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Stability Measures for Variance Component Estimators
Under a Stratified Multistage Design

J.L. ELTINGE and D.S. JANG'

ABSTRACT

In work with sample surveys, we often use estimators of the variance components associated with sampling within and
between primary sample units. For these applications, it can be important to have some indication of whether the variance
component estimators are stable, i.e., have relatively low variance. This paper discusses several data-based measures of the
stability of design-based variance component estimators and related quantities. The development emphasizes methods that
can be applied to surveys with moderate or large numbers of strata and small numbers of primary sample units per stratum.
We direct principal attention toward the design variance of a within-PSU variance estimator, and two related
degrees-of-freedom terms. A simulation-based method allows one to assess whether an observed stability measure is
consistent with standard assumptions regarding variance estimator stability. We also develop two sets of stability measures
for design-based estimators of between-PSU variance components and the ratio of the overall variance to the within-PSU
variance. The proposed methods are applied to interview and examination data from the U.S. Third National Health and
Nutrition Examination Survey (NHANES III). These results indicate that the true stability properties may vary substantially
across variables. In addition, for some variables, within-PSU variance estimators appear to be considerably less stable than
one would anticipate from a simple count of secondary units within each stratum.,

KEY WORDS: Between-PSU variance; Complex sample design; Degrees of freedom; Diagnostic; Design-based analysis;
Satterthwaite approximation; Stratum collapse; U.S. Third National Health and Nutrition Examination
Survey (NHANES III); Within-PSU variance.

1. INTRODUCTION

In work with sample surveys, it is often desirable to have
good estimates of the variance components attributable to
sampling within and between primary sample units (PSUs).
For example, the magnitude of an estimated within-PSU
variance, relative to a between-PSU variance, may influence
decisions regarding sample allocation and related design
issues (e.g., Hansen et al. 1953, Chapter 7). Similar relative-
magnitude properties affect the bias of certain variance esti-
mators derived under simplifying assumptions regarding the
sample design (e.g., Korn and Graubard 1995, p. 278-279, 287,
and Wolter 1985, p. 44-46). Also, some survey analysts have
a general interest in identification of surveys and variables for
which the between-PSU component of variance is substantialty
greater than zero. See, e.g., Herzog and Scheuren (1976, p. 398)
and Wolter (1985, p. 47) for related comments. In addition,
Jang and Eltinge (1996) give an example for which there is
some interest in the within-PSU variances by themselves.

In some application work, estimates of within-PSU
variances and related quantities are reported with the apparent
assumption that the estimates are stable, i.e., have relatively
low variances. This paper shows that it can be important to
carry out data-based checks of this assumption of stability,
and that some relatively simple checking methods follow from
standard design-based ideas. We emphasize methods that can
be applied to designs with a moderate or large number of
strata and a small number of PSUs selected per stratum.

Subsection 2.1 reviews the relevant estimators of within-
PSU variances and overall stratum-level variances. Sub-
section 2.2 identifies two distinct components of the variance
of the within-PSU variance estimator. Subsection 2.3 presents
simple design-based estimators of the variances of two within-
PSU variance estimators. Section 3 develops two related
degrees-of-freedom measures.

Section 4 examines the extent to which related design-
based methods can be used to assess the stability of quantities
that depend both on the within-PSU variance estimator and on
the overall stratum-level variance estimator. Principal atten-
tion is directed toward an estimator of the between-PSU
variance and an estimator of the ratio of the overall stratum-
level variance divided by the within-PSU variance. Section 4.2
discusses one set of methods based on the stability measures
from Section 2 and some moderately restrictive moment
assumptions. Section 4.3 outlines a second set of methods
based on stratum collapse.

Section 5 applies the main ideas of Sections 2 through 4 to
variance estimates computed for the U.S. Third National
Health and Nutrition Examination Survey. Section 5 also uses
a simple simulation-based method to assess the consistency of
the observed measures with standard assumptions regarding
variance estimator stability. The Section 5 results suggest that
the true stability of within-PSU variance estimators can be
substantially less than anticipated from a simple count of the
number of secondary units contributing to each PSU. In
addition, the results indicate that the stability properties of
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within-PSU variance estimators and related quantities can
vary substantially across different variables collected in the
same survey. Section 6 gives additional comments on the
methods and empirical results presented here.

2. WITHIN-PSU AND OVERALL
STRATUM-LEVEL
VARIANCE ESTIMATORS

2.1 General Notation

In principle, we could use either design-based or model-
based methods to examine within-PSU and between-PSU
variance components. The present work will take a design-
based approach. This is consistent with some related previous
literature, e.g., Wolter (1985, p. 40-41, 47). The design-based
approach will be especially useful in highlighting some
strengths and limitations of the proposed stability-assessment
methods. For example, in Section 2.3 this approach will give
us some indication of specific design features that may affect
variance estimator stability. Also, in Section 4 the design-
based approach will help to clarify the extent to which certain
moment restrictions are needed to justify one set of stability
measures.

Following the notation and ideas in Wolter (1985,
p. 43-47), consider a stratified multistage sample design with
L strata and with N, primary sampling units (PSUs) contained
in stratum h = 1, 2, ..., L. We select n, PSUs with replacement
and with per-draw selection probabilities p,;. Within selected
PSU (4,i), we select n,; secondary sample units (SSUs) with
replacement and with per-draw selection probabilities p,,;.
Further subsampling is carried out within a selected SSU to
obtain n,,; individual elements for interview or examination.
The stability-assessment methods developed here are intended
primarily for designs with moderate or large L, relatively
small n, (e.g., n, = 2), and relatively large n,,. Designs with
these characteristics are often used in large household inter-
view surveys, e.g., the health survey discussed in Section 4.

We will focus on est1mat10n of a populatlon total
Y=Y, Y, where?, = Y47, , ZN'" Yigiis Yoz 18
asurvey 1tem for element kin SSU _] in PSU i 1n stratum h, N,
is the number of SSUs in PSU (4,), and N,; is the number of
elements in SSU (4, i, j). Extensions to nonlinear functions of
population totals are straightforward and will be considered
in the applications in Section 5. A standard design-based
estimator of Yis¥ = Zfl‘:l ¥, where

Z Whiik Yijic » 2.1

Wy 18 the customary weight derived from selection proba-
bilities and sample sizes to ensure unbiased estimation of each
Y,, and the lower-case terms y,;, denote sample observations.
In subsequent work, it will be useful to rewrite expression
(2.1) as
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=n, E Phi Yo
where ¥, =n Y Mz, and z,_ =n.n, p, T % w
Bi = M 2j=1%p; Zhij T PP Pry Lk=1 Whijk Yhijic*

2.2 Within- and Between-PSU Variances

Throughout this discussion, expectations and variances

will be defined with respect to the sample design. Under the
conditions stated above, the variance of Y is V(Y) Zh .
where V Vo, * VWh, V(nh Z PR,
n, Z; \ Phi Ozhw and 02;” V( Y, |hi); SCC eg,
Wolter (1985, p. 42). Note espemally that Y, 1s the true
population total for selected PSU (4, i), and that 02," reflects
the variability 1nY - Y, attributable to subsampling at the
SSU and finer levels

A customary unbiased estimator of the overall stratum-
level variance V, is

2

ny
V(Y :"h_l(”h‘ 1)_12 (ph_ithi_ Y,
i=1

and the correspondlng estimator of V(Y ) = Zh 1V(Y ) is
V(D) = T V().

Now consider estimation of the within-PSU variance Vy,
Since Y is a sample mean of the independent and 1dent1cally
dlstnbuted terms z;, standard arguments show that for a
given PSU (h,0), an unb1ased estimator of 02;" is
oim"”hz (n,; - 1) Z,_ (,"] ) Thus, an unbiased
estimator of Vi, is

Tpi

Z n, th 02h1 Z ny, (nhl -1 IE (o~ x}u

= "hij g S ol
where x,. =, ¥ 5 Wy Yy a0d X5, = g, ¥ . Note that
the latter expression for Vi, uses only sample sizes, the
observations y,; and the customary weights w;;.

2.3 The Variance of vw;.

A direct modification of standard conditional-moment
arguments shows that the variance of Vi, is yp, + Yy, where

=Vin, Z th Ozm

and

Ywn = nfz Phi V(Ozh. | h,i).

Thus, the variance of VWh itself depends on a sum of
between- and within-PSU variances, and the relative
magnitudes of Y, and vy, depend on trade-offs among oihi,
P and n,,. For example, under regularity conditions, the terms
V( 6§hi | h,i) are approximately inversely proportional to n,;.
Thus, if the ny, are uniformly large within stratum &, then vy,
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may be relatively small. Also, if the terms ph;z oihi are
approximately constant within a given stratum, then y,, may
be relatlvely small. Conversely, marked heterogeneity of
Py 05, may inflate v, and thus inflate V(V,,) as well.

In addition, note that under the stated design conditions,
VWh is the sample mean of the independent and identically
distributed terms n,, p," 02," Thus, an unbiased estimator of
the variance of VWh is

iy
7V - - -1 -24 A (2
VW) = my (- DY (1, Py 00~ Vi) 2D
i=1

Some applications focus on the full-population level,
rather than on individual strata, and so the “within-PSU”
contribution of 1nterest is the sum of the within-PSU
variances, Vy, Eh 1 Vin- Under the condltlons given above,
an unbiased est1mator of V is V,, = Y7, V- Also, since our
sampling and subsamphng are mdependent across strata, we
have V(VW) Zh 1(¥gh * Yws)» and an unbiased estimator of
V(Vy,

L
V(Vw) = Z V(Vw;,)-
h=1

Finally, note that the preceding development used the
assumption of sampling with replacement at both the primary-
and secondary-unit levels. Two applications of result (2.4.16)
in Wolter (1985, p. 46) show that under mild conditions that
hold for many, but not all, without-replacement designs,
V will be unbiased or conservative for the true within-PSU
variance; and V(th) will be unbiased or conservative for the
true variance of V A formal technical statement and proof
of this result is avallable from the authors.

2.4 Balanced Interpretation of Stability Measures

The remainder of this paper uses V(VWh) and related
quantities to assess the stability of variance-component
estimators. In working with these results, it is useful to
remember that data-based measures of variance estimator
stability are justifiably viewed with some caution, because
they are functions of fourth sample moments, and thus are
themselves subject to a considerable amount of sampling
variability. See, e.g., Fuller (1984, p. 111). This caution
carries over to the proposed estimator V(th) and to the
related statistics discussed in Sections 3 and 4 below.

However, one should not overstate this caution to the point
of making no attempt at data-based assessment of variance
estimator stability. The estimator V(V ), and the related
measures in Sections 3 and 4, are relatlvely simple to
compute, and provide diagnostics that can help to identify
variables for which:

(2) the instability of Vy,
(b) the instability of VWh has a substantial effect on the

precision of estimators of the relative magnitudes of
between-PSU and within-PSU variances.

is especially problematic; or
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Consequently, interpretation of specific values of V(VWh)
and related stability measures should reflect a balance
between the abovementioned general caution and a recogni-
tion of their potential diagnostic value.

3. TWO STABILITY MEASURES FOR
WITHIN-PSU VARIANCE
ESTIMATORS

3.1 Degrees-of-Freedom Diagnostics for Variance
Estimator Stability

Some analysts prefer to express variance estimator stability
through “degrees of freedom” measures related to the
Satterthwaite (1941, 1946) approximation. To introduce this
idea, con51der a general variance estimator V, and note that
{E(V)} 'dV has the same first and second moments as a
chi-square random variable on d degrees of freedom, where
d is the solution to the equation,

2EW)) - V(V)d =0.

If the distribution of {E(V)} 'dV is indeed well
approximated by a chi-square distribution, then d may be
viewed fairly literally as a “degrees of freedom” term.
Otherwise, d can be viewed as twice the inverse of the
squared coefficient of variation of V. In either case, d has a
certain appeal because it is scale-free, and can be tied fairly
directly to notions of “effective sample size” in the evaluation
of variance estimator performance. Subsection 3.3 gives
related comments for two special cases.

Given an unbiased estimator V(V) of the variance of v,
one may compute a “degrees of freedom” estimator d as the
solution to the unbiased estimating equation

21V - V(D)) - V(V)d =0, 3.

ie., d={V(V)} '2V*-2. Under mild regularity condi-
tions, d 'd converges in Probablhty to one, provided
{(viMy V(V) and {E(V)} V both converge in probability
to one.

3.2 Degrees-of-Freedom Diagnostics for Pooled and
Stratum-Level Estimators of Within-PSU
Variances

We can apply these general degrees-of-freedom ideas to
the within-PSU variance estimators VWh and VW developed
in Section 2. First consider the case in which there is intrinsic
interest in the stability of individual stratum-level estimators
VWh. The assomated “degrees of freedom” measure is dy,, =
{ V(th 2} 2Vw;, For des1gns w1th large 1y, one may use (3.1)
to compute estimators dWh {(V(V. h)} 2V - 2 separately
for each stratum. For designs with small n, (e g..n, =2 for
each stratumm), the estimator 3% itself may be very unstable.



160

Consequently, it also is useful to consider the alternative
combined estimator

L - L
55 52
dy, = {hzlj V(th)} 2% V-2,

under the assumption that all dy, equal a common value d,.

Now consider the pooled within-PSU variance estimator V
developed in Section 2 3. The resultlng “degrees of freedom
measure is dy,, = { }:h 1V( wi v, and expression (3.1)
suggests the estimator

-1

L
dye :{Z V(th)} 22 -2,
h=1

3.3 Comparison of dy,; and dy; to Direct SSU Counts

To interpret ‘iwo and ‘iwr as stability measures, consider
the following idealized setting. Assume that for all &, the PSU
counts n, are equal to a common value n,, say; and that for
all 4 and i, the SSU counts »,, are equal to a common value
n,;. In addition, assume that the terms p,u 02h are constant
within each stratum; and that, conditional on (4, i), each
oifi (n,-1) 6§,u. is distributed as a chi-square random vari-
able on n;; - 1 degrees of freedom. Then routine arguments
show that dy,, = n,(n,, - 1). If the preceding assumptions are
satisfied approximately, and if the product n,(n,, - 1) is large
(greater than 40, say), then a data user may be inclined
to view VWh as relatively stable, or equivalently, to view the
errors  Vy, - Vy, as negligible. This appears to be the
reasoning used implicitly when estimates V,, are treated as
known values in design or analysis work. However, the
application in Section 5 will give some examples for which
this reasoning is problematic, so that evaluation of the
estimates ‘iwo is important.

Also, under the idealized conditions described above, and
under the additional assumption that the Vy, are all equal, we
have d . = Ln/(n,; - 1).

4. COMPARISON OF WITHIN-PSU
AND OVERALL
STRATUM-LEVEL VARIANCES

4.1 Estimators of Between-PSU Variances and
Related Variance Ratios

Section 1 cited some applications that hinge on the magni-
tude of Vy, relative to V,. The specifics of the relative-
magnitude comparisons vary with the individual application,
but interest generally focuses on differences or ratios.
For example, recall that Vg, = V), — Vy,,, and define the overall
between-PSU variance term V, =Y, _; Vi,. In addition, note
that unblased estimators of Vg, and Vg are VBh = Vh - VWh and

5= YV, respectively.

Sn'mlarly, define the ratio Ry, =V, 'V(Y), the magnitude
of the overall variance V(¥) relatlve to the within-PSU

contribution Vy. A direct estimator of Ryy is R, = VAIV(Y)
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Note that if V;V;Vh = Ry, for all A, then Iéwv could also be
viewed as a pooled estimator of this common stratum-level
ratio.

For both V and R , stability assessment involves the
variance of V and the covariance of V » With V Estima-
tion of the these moments can be somewhat problematlc for
surveys that select small numbers of PSUs from each stratum.
We consider two approaches to resolving this problem.
Section 4.2 uses moderate restrictions on the moment
structure of (V,,, Vh) to develop estimators V(Vh) and
related quantmes Section 4.3 uses stratum collapse to
develop alternative stability measures.

4.2 Stability Measures Based on V(V,,) and Moment
Conditions

4.2.1 Moment Conditions

Under moderate moment restrictions, we can estimate the
variance of V directly from V 1tse1f Spemﬁcally, assume
that the variance of Vh equals (nh -1y 2Vh ; thls would hold,
e.g., under the standard assumption that V, (nh 1)V is
distributed as a chi-square random variable on n, - 1 degrees
of freedom. As in Sections 2 and 3, we continue to assume that
V is unblased for Vh Then routine moment arguments show
that (nh + 1) 2V is an unbiased estimator of the variance
of V

In the remainder of Section 4.2, we will also assume that
Cov(VWh, 1% » = 0. Routine cond1t10na1 moment arguments
show that thlS will hold if the terms p,” 02;" are equal within
a given stratum; and if, conditional on (h,i,j), the SSU-level
estimates x,,; are normally distributed, so that 02," is condi-
tionally independent of Y

4.2.2 Stability Measures

Under the condmons stated in Section 4.2.1, unbiased
estimators of V(Vp,) and V(VB) are

V(V,) = (n, + 1)712V7 + V(V,,) “.1)

and V(VB) Eh IV(VBh) where V(V wy) is defined in expres-
sion (2.2). Also, under the same condltlons routine ratio-
estimation arguments lead to the variance estimator

L

= V;fz{(nh + 1)*le,f+Ié§VVV(VWh)}. 4.2)
h=1

4.3 Alternative Stability Measures Based on Stratum
Collapse

The assumptions of Section 4.2.1 may be problematic in
some applications. For example, for some survey designs and
variables, the SSU-level estimators x,; may have markedly
nonnormal distributions, so the assumption Cov(V Vh) 0
may not hold. For these cases, one may consider the use of
stratum collapse to produce alternative estimators of V(VB)
and V(va)
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Specifically, partition the set of L strata into G prespecified
groups, with L, strata contained in group S, g = 1, ..., G.
With this new notation, note that

G
VDV V=3 Y V. Vi Vi)

Standard stratum-collapse methods (e.g., Wolter 1985,
Section 2.5) then lead to the alternative variance estimator,

Vi) - Z(L -0, Y D

heS

where Dy, = Vi, - Lgf1 Zjesgvaj; . Similarly, a collapsed-
stratum variance estimator for Ry, is

ViR = (V) 2E(L -1y'L, Z e

where C,, =(V,- Ry Vi) - L, Z,es (V R, w,)

In general collapsed stratum variance esnmators require
some care in interpretation; see, e.g., Rust and Kalton (1985),
Wolter (1985, Section 2.5) and references cited therein. For
example, collapsed-stratum variance estimators generally will
be conservative. In addition, for cases with moderate L, the
variance estimators V> (VB) and V} (Iéwv) may themselves
have limited stability.

5. APPLICATION TO THE U.S. THIRD
NATIONAL HEALTH AND
NUTRITION EXAMINATION
SURVEY

5.1 Sample Design and Estimation Methods

The methods proposed in Sections 2 through 4 were
applied to data from Phase I of the Third National Health and
Nutrition Examination Survey (NHANES III). National
Center for Health Statistics (1996) gives a general description
of this survey, including special characteristics associated
with Phase I (data collected between 1988 and 1991). For the
present discussion, three aspects are of special interest. First,
variance estimators were constructed on the basis of a
collapsed design involving L = 22 strata (large groups of
counties), with two primary sample units (generally individual
counties) selected per stratum. Second, each selected PSU
had a relatively large number of selected SSUs (generally
groups of city blocks, or similar rural areas). The number of
selected SSUs within each stratum ranged from 30 to 63, with
a mean of 45.8.

Third, additional subsampling within each SSU led to
selection of the survey elements (individual noninstitu-
tionalized U.S. civilians). Each selected person was asked to
respond to a health questionnaire and to participate in a
detailed medical examination. Twelve of the resulting
variables are listed in Table 1.
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Standard weighted ratio estimates 6 were computed for
the population means of each of the twelve variables listed in
Table 1. The first two columns of Table 2 present the
corresponding variance estimates V(8) and VW. As part of
a larger study of the within-PSU variances V,, discussed in
Jang and Eltinge (1996), there was considerable interest in the
stability of the individual estimates VWh. Since we had n,, = 2
for each stratum, the reasoning in Section 3.2 indicated that
it was not feasible to examine the individual terms (f
Consequently, Section 5.2 will examine the pooled measure
d o Of the stability of the V and will also present some
related simulation-based tests and diagnostic plots.

Table 1
Twelve NHANES III Variables

Variable name Description

HAE2 Told by health professional that you had
hypertension (indicator variable)
HAE7 Told by health professional that your blood
cholesterol was high (indicator variable)
HAD1 Told by health professional that you had
diabetes (indicator variable)
HAR3 Do you smoke cigarettes now?
BMPHT Height
BMPWT Weight
HDRESULT HDL cholesterol
TCRESULT Serum total cholesterol
LEAD Blood lead, in micrograms per deciliter
log(LEAD) Natural logarithm of blood lead
BP1K1 Systolic blood pressure
BP1KS5 Diastolic blood pressure

Table 2
Variance Estimates and Stability Measures for
Twelve NHANES III Variables
Variable name VW V(¥) d\wo d WF
HAE2 0.0000385 0.0000511 23.7 4258
HAE7 0.0000821 0.000135 13.6 2256
HAD1 0.00000956 0.00000749 8.8 160.6
HAR3 0.000122 0.000205 6.4 125.8
BMPHT 0.0223 0.0416 15.3 2751
BMPWT 0.104 0.122 8.6 1392
HDRESULT 0.0743 0.163 11.5 1962
TCRESULT 0.590 0.860 21.2 3539
LEAD 0.00388 0.00657 2.8 48.8
log(LEAD) 0.000211 0.000678 10.5 1749
BP1K1 1.073 2.896 1.0 26.5
BP1KS5 0.252 0.217 17.2 529

In addition, there was interest in the extent to which the
variances of the VWh contributed to the variances of the pooled

quantities V and R

. Section 5.3 explores this question.
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5.2 Within-PSU Variance Estimates and Associated
Stability Measures

5.2.1 Comparison Across Variables

The final two columns of Table 2 report the degrees-of-
freedom estimates jwo and JWF for the twelve NHANES III
variables. Note especially that the stratum-level stability
measures dW0 are relatively low, compared to the mean of
45.8 SSUs per stratum. For example, all of the variables have d
less than 24, and five (HAD1, HAR3, BMPWT, LEAD and
BPlKl) have d o less than 10. Due to the interest in the
dwo described above this led to two general questions.

(1) Are the observed dWO consistent with the nominal
degrees-of-freedom value d,,, that one would anticipate
from the direct SSU counts n,,; + n,;, ~ 27

(2) Conversely, are the observed ‘2wo consistent with
distributional conditions that produce considerably
smaller values of d,?

Standard large-sample-theory-based tests for (1) and (2)
would have depended on eighth sample moments, and thus
were inadvisable in the present case, due to the relatively
small values of L = 22 and n, = 2. Instead, the following
simulation-based test was carried out.

5.2.2 Simulation-Based Interpretation of Stability
Measures

This simulation work covers six cases involving different
values of two terms. The first term, denoted d,, , represents
the degrees of freedom associated with the variance estimator
6:;"' in PSU (A, i). The second term, denoted R, , is the ratio
of the expressions p,;iz 0y, in the first and second sample
PSUs in stratum A.

In each of the six cases discussed below, independent
pseudorandom variables g,; were generated from a chi-square
distribution on d,; degrees of freedom for h=1,2,..,22
and i =1, 2. Re-scaled variables V. = d,u Vivni&h Were then
computed, where Vi, is a random variable equal to one
with probability one-half and equal to R,, with probability
one-half. The random variables 8hi and Vy,; are mutally
independent. Finally, the sums VWh VWh1 v, whp and the
associated measures V( Wi V(VW) and dW0 were com-
puted. This was repeated 10,000 times.

Table 3 lists the values of d,; and R,, covered in the six
cases, and Table 4 lists the resulting simulated means,
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standard deviations and quantiles for ‘iwo- When interpreting
the results for these cases, note that randomness of the g,
corresponds to the estimation error in the 6;,”. due to
subsampling at the SSU and lower levels; and randomness of
the Vy,, reflects the variability of the ph'i2 03,”. induced by
sampling of PSUs within a given stratum.

Table 3
Cases Covered for the Simulated Quantiles

Cases d Ry,

22
Obs. Dist.
5
22
Obs. Dist.
5

[= IR B S
O \O O — =

Case 1 uses d,; = 22 and R, = 1. Arguments from
Section 3.3 show that the resulting VWh are distributed as
constant multiples of a chi-square random variable with
dy,, = 44 degrees of freedom. Thus, for Case 1, the choice of
d,; = 22 has led to simulated quantiles of dwo that are
approximately those that one would anticipate from the mean
SSU count of 45.8 observed for Phase 1 of NHANES III,
under the setting described in Section 3.4. Note that even in
this idealized Case 1, the relative variability of the dwo is
fairly high.

Now compare the dwo reported in Table 2 to the simulated
quantiles from Case 1. All twelve of the observed dwo fall
below the 0.025 simulated quantile of 24.8; and ten of the
twelve fall below the 0.005 quantile of 21.1. Thus, the ‘iwo
observed for the NHANES III variables are not consistent
with a nominal dyy = 44 produced in the idealized setting
covered by Case 1.

5.2.3 Simulation Under Alternative Conditions with
Smaller d

In general, the distribution of ‘fwo may deviate from that
observed under the idealized Case 1 due to: (a) variability in
the true SSU counts n,; (b) limited stability of the PSU-level
estimates 02h ; and (c) heterogeneity of the true PSU-level
terms oih, Cases 2 through 6 cover the combined effects of
these three factors.

Table 4 .
Simulated Quantiles for d

Cases Mean S.D. q 005 401 qo2s dos qd.10

q25 450 q1s 990 495 915 499 g 995

48.9 177 211 225 248 274 307
483 175 207 219 242 268 29.9
11.3 4.7 4.1 45 5.1 5.6 6.4
2.7 14 1.6 20 23 27

(o SR, I VA S
h
(9

35 21 07 08 10 12 15

367 455 574 712 815 926 1085 1221
363 452 566 702 803 920 1062 118.0
8.0 10.3 13.5 173 200 230 268 301
3.7 5.0 6.8 8.9 10.5 12.1 14.8 16.7
3.7 5.0 6.7 8.9 10.6 12.1 14.1 16.1
2.1 3.0 4.4 6.0 7.4 8.8 11.2 12.6
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The design for Case 2 was identical to that for Case 1,
except that the d,; were random variables, selected with equal
probabilities and with replacement from the 44 values n,; — 1
corresponding to the 44 SSU counts n,, in the original data-
set. The resulting simulated quantiles of ‘iwo are similar to
those for Case 1.

Case 3 uses d,; = 5 and R, = 1; the resulting V'Wh are
distributed as constant multiples of chi-square random
variables with dy, = 10 degrees of freedom. The simulated
quantiles for Case 3 were somewhat more consistent with the
dW0 observed for the NHANES III dataset. For example, ten
of the twelve variables have dW0 at or above the simulated
0.10 quantile of 6.4. However, two of the variables (lead and
systolic blood pressure) had their ‘iwo below the simulated
0.005 quantile for Case 3.

Cases 4 through 6 cover more extreme cases of instability,
induced by use of the scale factor R, = 9. A scale factor
different from one introduces a component of vanablhty
associated with sampling of PSUs with unequal 02,!,, and
causes the an to have distributions outside of the rescaled
chi-square family. Cases 4 through 6 use the same d,; values
used in Cases 1 through 3, respectively. The smallest
observed NHANES III ‘iwo values are somewhat more
consistent with the simulated quantiles for Cases 4 through 6,
although the dAW0 = 1.0 for systolic blood pressure still falls
below the simulated 0.005 quantile for Cases 4 and 5, and
is approximately equal to the simulated 0.025 quantile for
Case 6.

In addition, note that the three largest observed ‘iwo values
(for the hypertension indicator, the total cholesterol measure,
and diastolic blood pressure) fall above the simulated upper
0.995 quantiles for each of cases 4 through 6. This, in con-
junction with the abovementioned results for Cases 1
through 3, indicates that the twelve observed dwo are
consistent with settings that produce substantially different
true dyy, values for different variables.

Taken together, these simulation results suggest that for
the twelve NHANES I variables examined, the stability of VWh
may be substantially worse than one would anticipate from a
simple count of SSUs within each stratum; and that the true
stability measures dy, may vary substantially from one
variable to the next.

5.2.4 Diagnostic Plots

In a purely numerical sense, dwo depends on the magni-
tudes of the V(V wn) Telative to the terms 2V . Conse-
quently, dlagnostm plots of V(VWh)y2 against V are useful
in the identification of specific patterns and * problem strata”
that lead to unusually high or low ‘jwo-

Figures 1 through 3 give plots for the variables HAE2
(diagnosed hypertension), log(blood lead), and blood lead,
respectively. Each plot was constructed with horizontal and
vertical axes on the same scale. The plot for HAE?2 has the
bulk of its points well below a line with slope = 1 and
intercept = 0. In addition, the values of V(V,,,)" that are large
in an absolute sense are still substantially less than the
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corresponding V . This is consistent with the relatively large
degrees-of- frecdorn value dW0 =23.7. The plot for log(blood
lead) shows a somewhat greater concentration of points near
the line with slope = 1 and intercept = 0, which is consistent
with the somewhat smaller value ‘iwo =10.5.

The plot for blood lead shows one apparent outlier: the
largest value of V(v h)y2 is approximately equal to the
correspondmg V . For this stratum, we examined the terms V
and th 02h for unusual patterns, e.g., extreme 1nd1v1dua1
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Figure 1. Plotof V(V,,)"* against V,,, for HAE2
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Figure 2. Plot of ‘7(‘7‘,[,,')V2 againstV for log (blood lead)
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Figure 3. Plot of V(VWh)V’ against V wy, for blood lead

values or extreme element-level weights. Here, one of the
two associated phf ;hl values was approximately equal to
Zero and the other was the largest of all the PSU-level
terms p," 02h1 In addition, the stratum in question had the
largest V value. However, this stratum did not display
outlying values of V(V )Vz and V for other related
variables, e.g., log (blood lead) Thus, the unusual pattern
observed for blood lead may be attributable to a few very
high observed values for the blood lead variable, rather
than to the sample design or weighting as such. Within this
context, note that at the population level in the U.S., lead
measurements tend to have a roughly lognormal
distribution, and high lead measurements show some
tendency to be clustered together due to environmental
factors.

5.3 Between-PSU Vaﬁmce Estimates and the
Variance Ratio R,

Table 5 presents the estimates VB and Iéw‘,, and
associated standard errors, for the twelve NHANES III
variables. Of special interest are the columns labeled
V(V )'V(V,,), the proportion of the variance estimate
V(VB) that is atlnbutable to the within-PSU variance term,;
and V(va) 1V g2 V(V ), the corresponding proportion
for va Relauvely large values for these proportions
1ndlcate that V( w) makes a substantial contribution to

V(v ») and V(va) for the variables in questlon

Note that the proportion V(R,,) 'V, ’R? av V(V,) is
greater than or equal to 0.3 for blood lead, BPlKl (systolic
blood pressure) and BP1K35 (diastolic blood pressure). For
blood lead and BP1K1, the large proportions arise primarily
because of the relatively large value of V(V w) - For BPIKS,

Eltinge and Jang: Stability of Variance Component Estimators

R . Table 5
Estimates of V and R, for Twelve NHANES III Variables
with Associated Standard Errors and Relative
Within-PSU Contributions

Variable name VB se(VB) ‘7(915,)‘1 V(Vw)
HAE2 0.0000126 0.0000188 0.020
HAE7 0.0000532 0.0000445 0.030
HADI1 -0.00000208 0.00000246 0.186
HAR3 0.0000825 0.0000703 0.047

BMPHT 0.0193 0.0114 0.027
BMPWT 0.0174 0.0400 0.096

HDRESULT 0.0887 0.0744 0.010

TCRESULT 0.270 0.253 0.031
LEAD 0.00269 0.00188 0.168

log(LEAD) 0.000468 0.000205 0.012
BPIK1 1.823 0.997 0.081
BP1KS -0.0351 0.0793 0.367

R, seRyy) VR WiRL,V(V,)

HAE2 1.327 0.491 0.034
HAE7 1.648 0.556 0.077
HAD1 0.783 0.247 0.123
HAR3 1.676 0.600 0.122
BMPHT 1.864 0.530 0.089
BMPWT 1.168 0.391 0.126

HDRESULT 2.193 1.020 0.047

TCRESULT 1.458 0.436 0.063
LEAD 1.694 0.555 0.367

log(LEAD) 3.221 1.025 0.112
BPI1K1 2.699 1.142 0.391
BPIKS 0.861 0.300 0.300

V( v w) 18 not as large on a relative scale, but the proportion
VR Vil RE, V(VW) is still large because V,, is not
small relative to V(Y) For all three variables, the relatively
large values of V(R,,) 'V, °R? wwV(V,) indicate that it is
important to account for the variance V( w) when one con-
siders the stability of R . For BPIKS, a similar comment
applies to the effect of V( w) on the stability of V

6. DISCUSSION

This paper has presented three main ideas. First, due to
the role that estimated within-PSU variances VWh play in
survey design and analysis, it is important to account for
the sampling error encountered in estimation of Vy,.
Second, standard design-based estimation methods lead to
relatively simple estimators of the design variance of VWh
In general, interpretation of these stability measures
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requires some caution. However, they can provide useful
diagnostics for the identification of variables for which the
instability of VWh is especially problematic, or has an
especially pronounced effect on the variance of related
quantities like VB and Iéwv- Third, the application to the
U.S. Third National Health and Nutrition Examination
Survey (NHANES III), and associated simulation work,
indicated the following.

(i) For different sets of variables, the observed stability
measures ‘iwo are consistent with substantially
different sets of stability conditions.

(ii) For some variables, the estimators VWh are
considerably less stable than one would anticipate
from a direct count of secondary sample units.

(iii) For some variables, the estimated variance of VWh
makes a substantial contribution to the estimated
variances of the estimatgd between-PSU variance VB
and the variance ratio R, .
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