
random before the sample is selected. This operation
eliminates in part the problem of zero second-order inclu-
sion probabilities. As will be seen at the end of this section,
the Chao plan offers the advantage of not having any zero
second-order inclusion probabilities. Randomization is there-
fore not needed for the latter.

The rejective plan and the Rao-Sampford plan are incon-
venient in that they are not sequential. In fact, the units are
selected at random with replacement within the population. If
a unit is selected twice, we are forced to select a new sample.
These two plans, although they are more easily understood,
are more difficult to implement than the Chao plan.

The following theorem, which is a direct application of the
theorem given by Chao (1982), provides a relation between
the first-order inclusion probability 7, of the i-th unit of U,
and the first-order inclusion probability 7, of the i-th unit
of Uy,,.

Theorem 1

{[1’“(k+1;k+1)R(k;i)] Ty fOr i<k+1;
T, =
(k+1;0)

Tk 15k+1) , for i=k+1; 4
where
1-= .
&, for k=n,
T
_ (n+1;n+1)
R(k;i) B

— , for k>n+1. %)
n

The second-order inclusion probabilities can be calculated
iteratively using the following theorem:

Theorem 2 (Chao, 1982)

Tip =
(1= Ry 1 * Ry, p) 3 gy, for i<j<k;
Tk [1- R(k_l;i)] T 1) , for i<j=k

Bethlehem and Schuerhoff (1984) give a sufficient and
necessary condition for the second-order inclusion proba-
bilities to be strictly positive for a population U,:

#livi<tandmg,=1}#n-1,forlsuchthatn<{ <k

Since m,, < 1 for all i and ¢ such that i < ¢ < k, this
condition is always met. Therefore, within the framework of
this article, we will never have zero second-order inclusion
probabilities.

Moreover, the quantity Ay, ; is always negative if we use
the Chao plan (Chao 1982, p. 656). Then the Yates-Grundy
variance offers the advantage of always being positive.

3. APPROXIMATION OF SECOND-ORDER
INCLUSION PROBABILITIES

The following theorem provides us with an asymptotic
expression for second-order inclusion probabilities for the
Chao plan.

Theorem 3

n-1 e . )

U — i j>n 1

P
Tor:n =
(Vi) T 1 -1

(n+1;i) (n+1;j) e . .

T v , if j<n+1; (6)
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where P = T and i<j.

The proof of this theorem can be found in Appendix I.

Note that this approximation has a different structure
depending on whether j>n + 1 orj < n + 1. To avoid this
problem, we will use a plausible condition for the auxiliary
variable so that these two structures will be equivalent. Let us
consider the hypothesis given in the introduction, that the
values of the auxiliary variable show little dispersion for the
first units z + 1 of the population. More precisely, we assume
that the auxiliary variable is constant for the first units n + 1,
ie.:

fori < n+1.

n » =
(n+1;i) n+l

In this case,

Moot ¥ T~ 1 - n-1

AT

Tty Tne1)
By using (6), we have the following approximation for
second-order inclusion probabilities

5 T n-1
Tavig = T T 3
5)

if i < ] ; ¢))
where

Tieyps i J<n+ 1 (8)

) T o if j>n+1,
Py~
4. VARIANCE ESTIMATOR

Relation (7) leads to the following approximation for
A
(N;ij)"
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(2), (7) and (9) provide an asymptotic expression for the
Yates-Grundy estimator.

1-pgl > |
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But this expression tends to underestimate the variance. In
fact, to establish relation (6), we use approximation (19) from
Appendix I. This approximation always implies that:

n-1
Tovig) < T vy T - 11

Miiof) ("”n—p(j) (11)

This can easily be verified if we observe that (20) is

obtained from (18) using approximation (19). Inequality (11)

is therefore true for j > n + 1. Forj < n + 1, it is sufficient to

observe that (21) is also obtained from (19). Inequality (11)
implies that:

“Awip S 1-p
n-1

) (12)

T wiij)
given that Ay, < 0. From (2), (10) and (12), we have
effectively

V> V.

To overcome this problem of variance underestimation, we
plan to make an adjustment on (9). It is well known that:

N
Z Tovip = (0~ Dy (13)
i=l;izjf
Approximation (7) does not abide by constraint (13). The
adjustment involves assuming that the p;, are unknown and
selecting them so as to satisfy (13) for the second-order
probability approximation, i.e.:

n- n-1 1
_E O p— Z R
i=1 P(]) i=j«l

This constraint can be written as follows:

j-1

E Z TE(N b,

=1 i=j+1 @

=hn "P(D‘ (14)

Given that Zj'iln(w) =n, constraint (14) is practically
verified if

Py = T (15)
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Relation (16) is plausible given that the difference between
the left and right sides of (16) has as its Jower bound

N
1
M .Zl v v ~ Tavpl

i=j+

and as its upper bound

N

Ty [T = Tawep! -
i=f+

These two bounds are close to zero when the 7y, show
little dispersion. This means that solution (15) is appropriate
when the T, are small. Furthermore, the greater the value of
J» the closer the two bounds are to zero. Therefore, solution
(15) verifies (13) all the more as j is large. This implies that
our approximation (9) is very good for the duplicate pairs (i, j)
(i < j) such that the unit j is located at the end of the
population. In fact, we want approximation (9) to be the best
for the duplicate pairs (i, j) whose presence in the sample is
highly probabile (i.e., for the pairs (i, j) (i <j) for which my,;
is the largest). It is therefore preferable to place the units
having high first-order inclusion probabilities at the end of the
population.

If we choose to have p, = Ty, , we have p; smaller than
(8). This leads to a larger variance approximation. This
solution is all the more acceptable as it corresponds to the
result of the simple plan without replacement. In fact, if we
replace within (7)7y,, . 5 and p; by n/N, we obtain

T L 1) , if i>n+1.

)] NN-1)

This expression corresponds, quite clearly, to the result of the
simple plan without replacement.

In conclusion, we approximate Ay, ;; through (9) with
P@ = Ty We assume that the population is ordered in such
a way that the units having small m,, are located at the
beginning of the population and that the units having large
T are located at the end of the population. We also assume
that the 7 ,, do not show too much dispersion for the first
units n + 1 of the population.

5. COMPARISON WITH OTHER PLANS

Instead of comparing the second-order inclusion proba-
bilities, we will compare the quantities - Ay, 5/ T, ;, Which
are of some use in calculating the Yates-Grundy variance. We
will examine what these quantities provide for the Chao plan,
the randomized systematic plan (Hartley and Rao 1962), the
rejective plan (Hijek 1964) and the Rao-Sampford plan (Rao
1965, and Sampford 1967).
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Theorem 4
1-7,..
— &) » For the Chao plan;
n-1
-A Mi) . ) 1- Ty~ v for the rgndornized
—_— = +1 > systematic plan;
T n
nll- ‘n:(N;i)][l - ‘n:(N;j)] fgr t}l{le rejectivfe plan and
d(n-1) » the Rao-Sampford plan.

The proof of this theorem can be found in Appendix II.

It is important to note that the proposed approximation for
the randomized systematic plan comes from Deville’s
approximation (p. 21) and not from the famous Hartley-Rao
approximation (1962). We were not able to use the Hartley-
Rao formula because the latter is based on the asymptotic
hypothesis, n fixed and N ~ «, which is different from that
adopted in this paper.

We observe that if the mty, are small,-Ay,; /Ty, ; s
equivalent for the Chao plan and for the systematic plan.
However, we observe that Ay, /Ty, ; is always smaller in
the systematic case than it is in the Chao case. This is
certainly due to the fact that the approximation for the
systematic plan underestimates -A,; ,/Tw.; 5- This can be
confirmed by replacing 7., and ., by n/N. We then have

~Awii) < N-2n
Nn-1)’

i fy

for the randomized systematic plan. This is equivalent to a
simple plan, thus

~Awigp __N-n
N@n-1)

Ty
We intend to adjust the approximation of - Ay, /T,  for
the systematic plan by multiplying it by

N-n 1-f

N-2n 1-2f

where f = n/N is the sampling rate.

The approximation of -A,; /T, ; for the Chao plan is
also of the same magnitude as that of the rejective plan. In
fact, if the wy,, are small, we have the approximation

Al =Tyl nll - T
N

(1= Tyl Z} v
o

Therefore, the Yates-Grundy estimator is approximately the
same whether we use the Chao plan, the randomized sys-
temnatic plan, the rejective plan or the Rao-Sampford plan, for
large n and small 1.

6. NUMERICAL EXAMPLES

The two following examples correspond to two extreme
cases. In the first example, the 7,;, show little dispersion; in
the second, they show much more dispersion. Let us consider
a small sample of size 20. The population size is 50 so that the
T.;) are not too small. We have willingly opted for a bad
situation in order to show that even with a sample of size 20
and a small population, the asymptotic results nevertheless
represent a good approximation.

Example 1

Let us consider the first-order inclusion probabilities
represented in Figure 1.

Figure 1. First-order inclusion probabilities in the case of
Example 1

Figure 2 shows, on the Y axis, the true values of
=Aw. )/, for the Chao plan and, on the X axis, the
approximations. We have also represented the straight line
where the approximations are equal to the true values. The
approximations are all the better as the points are close to the
straight line.
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Figure 2. Approximations and true values of - A, /Ty . in the
case of Example 1

We have a mean error of -0.000569 with a standard devia-
tion of 0.0015996. This is very small in relation to the order
of magnitude of the approximations. The centre of gravity of
the scatter plot is located in (0.0313; 0.0318). It might seem
surprising that there are less points at the left of the centre of
gravity than at the right. This is simply due to the fact that
most of the points at the left of the centre of gravity overlap.
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We observe that the pairs (i, j) with i <j such that 7y, is
large correspond to points located on the left. They are the
pairs showing the best approximation. Moreover, there is a
high probability that these pairs are located within the sample
given that 7, is large. Therefore, our approximate variance
(10) is definitely acceptable.

Example 2

The first-order inclusion probabilities are given in Figure
3. Here we notice that these probabilities are more dispersed
than in Example 1. Figure 4 provides the true values as well
as the approximations of - Ay, //Tw.; ; -

Figure 3. First-order inclusion probabilities in the case of
Example 2

0.08 - L4
0.07 + o ©®
0.08 4+
0.05 4

‘.

0.03 4 ®°

0.02 4

0.01 4

0 ! } } t -

o 0.01 0.02 0.03 0.04 0.05

Figure 4. Approximations and true values of - Ay, 5/T;; j» in the
case of Example 2

We have a mean error of -0.006999 with a standard
deviation of 0.006438. The centre of gravity of the scatter plot
is located in (0.02957; 0.036606).

We reach the same conclusion as in Example 1. The
second example leads to worse approximations. This is
simply due to the high first-order inclusion probabilities.

7. CONCLUSION

The Chao plan provides a number of advantages: (i) it is
sequential; (ii) the second-order inclusion probabilities are
positive; and (iii) the Yates-Grundy variance is always
positive. On the other hand, the second-order inclusion
probabilities are difficult to calculate. That is why we propose
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to approximate them. We have observed that this approxi-
mation is better when the beginning of the population consists
of units having small n,,, and the end of the population
consists of units having large m,,. We have compared our
approximation with other approximations provided for the
randomized systematic plan, the rejective plan and the Rao-
Sampford plan. We have concluded that these approximations
are equivalent if the first-order inclusion probabilities are
small and if the size of the sample is large. The two numerical
examples which close this paper confirm the sound results of
our approximation.

APPENDIX I
Proof of Theorem 3

Before proving this theorem, we will demonstrate the
following two lemmas.

Lemma 1
. 1
Twi =~ Po ITji- “(c;@)_];
- n
i=a;
where
. iy if i>n+1;
140 Mggerp if 1 <0+ 1;
. i+1 if i>n+1;
a. =
" lm+2 if icn+l. an
Lemma 2
k
o 21
Tk = 90 H 1= T ;]’
R=aj
where i <J,
0N .. . ,
"(j—l;.-)“u;n(l - ;) if j>n+l;
95 =

Tetsy * Tnets) ™ 1 i jsn+1;

and a; is defined by (17).

Now, with these two lemmas, we can demonstrate
Theorem 3.

Proof of Theorem 3

Case 1: If j>n + 1, using Lemma 2, we have

1) & 2
T iy :“(j—l;o“(j:ﬁ(l - ") I1 [1 " T ;]-

nj ¢=j+1
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On the basis of Lemma 1, this last expression becomes

R 1 17
T(N,L.J) :P(i)n(j;j)(l - ;l—) j_I

(=a;

1
1-mey— H
] g=j+1

2
1 - ‘It(q;q) ;j| N

By multiplying this last expression by

and by regrouping certain terms, we obtain

_1}11

Twip = TG pPo P
G

l=a;

1= Ty —

1] & 1- L)
n

g=j+1 _
1 n(q;q)

—]
S|=|x |0

On the basis of Lemma 1, this last expression becomes

1-= 2
N ©o
_|n-1 n
Tavsipy = [ [T i H T as
) T -, —
'n
If n is sufficiently large
l-m, .=
(M)nzl—n E1+1t a
L 1 GO (Coa b
) n
T 27 2n2
SO TP (1) IO (1) W 0
n n n?
<1 Jeo (19)
n
Then (18) becomes,
N
n-1 1
Tvin = T Ty L1 |1~ T —|-  (20)
Nii, D G ;
UL n(i;j) W) G farie) [ ()] n}
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Finally, on the basis of Lemma 1, this last expression can be
written:

e =T n-1
W)~ TN TN :
n n(i;D

Case 2: Ifj < n+ 1, Lemma 2 provides

N

Tvip = Moty + Taeryy ~ 1 gnz
=n+

2

1-=,, —
@,

]

in other words

N

N
1

Tovip = H 1=, ’"] H
{=n+2 n g=n+2

1- L)

(M1 * Teryy ~ 1
1

S |=(xiro

" T

By using approximation (19), we obtain

N
T © { H

) 2
1-m,.—
5 (M)n]}

Tnerz © Tnoryy ~ L
'

T 15 Mae1sf) p
(n+1;i) “(n+1;5)

On the basis of Lemma 1, we obtain finally

Ttz * o1~ |

Tonrsn = Toonrn TCong + 21)
Wi T vy v (
’ D Tt T
QED.
APPENDIX II
Proof of Theorem 4

* For the Chao plan, it is sufficient to use (6), (9) and (15).
* For the randomized systematic plan, it is sufficient to use
the approximation of the 7, , given by Deville (p. 21)

" =T ks n-1 (22)
Wiy " W T T _
= Tovn ™~ Tawp

This expression is obtained from the hypothesis

This last hypothesis is verified since n - «,
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» For the rejective plan, using Hajek's result (1964, p. 1508),
we have

“Bwip - [1- Tgp] [T~ Ty
Ty 47 [ Ty (1= Tgy)

(23)

for d - . We note that (23) remains valid for the Rao-
Sampford plan (see Hajek 1981, Theorem 8.2, p. 82). Using
the approximation (Hijek 1964, p. 1521),

-1 . n
{d— [1 - n(N;i)] [1 - n(N;j)]} ~ d_(n '_"1) )
we obtain the result of the theorem.
Q.E.D.
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