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A Transformation Method for Finite Population Sampling
Calibrated With Empirical Likelihood

GEMAI CHEN and JIAHUA CHEN!

ABSTRACT

In this paper, we study a confidence interval estimation method for a finite population average when some auxiliary
information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing
methods to construct confidence intervals for population averages may result in very poor conditional coverage
probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to
improve the precision of the normal approximation. The transformed data are then used to make inference on the original
population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical
likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation
is needed, our approach performs well compared to the usual regression method.

KEY WORDS: Finite population; Sampling; Confidence interval; Transformation; Empirical likelihood.

1. INTRODUCTION

Let (x;, ), i= 1,2, ..., N be values associated with N units
in a finite population. For unit i, y, is the variable of interest
and x; is an auxiliary variable. One of the most extensively
studied finite population problems is the estimation of the
population average ¥ = (y; + ... + yy)/N (or total Ny) under
various sampling schemes. We shall focus on the simple
random sampling scheme in this paper, because the nature of
the problems we want to study can be better seen from this
scheme and the results obtained here can be easily generalized
into other sampling schemes of which the simple random
sampling scheme is the building block.

It is often true that some information about the auxiliary
variable x is known and can be used to make inference about
y. For example, let § = {1, ..., i, .., N} and lets c Sbe a
simple random sample of size n. When X = (x, + ... + x)/N is
known, and x and y are correlated, the population average ¥
can be estimated by the ratio estimator y = (¥ /x)x, or by
the regression estimator y =y, + b(% - X,), where X, and ¥,
are the sample averages of x and y, respectively, and
b= Z(xi - fs)(}’,- - 75)/2(?‘,- - )_Cs)z-

Under very general conditions, both the ratio estimator and
the regression estimator are asymptotically normal; see Scott
and Wu (1981), Bickel and Freedman (1984), and Theorem 2.1
of Section 2. Hence, if v is a carefully chosen estimator of the
variance of 3, the standardized variable (3 - 7)/yv is
customarily treated to have the standard normal distribution.
Therefore, if z, denotes the upper «-percentile of the standard
normal distribution, then

(5 - 2,/% § * 2,/V) (1.1)

will produce an approximate 100 (1 — 20)% confidence
interval for y.

Confidence interval (1.1) is widely used in practice.
However, problems arise when it is applied to certain
populations. Royall and Cumberland (1981a, 1981b, 1985)
studied the ratio and regression estimators and applied them
to six real populations where strong correlations between x
and y seemed to exist. (See Section 3 for a summary of the six
populations.) Various estimators of the variance of y were
used. It was found that the actual conditional coverage rate of
the confidence interval (1.1), conditional on X, depended
heavily on the size of X, and were usually much lower than
the claimed coverage rate, even with the most adaptive
variance estimator. For example, the 95% confidence interval
for a population named Counties 70 had a conditional
coverage rate 76% with the jackknife variance estimator when
%, was small, and the conditional coverage rate could go as
low as 50% with other variance estimators.

The above mentioned studies point to the need to construct
confidence intervals that “will live up to their name” (Royall
and Cumberland 1985, p. 359). However, up to now there has
been little progress made in this direction. In this paper, we
present some results from studying an alternative procedure
for constructing confidence intervals and from applying it to
the six populations studied by Royall and Cumberland and
many others. As will be shown in Section 3, the conditional
coverage rate of our confidence intervals is more accurate.

Two important ideas, namely, transformation and empirical
likelihood, are used simultaneously to attack the problems
encountered by Royall and Cumberland in particular, and to
develop a new procedure in general. As explained in Cochran
(1977, p. 150), the preference in sample survey theory is to
make, at most, limited assumptions about the frequency
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distribution followed by the data in the sample. However,
ratio or regression estimator can help obtain increased pre-
cision by taking advantage of the correlation between y; and
x;. This, of course, can be described by some assumption(s),
such as an approximate linear relationship between y and x.
Although almost no further assumptions are necessary to use
the ratio or regression approach, the procedure (1.1) is clearly
based on an normal approximation. But as it is well known,
the normal approximation can be very poor when the
population distribution is severely skewed and the sample size
is small. In terms of procedure (1.1), the closer the estimator
distribution is to the normal, the better one can construct
confidence intervals. If the population distribution is severely
skewed, a transformation may produce a population distri-
bution that is at least more symmetric, so that the normal
approximation for the estimator is more accurate.

When using the ratio and regression estimators, knowing X
is crucial to gain improvement over the use of sample mean.
In our proposed procedure, the complete information about
the auxiliary variable x can be incorporated. But if X is the
only auxiliary information available, it is difficult to use this
information directly when a transformation is involved,
because any non-linear transformation obscures the link
between X and y. In this second case, we find the method of
empirical likelihood very helpful in solving our problem; see
particularly Owen (1988, 1990) and Chen and Qin (1992) for
references. The empirical likelihood method in this situation
can also be regarded as a calibration method as discussed in
Deville and Sarndal (1992). This approach rescues us from
losing information about x after transforming the data.

There have been many discussions on how to use transfor-
mations to make better inference on the transformed scale
(Box and Cox 1964; Carroll and Ruppert 1988; Calvin and
Sedransk 1991, and the references therein). There have also
been some studies on how to make inference on the original
scale, after a transformation is applied (Carroll and Ruppert
1984; Elliott 1977). What is new with our procedure is the
attempt to link the above two steps by combining transfor-
mation with auoxiliary information and/or by applying
empirical likelihood method when necessary.

The details of our procedure are given in Section 2. Then
our procedure is applied to the six populations studied by
Royall and Cumberland in Section 3. The validity of our
procedure in an arbitrary setting is demonstrated in Section 4
and some comments are made at the end of the paper.

2. THE NEW PROCEDURE

As mentioned in the last section, a problem with the
confidence interval (1.1) is that it will fail if the distribution
of (y-3)/ \/1_/ is severely asymmetric and far from the normal
distribution. The problem can be inherited from the skewness
of the population distribution. When the skewness is severe,
a central confidence interval procedure like (1.1) is doomed
to fail. The basic model employed by Royall and Cumberland
(1981a, 1981b, 1985) is

y; =0+ Px; v e, 2.1)

with E(¢,) =0, V(¢;) = ¢* and Cov(e;,€;) =0, fori #j. Itis
easy to find that for the six real populations studied by Royall
and Cumberland, the corresponding error distributions are
very skewed. These observations lead us to consider
transforming the variables y and/or x, and consider the model

h() =a+Bg(x) + oc,, 22

where h(-) and g(-) are two monotone functions. There are
many families of transformations suggested in the literature.
One commonly used family is the Box-Cox power transfor-
mation farnily defined by

Fd) - { (x*-1)/A when A =0,

log(x) when A =0.

Model (2.1) is a special case of (2.2) when both h and g equal
[ 1.

The choice of transformations in model (2.2) might be
suggested by an examination of the sample x's and y's based
on a possible model relationship, or by our subject knowledge
about the population under investigation. For example, for the
six populations discussed in Royall and Cumberland, the
population distributions are severely skewed towards the right
which can be learned from the nature of the finite popu-
lations. Therefore, a log transformation may make them all
less skewed. Other more objective methods of choosing
transformations are discussed in Section 4.

We emphasize that models (2.1) and (2.2) are used here to
motivate transformations, point estimators, or confidence
interval procedures. Our study of conditional coverage rates
will, however, be based on the probability measure generated
by the design, as in Royall and Cumberland (1985). For this
purpose, we embed our finite population in a sequence of
populations indexed by k. This means that a sub-index k is
needed to write N = N, and n = n,, etc., but for simplicity,
we will suppress the index k if there is no possibility for
confusion.

Let v, = h(y), u = gx), vy=N"'Yr v, and
iy =N1YY u,. Define

Zﬁl(ui - By)V;
By = S

N = 2
Yo (u, - )
Oy =Vy - Bylty,

€;=v;~ (ay + Byu),

2 1 LAY
gy = e’ .
N N—l;'
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Suppose s < § is a simple random sample of size n. We
similarly define

b= Lies (U~ BV
Zies(ui - ﬁs)z
a=v,-pu,
0% = ! Z(V;“ &—Bui)Z’
n-2%;

where & and v, are the sample averages.

Denote the inverse function of h(-) by A !(-). Then the
fitted value of y; 1s

J,=h7'@~+Pu) 2.3)

We discuss confidence interval estimation of y in two cases.
In the first case where all x; (i = 1, ..., N) are known, a natural
estimator of ¥ is (3, * Y., J)/N. However, for the
purpose of constructing confidence intervals for y, we study
the distribution of

N o a
Yo [ hi@+BwdRwm QY

instead, where F), (u) is the empirical distribution function of
the u, (i = 1, ..., N). Clearly, the distribution of (&) is
determined by the distribution of (&, ) which is descibed in
the following design-based theorem.

Theorem 2.1 Suppose that when k ~ «, both n = n, and

N-n=N,-n,goto~and

1. @=lm,_ N'TY u, exists.

2. N'YN ul=001).

3. o =lim,__ o7y =lim_ (N- 1) T} (- @y)* exists
and is greater than zero.

4. o®=lim, o} =lim,_(N-1)'Y" e exists and is
greater than zero.

5. NIYY e =0(1), NN, [(u;- ) e = OQ1).

. 25- - N — 2 . .
6. r=lim,__ (02, 0p)'N7' Y1 (4, - y)*e; exists and is
greater than zero.

7. f=1lim,__n/N exists and is less than 1.
Then

4} \/ﬁ(& - Gy, B - By)' converges in distribution to the
bivariate normal distribution N, (0,Y), where

—2 —

1 +u_.r —l.r

02 02

/3 u

Yy - B (1-f)d.
u

-——r —r
2
Oll ou
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(2) Let B, be any joint 100(1 - v) % confidence region for
(s, By) and define G, by

G,={y@p): (ap)eB,}, 2.5)
then,
Prob{y(cy.B)€G,} 2 1~-v,

where (cty, By) =¥ h (e + Byu)/N.
The proof is deferred to the Appendix.

We note that without underlying normality on the errors,
it is not easy to get an exact confidence region B, for (o, By)
for a specified confidence level 1 — y. The B, used in the
following discussion and the expressions built upon it are,
therefore, approximate.

Theorem 2.1 allows us to construct confidence intervals
for y(ay,By), but ¥ (ey,By) is notequal to y in general. This
is an intrinsic problem as long as a non-linear transformation
is used. If only a point estimator is needed, we would use the
regression estimator currently, and we suggest that the
methodology developed in this paper be used for interval
estimation. Bias corrections for ¥ (&, ﬁ) are, however,
possible, and a specific one is used in our simulation study.
Work on general corrections is under study.

According to Theorem 2.1, G,, is a conservative confidence
interval for y(e,,B,), which can also be regarded as an
approximate confidence interval for y. To improve the
coverage rate of G,, observe that the contours of y (e, f) in
a small neighborhood of O = (&, B)are approximately parallel
straight lines on the of} plane; see Figure 1. Let (g, b) be the

Beta

0.8 0.9 1.0

0L
)

c't

vl

eydyy
gL 9l

0e

x4

Figure 1. Contour plot of the bi-variate function ¥ (e, B) in the
neighbourhood of O = (&,[3), based on a random
sample of size 32 taken from population Cancer
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directional cosines of the direction EF along which the
contours increase. Then ¥ («,B) is (approximately) a
monotone functionof T, =a(a - &) + b(p - [3), where 7T, is
the corresponding change along the direction EF to the
changes in « and f3. A natural choice of B, is
B,={(p) : la(e- &) +b(P-P)| < cdr(y/2n-2)},

where ¢? = Var(Tn)/ a2, Var(T,) is the variance of T,, and
t(y/2; n - 2) is the upper y/2-percentile of the ¢ distribution
with n — 2 degrees of freedom. This B, is the region between
two parallel straight lines AB and CD in Figure 1.

A drawback of the above B, is that it is an unbounded
region. If the contours of ¥ (e, ) are not close to be parallel
and/or straight, this B, will lead to very conservative
confidence intervals. To guard against this possibility, we
construct a bounded elliptic region C, defined by those (o, B)
that satisfy

{n(oc - &)+ 2nu (e - &) (B-P) +

n(l_tzx + _I—ZM(—I)(B B) }

N\ A2.2
<|1-—=}6"t 12;n-2),
( N) (v )

where (1 — n/N) is part of the variances of & and B, because
we are doing sampling without replacement from a finite
population, and

n Y- By (v, - - B“i)z
r =

' {"Jzies(”i - ‘_‘N)Z}{(" =2 - - G”i)z}
2.6)

is a sample estimate of the quantity r in Theorem 2.1. The C,
thus defined is represented by the region inside the ellipse in
Figure 1 and has the property that it touches both boundary
lines of B, regardless of the direction (g, b). Therefore, when
y (&, B) is indeed a monotone function of T, C, produces the
same confidence interval for y as B,does. However, C, is less
vulnerable than B, if the contours of y (,(3) are not close to
be parallel and/or straight, because C,, shrinks to one point as
n increases. A confidence interval for ¥ corresponding to C,
is defined as

I ={y@p): (ap)eC,}. 2.7)

As the error distributions are more symmetric after the
transformation, the new confidence interval based on C, is
therefore expected to be better than the confidence interval
without transformation. Note that since all x; are known,
other approaches, such as optimal stratification and post-
stratification, may be better. However, optimal stratification

may not be possible in some cases as discussed in Cochran
(1977, p. 134). Also research is needed on the use of post-
stratification when the error distributions are severely skewed.

We now turn to the discussion of the second case where
X =( + ..+ xy/Nis known, but x, i = 1, ..., N, are
unknown. If we want to proceed as in the first case, one
approach is to estimate Fy(u) and somehow make use of the
information in X. The following empirical likelihood
methodology is found to be an effective way of doing this.
We outline the main ideas here; the interested reader should
consult Owen (1988, 1990) and Chen and Qin (1992) for
more details. The key idea is to maximize the (empirical)
likelihood functions under various restrictions formed by the
knowledge about some aspects of the parameters. For
example, in our problem, the knowledge is X. It is shown by
Chen and Qin (1992) that the resulting estimators with the
presence of restrictions are asymptotically more efficient than
those without restrictions.

Specifically, we estimate F),(u) in (2.4) by

Fyw) =Y p,Iu,<ul, (2.8)

ics
where the p, are chosen by maximizing

117 (2.9)

ies
subject to

P20, Y p=1, 3 px =%

ies i€s

(2.10)

If y, i € s are regarded as realizations of the random variables
Y, i € s, with distribution function F, the p; in (2.9) can be
defined by p, = F(Y) - F(¥,-), and (2.9) is called the
empirical likelihood function in Owen (1990).

Deville and S#rndal (1992) look at the above approach
from a calibration point of view. They suggest using unequal
weights for different units sampled to reflect their different
contributions, while keeping ¥’ p,x; = %. It is believed that if
these weights give a perfect estimate of X, they should also be
good for estimating y .

The solution to (2.9) and (2.10) will not exist if either the
minimum x value in a sample is greater than or equal to X, or
the maximum x value in a sample is less than or equal to X.
When this happens, one remedy is to replace (2.9) with

§€: (np,- 17, @.11)
subject to a milder constraint
Yp=1, gl’x =% (2.12)
Under (2.11) and (2.12), we have
p——+(x x)(x—x)/Z(x—x)2 (2.13)

les
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which always exists unless all the x; in the sample are the
same. The latter situation corresponds to the lack of a
covariate, which implies p, = n"! if ¥ = x,, or the solution does
not exist if X # x;. The function given in (2.11) is called the
Euclidean likelihood, which is asymptotically equivalent to
the empirical likelihood (2.9) (Owen 1990).

For our simulation study in Section 3, we suggest a bias
correction to be used in our computation. If h(w) = g(w) =
log(w), we suggest a corrected estimator of y as

5 (@.p) = f_:exp{&+ﬁui+-;— GZ}FN(u), (2.14)

ifall u,, i =1, ..., N are known, and replace Fy(u) by Fy ()
and # , in (2.6) by # when only X is known. This correction
is motivated by model-based considerations under a normality
assumption. Correspondingly, /, of (2.7) is corrected as

[}
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ID={y" (ap) : (@P)eC,}. (2.15)
When other power transformations are used, similar correc-
tions can be made using the results in Pankratz and Dudley
(1987).

3. APPLICATION TO SIX REAL
POPULATIONS

The six real populations studied by Royall and
Cumberland (1981a, 1981b, 1985) are summarized in Table 1.
Attention was given to the variety in the type of data
(demographic, economic, efc.), and in the logical relationship
between the x and y variables, when these populations were
chosen. Note that we have added 1 to the y values in
population Cancer in order to take the log transformation.

[ = s
n
[ =g -
L
[ =] -
(]
8 -
9_ -
s J
8 9 10 11 12 13
log(Y)
fac] e
2 .
- ._g:'
- - - lq r',.
o T F
3 o =
< " T
B
P>y - '.“_-;: 5
o .
6 7 8 9 10 11
log (X)

Figure 2. Histograms and scatter plots for the population Counties 70 before and after taking the log transformation
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Table 1
Summaries of the Six Populations

Table 2

Simulation results based on 10,000 simple random
samples of size 32

Population N x y o y) PUogk), — - - -
log(y)) Cancer Cities Counties 60 Counties 70 Hospitals Sales
Regression Method (regression variance)
Cancer 301 1.1288x 10* 4.0847x10' 0967  0.948 ,
Cities 125 26602x10° 2.8553x10° 0947  0.953 Ratio  3.26 3.65 3.05 2.90 362 294
Counties 60 304 89312x10° 3.2916x10*° 0998  0.998 Ner 0141  0.116 0.146 0.271 0098 0.176
Counties 70 304 8.9312x10° 3.6984x 10° 00982  0.991 . . .
Hospitals 393 27470x10° 8.1465x 10> 0911  0.943 Regression Method (jackknife variance)
Ner 0081  0.102 0.083 0.192 0.068 0.079

The Counties 70 data are plotted in Figure 2. The histogram
of y clearly indicates that the population distribution is
severely skewed, while the same plot for log(y) shows a
substantial improvement. Also, the scatter plot of log(y) vs.
log(x) shows a better linear relationship than the scatter plot
of y vs. x. The need and the benefit of taking transformation
is therefore obvious. Similar comments can also be made for
populations Cities, Counties 60 and Hospitals. For popu-
lations Cancer and Sales, the log transformation (or any other
power transformations) seem to weaken the linear relationship
that exists between x and y.

Now, we illustrate our new procedure by assuming
h = g = log in (2.2). Equations (2.9) to (2.15) are used to
perform the calculations. As in Royall and Cumberland
(1981b, 1985), for each of the six populations, we take a
simple random sample of size 32 and calculate %, 5~ (&, )
and construct a 95% confidence interval I,. We repeat this
process 10,000 times for each population. The results are
reported in Table 2 under the title “Transformation Method”
when all x values are known, and under the title “Empirical
Likelihood Method” when only X is known. The term ratio
denotes the average length of the confidence intervals divided
by the root mean square error for each population. The non-
coverage rate (Ncr) is the proportion of intervals that fail
to contain the population average ¥. The quantities under
the titles “Regression Method (regression variance)” and
“Regression Method (jackknife variance)” are obtained using
the same method of Royall and Cumberland (1981b) when the
usual regression variance and the jackknife variance of ¥ are
used, respectively, but for 10,000 random samples instead of
the original 1,000 samples. The results under “Empirical
Likelihood Method (created population)” are to be explained
in the next Section.

Next, we follow Royall and Cumberland to make design
based inference and to study the conditional coverage pro-
perties of several interval estimation procedures. Specifically,
we divide the confidence intervals into 20 groups according
to the size of X, and plot the proportions of intervals in each
group that fail to contain the population average y. For each
specific group, the proportion of those intervals that lay above
(below) y is plotted above (below) the horizontal line.
Figure 3 contains such plots for the Counties 70 data. The top
two plots show the non-coverage rates of the regression
method using the usual regression variance and the jackknife

Transformation Method (all x values are known)

Ratio 5.08 4.00 3.75 3.76 4.04 5.41
Ner 0.018 0.074 0.053 0.069 0.042 0.001

Empirical Likelihood Method (only % is known)

Ratio 5.12 3.74 3.37 3.69 4.15 4.90
Ner 0.017 0.082 0.081 0.082 0.037  0.006

Empirical Likelihood Method (created population)

Ratio 3.92 3.92 3.97 3.96 3.90 3.99
Ncer 0.057 0.059 0.055 0.058 0.059 0.059

variance for y ; the middle two plots show the non-coverage
rates of our new procedure. The bottom left plot will be
explained in Section 4. As can be seen clearly, our new
procedure with a log transformation produces substantial
improvement. For populations Cities, Counties 60 and
Hospitals, our new procedure also produces some improve-
ment (plots are not shown here). For populations Cancer and
Sales, the new procedure produces very conservative resuits.
This is likely due to the fact that the log transformation (or
any power transformation) actually weakens the linear
relationship between x and y.

We have also performed simulations for sample sizes 16
and 64, and/or for target coverage rate 90%. The results are
very similar to what we have presented.

4. DISCUSSION

We use the log transformation in some of our discussions
because it is perhaps the most frequently used transformation
in practice. Nevertheless, there exist more objective methods
to select transformations. One such a method is the well known
Box-Cox power transformation which we have mentioned;
see Box and Cox (1964), Box and Tidwell (1962), Carroll
and Ruppert (1988). Another recent method is based on a
procedure called alternating conditional expectation (ACE)
(Breiman and Friedman 1985, De Veaux and Steele 1989).

There are other possibilities to improve conditional cov-
erage rate. One such a possibility is to employ asymmetrical
error distributions such as the inverse Gaussian family
(Whitmore 1983). Another possibility is to adopt quasi-
likelihood (Nelder and Pregibon 1987) to finite population
problems.
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Figure 3. Plots of conditional non-coverage rates for the population Counties 70 based on 10,000 simple random samples of size 32. Reference
lines are drawn at 2.5% and the expected non-coverage rate is 5%

The validity of our new procedure is also demonstrated in
the following simulation study. For each of the six real popu-
lations, we create a new population by replacing the original
y; values with

v =exp{é + Plog(x) 0e,},
where @, Gand 6 are the parameter estimates from fitting

model (2.2) with h = g = log to the old population, and €, are
generated as i.i.d. standard normal variates. Using the six

created populations which are fixed, we repeat the simula-
tions as in Section 3 for the case where only X is known.
Table 2 contains the summary of this simulation study, and
the non-coverage plot for the Counties 70 data is shown at the
bottom left corner of Figure 3. (Non-coverage plots for other
populations look very similar to this plot.) It is clear from this
study that when the finite population is generated from a
super-population model like (2.2) with a normal error distri-
bution, our new procedure gives the correct conditional cover-
age rates. Furthermore, we decrease the correlation between
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x and y to as low as (0.5 for each of the six populations by
increasing & and repeat the above simulations. The results are
as good as those shown in Table 2 and Figure 3.

Although only the simple random sampling scheme is
considered in this paper, the proposed procedure is applic-
able as long as (i) there is a linear correlation between A(y)
and g(x) for some monotone functions # and g, and (ii) either
Fy(u) or FN (u) can be found. Since the six populations
studied here are carefully chosen to be representative, our
new procedure is expected to be useful to study other finite
populations.
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APPENDIX

Proof of Theorem 2.1 (1). For any given real numbers ¢,
and ¢t,, we have

16 - o) +L,(B- B, =

-1 2 I_.' —
tn Z e+ ———— Z (u, - d)e,.

fes Zie\'(ui B a.\' )2 fes
From Conditions 1, 2 and 3, we have

-1 —\2 2
n Z(ui—u_\,) -0,

ies

ﬁxﬁ L_l’

Therefore, we can write

10— o)+ (B - By =

t, -t
-1 21 -1 ~ -V
Ln E e, + —n E (u;,-)e, + op(n 3.

i€y i€s
OM

The Lindeberg-Hdjek condition is satisfied for fe; +
t, - tlﬁ/oi (u; - #)e, under the moment condition 5, see
Hajek (1960), Scott and Wu (1981) and Bickel and Freedman
(1984). Together with Conditions 4, 6 and 7, the desired
result follows by using the Cramér-Wold device.

Proof of Theorem 2.1 (2). Because there may be other
values (a’,p") € B, for which y(a’,B") = y(e,B) for some
(a,B)€ B,,G, is always conservative.
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