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Variance Estimation for Calibration Estimators:
A Comparison of Jackknifing Versus Taylor Linearization

DIANA M. STUKEL, MICHAEL A. HIDIROGLOU and CARL-ERIK SARNDAL'

ABSTRACT

The use of auxiliary information in estimation procedures in complex surveys, such as Statistics Canada’s Labour Force
Survey, is becoming increasingly sophisticated. In the past, regression and raking ratio estimation were the commonly used
procedures for incorporating auxiliary data into the estimation process. However, the weights associated with these
estimators could be negative or highly positive. Recent theoretical developments by Deville and Sarndal (1992) in the
construction of “restricted” weights, which can be forced to be positive and upwardly bounded, has led us to study the
properties of the resulting estimators. In this paper, we investigate the properties of a number of such weight generating
procedures, as well as their corresponding estimated variances. In particular, two variance estimation procedures are
investigated via a Monte Carlo simulation study based on Labour Force Survey data; they are Jackknifing and Taylor
Linearization. The conclusion is that the bias of both the point estimators and the variance estimators is minimal, even under

severe “restricting” of the final weights.
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1. INTRODUCTION

Auxiliary information has many uses in survey sampling.
One typical use is its incorporation at the estimation stage
through the use of regression estimators or raking ratio esti-
mators. For these estimators, a unit’s sampling weight is
multiplied by an adjustment factor to produce the final
weight. A well-known shortcoming associated with the
regression estimator is that some of the adjustment factors
may be negative, resulting in negative final weights. On the
other hand, for the raking ratio estimator, some adjustment
factors may be very large and positive, resulting in unduly
large final weights. These shortcomings can be overcome by
considering a family of estimators, known as “calibration
estimators”. Developed by Deville and Sidrndal (1992), the
estimators in this family incorporate auxiliary information,
and in certain cases, non-negative weights can be ensured by
prespecifying lower and upper bounds on the weights. These
“calibration” weights are obtained by minimizing functions
which measure the distances between original sampling
weights and final calibrated weights, while respecting a set of
benchmarking constraints. Huang and Fuller (1978) and
Singh and Mohl (1996) have developed similar estimators
which maintain the above properties. Ordinarily, there are
very small differences between the point estimates cor-
responding to the various distance functions.

Historically, Statistics Canada’s Labour Force Survey
(LFS) has used, at different points in time, both the Taylor
and Jackknife variance estimation techniques in tandem with
regression and raking ratio estimators. Recently, the LFS has
also allowed for the option of using other calibration esti-
mators in addition to the previously available regression

estimator, to eliminate the problem of potential negative
weights. It is therefore of interest to investigate the behaviour
of these point estimators and their corresponding Taylor and
Jackknife variance estimators, particularly for those esti-
mators that allow bounding on the weights. Therein lies the
main focus of this paper. Now, both the Taylor and the
Jackknife have their advantages. The Taylor method is com-
putationally much less intensive than the Jackknife method,
but requires working out new expressions for each different
parameter that is considered, this is particularly a burden in
multipurpose surveys where many different parameters may
be of interest. On the other hand, for the Jackknife method,
cumbersome variance expressions need not be derived for
each new parameter; only the functional form of the point
estimator itself is required.

The paper is structured as follows: section 2 provides the
theoretical underpinnings of calibration estimation and intro-
duces a family of related distance functions. In section 3,
variances for calibration estimators are discussed. Section 4
provides the results of a Monte Carlo simulation study, in
which the bias of both the point estimators and their cor-
responding Taylor and Jackknife variance estimators (relative
to a “true” variance) is tracked, for a variety of distance func-
tions from calibration theory. In section 5, some concluding
remarks are made.

2. DISTANCE FUNCTIONS AND CALIBRATION
ESTIMATORS

We begin by introducing the basic idea behind calibration
estimation. Let U = {1, ..., k, ..., N} denote the index set for
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the N units of a finite population of units. In survey sampling,
one is often interested in estimating parameters of a finite
population such as totals, means and ratios. For the sake of
simplicity, we will focus on totals, although the ideas
presented in this paper may easily be extended to include
other parameters. Thus, suppose the objective is to estimate
the population total Y =}, y,, where y, is the value of y,
the variable of interest for the k-th population unit.

A probability sample s is drawn from U by a given
sampling design which induces the inclusion probabilities
1, = P(kes). These are assumed known and positive. Let
a, = 1/, be the sampling weight associated with the k-th unit.
Finally, let the auxiliary information be specified in the form
of known population totals of one or more auxiliary variables.

An elementary estimator of Y is the Horvitz-Thompson
(HT) estimator:

Y, = > 4V

kes

The HT estimator possibly but not necessarily (depending
on the sampling design) incorporates auxiliary information at
the design stage only; what is sought is an improved estimator
which incorporates the auxiliary information at the estimation
stage, as well. The incorporation of auxiliary information can
be reflected in the creation of new weights, denoted by w,;
kes. The new estimator is then of the form:

=3 Wiy @.1)

kes

The approach of Deville and Sarndal (1992) and Deville,
Séarndal and Sautory (1993) involves determining these new
weights {w,: kes} by making them as close as possible to the
original sampling weights {a,; kes} according to a specified
distance function. Constraints placed on the new weights are
such that, when applied to each of the auxiliary variables, the
known population total X is reproduced. That is,

wx, =X
g k" k (2.2)
is required to hold, leading to a problem in constrained
minimization. Here x; = (x};, X5 s xpk)is a vector of length
p containing the values of the auxiliary variables for the &-th
individual, and the auxiliary information available from an
external source is summarized by the known vector total
X =Yeve

We denote the distance from w, to a, by F*(w,, a,). Deville
and Siarndal (1992) limit their discussions to distance
functions of the form F*(w,, a) = a,cF(w/a,) where
w,/a, = g, the ratio of the final calibrated weight to original
sampling weight, is called the “g-factor”. Here c, is a known
positive weight unrelated to a,; the uniform weighting ¢, = 1
is often used in applications. Note that equation (2.1) can
alternatively be written as:

f}w = E a4 8y Vi

kes

It is assumed that F is non-negative and convex, and that
F(1) =0, implying that when w, = a, the distance between the
weights is zero. Moreover, it is required that F” is continuous,
one-to-one, and that F'(1) = 0 and F”(1) > 0 which makes
w, = a, a local minimum. (See Deville, Sérndal and Sautory
1993.) The total distance, ), a,c, F(w,/a,), is minimized
subject to the constraint (2.2). That is,

Y a,c,Fwla,) - 1'( Y owex, - X)

kes kes

is minimized with respect to the w,, where A is a p-vector of
Lagrange multipliers. Differentiating with respect to w,,
equating to zero, and solving for w, leads to the calibrated
weights w, = a, g, = q, g(A'x,/c,) where g is the inverse
function of f and f(z) = dF(z)/dz. To compute w,, one must
first obtain A as the solution of the calibration equation
implied by (2.2), namely,

Y a.g0x,ic)x, = X. (2.3)

kes

The solution of this (possibly) nonlinear system of p
equations in p unknowns may require the use of some itera-
tive procedure, such as the Newton-Raphson method.

A number of distance functions are considered by Deville
and Sérndal (1992), Huang and Fuller (1978) and Singh and
Mohl (1996). Two important distance functions which we
first discuss are the Generalized Least Squares (GLS) distance
function and the Raking Ratio (RR) distance function, both
given in Deville and Sérndal(1992).

The GLS distance function is defined by:

F*(w,a) = Fgsw,.a,)
=c,w, - a)la, = a,c,(wila, - 1. (2.4)

It generates the well-known generalized regression
estimator (GREG), which encompasses as special cases the
ratio estimator, the simple regression estimator, and the
simple post-stratified estimator, among others. It follows from
(2.3) that the calibrated weights corresponding to the GLS
distance function are:

w,o=a,g, =a,[l+(X- }fa)’( Y ajx].xj’/cj) _lxk/ck]

jes

where fa =Y ies X, is the HT estimator of X. The
corresponding estimator of Y can be written in the usual
regression estimator form as

Y

WGREG) Ya + (X - "241)11’3 (2.5)

where

~ , _1
p= ( Z XXy /ck) kE a Xy, /e, (2.6)
€3

kes
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Thus, the regression estimator can be thought of as the HT
estimator plus an adjustment term. A drawback of the GLS
distance function is that it may give rise to negative weights,
particularly if the system is overconstrained. In practice,
negative weights are rare; however, it is desirable to eliminate
them entirely since it may be difficult to give them any
meaningful interpretation.

The Raking Ratio (RR) distance function is defined by:

F (w,,a,) = FR*R (w,,a,)
c lw log(w, /a)-w, +a, 2.7

=a,c [(wla)log(w,ja,) - (w./a,) + 1].

Solving for g-factors using the RR distance function and
the constraint defined by equation (2.3) can be shown to be
equivalent to using the Iterative Proportional Fitting (IPF)
algorithm of Deming and Stephan (1940) when calibrating on
known marginals of frequency tables of dimension two or
higher. Unlike the GLS distance function, which has a closed
form solution, the calibration equations for the RR distance
function can only be solved iteratively. Computer software
exists for this purpose; for example, the CALMAR software
(see Deville, Sdrndal and Sautory 1993) solves the calibration
equations for the RR distance function using the Newton-
Raphson method, rather than the IPF algorithm originally
proposed by Deming and Stephan. The RR distance function
always ensures positive weights; however, it also has the
undesirable property that some of the resulting calibration
weights can be excessively large.

Neither the possibility of negative weights produced by the
GLS distance function nor the possibility of large positive
weights produced by the RR distance function are desirable.
One can define restricted distance functions whereby the
range of the resulting weights w, are limited. This is achieved
by imposing restrictions on the distance function F(w,/a,) in
such a way that the g-factors g, = w,/a, are bounded within
a prespecified interval. To this end, one can specify a lower
bound L and an upper bound U, such that L < 1 < U. To
guarantee positive weights, one would choose L > . Now,
Deville and Sirndal (1992) define restricted versions of the
two distance functions given above; they are: the Restricted
GLS (RGLS) distance function and the Restricted Raking
Ratio (RRR) or Logit distance function. Two other methods
of restricting final weights are proposed by Huang and Fuller
(1978) and Singh and Mohl (1996). All four restricted
distance functions are considered in this paper; they are also
discussed in detail in Singh and Mohl (1996), but from a
different perspective.

The Restricted GLS distance function is defined by:
Fr(wa,) =
¢ (w, - ak)zlak if L<w/a <U

F*G sw.a,) =
Ree { « otherwise. (2.8)
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The Restricted RR (or Logit) distance function is defined
by:

F (W) = Frgp(W,,a,) =
A ‘lck[(wk/ak - Lylog[(w, /a, - L)1 - L)]
+(U-wa)log[(U - w,la)/(U- 1]

if L< wla, <U
2.9)

o otherwise

where A = (U - L)/{(1 - LY}(U~ 1)}. The specification L =0,

=« gives the RR distance function. It is easy to show that
the Restricted GLS and Restricted RR distance functions
share the property that the corresponding weights w, satisfy
L<w/a,<U.

Now, Huang and Fuller (1978) propose a method for
adjusting regression weights such that the calibration
constraints given by equation (2.2) are satisfied and such that
the g-factors are restricted to lie close to one. Singh and Mohl
(1996) show that their method can be written in terms of
minimizing a distance function which changes from iteration
to iteration. Singh and Mohl also modify the original method
to allow for arbitrary restrictions on the g-factors, similar to
the restricted distance functions above, and show that the
estimator resulting from the modified distance function is
asymptotically equivalent to the regression estimator. The
Modified Huang-Fuller (MHF) distance function is given by:

Frowl a) = Farmw ™", a)

= - a)Ma, gl " v=1,2,.. (2.10)
where ¢;" "= ¢""..q" ¢” with ¢ = 1 and where v is
the iteration number. Here,

1 if &<
g ={1-8EY "~ 57 i 5« gfj“’<1
(1-8/ayg" " if g0

for & arbitrarily chosen such that 0 < & < 1. Also

o _ V- -1 it gl V<
k
@ - I - 1) otherwise

where L' =al +1 - aand U' = alU + 1 - o for « arbitrarily
chosen such that 0 < o < 1 and L and U are as in earlier
restricted distance functions. The parameters « and 0 serve to
speed up the convergence of the iterative algorithm used to
provide a solution. Singh and Mohl (1996) empirically test a
variety of values for these parameters using large data sets,
and suggest that o = .67 and & = .8 work well in practice.
Finally, the g-factor at each iteration is
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-1 _
' =

5(v-2)., v-2)* , -1
1 +(X—X(w )) (jze;ajqj( ) XX ) x,; v=23,.
where X077 =¥, w Px; v=2,3,.. and where wi' > =
a8 ?; v=2,3,... Starting values are given by g{” =1
and w® =a,.

Singh and Mohl (1996) also propose a new distance
function which changes from iteration to iteration called the
Shrinkage-Minimization (SM) distance function, and show
that the estimator resulting from this distance function is also
asymptotically equivalent to the regression estimator. It is
given by:

oo (V1) _pWx . (v-1)
Fiw, “a) =Fgy (W “.a,)

=w V- al Vel v=1,2,0 (211)

where

7 : (v-1) "
La,  ifw, "<L"q

~1)=* . -
a,EV - U'ak if wk(v Dy U'aq, v=2,3,..

v-1 .
w,g ) otherwise.

Terms in the above equations are defined as follows:
L=celL+(Q-0),U=0U+(1-a),L"=mL+(1-n) and
U” =nU + (1 - n) for « and n arbitrarily chosen such that
0 < o < m < 1. As before, the parameters « and 1 serve to
speed up the convergence of the iterative algorithm used to
provide a solution; Singh and Mohl (1996) suggest that
a = .67 and n 9 work well in practice. Finally,

k(v_l) = akg,fv_l); v =2,3,.. where

(v-2)=
w-1) _ Gy
A -
jes

Aly— v-2)* -1
1+ (X—X(; 2))’(Zaj( 2 xjxj') xk};

k

and where f(:_z) is as before. Starting values are given by
a? =a, and w =q,.

A property of the Modified Huang-Fuller and Shrinkage-
Minimization distance functions is that the calibration
constraints (equation (2.2)) are met at every iteration whereas
the range restrictions on the g-factors are met only upon
convergence. For the Restricted GLS and Restricted Raking
Ratio distance functions, the range restrictions on the
g-factors are met at every iteration whereas the calibration
constraints are only met upon convergence. Now, it is often
useful to specify an upper bound on the number of iterations
to convergence; this feature may be programmed into the
iterative algorithm for operational expediency. If this upper
bound is exceeded due to slow convergence, the iterative
algorithm may be terminated prematurely. Regardless, for the
Modified Huang-Fuller and Shrinkage-Minimization distance
functions, the calibration constraints will be met. Likewise,

for the Restricted GLS and Restricted Raking Ratio distance
functions, the range restrictions will be met.

Now, the behaviour of the g-factors from some of the
distance functions has been studied extensively; see, for
example, Deville, Sidrndal and Sautory (1993). Stukel and
Boyer (1992) empirically show that the GLS and RR distance
functions, as well as their restricted counterparts having loose
bounds imposed on them, give g-factors whose distributions
over a given data set adhere to normality rather closely.
However, as the bounds on the restricted distance functions
are squeezed together more closely, the distributions exhibit
a “pile-up” of g-factors at the lower and upper bounds.
Regardless, even under extreme squeezing, the restricted
distance functions seem to give point estimates that are close
to their unrestricted counterparts, as the results of our em-
pirical study will verify. However, the biases of both the point
and variance estimators under extreme squeezing on the
restricted distance functions have not been investigated. This
investigation is of interest to surveys such as the LFS, where
an augmentation to the current estimation system has been
implemented, which now allows users the option of choosing
from amongst the Restricted GLS distance function and the
Shrinkage-Minimization distance function, in addition to the
previously available GLS distance function.

3. VARIANCE ESTIMATION FOR CALIBRATION
ESTIMATORS

The exact variance of the calibration estimator fw is
intractable since the point estimator itself is nonlinear. In
addition, there is no explicit unbiased method of variance
estimation. Therefore, approximately unbiased methods, such
as the Taylor and the Jackknife, are often used in practice.

Now, for stratified multistage designs, “with replacement”
sampling is not often used in practice since the possibility of
drawing the same unit more than once is unappealing. There-
fore, the preponderance of surveys use “without replacement”
sampling, at least at the first stage of sampling. Even so, if the
first stage sampling fraction is small (say, less than 10 percent
as a rule of thumb), it may be reasonable to use a simplified
variance formula that assumes “with replacement” sampling
at the first stage of sampling. For the generalized regression
estimator (GLS distance function) under a stratified multi-
stage design this simplification of the variance estimator
yields:

r( w(GREG)) =

n, 2

1 &
Z Z Qi Chir ~ —E E Qi Chik 3.1

P Pl S v Ny, i=1 kesy

I3
n,

where s,; is the sample of individuals in the i-th primary
sampling unit (PSU) and the h-th stratum, a,; is the original
sampling weight under the stratified multi-stage design for
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sampled individual k in PSU { and stratum A, and n, is
the number of sampled PSUs in stratum h. Also
€ = Ynx ~ X ,;ikf} is the estimated residual associated with the
regression estimator where P = (Y .. @i X X lc) !
Y ikes Bnix Xnik Ynie/Chz- For many designs, the “with
replacement” formula given by (3.1) overestimates the true
variance (see Siarndal, Swensson and Wretman 1992, section
4.6). Note that although, technically speaking, this simplified
variance estimator is not the Taylor variance estimator, it is
often referred to as such for historical reasons and so will it
be in this paper.

An improvement to equation (3.1), which includes the
g-factor in the variance formula (recall that w,, = a,,.£,. ). i
suggested by Hidiroglou, Fuller and Hickman (1980). It is
given by:

n, 2

1 ¢
22 Wil =Y Y waenl G2

b1 My = 13T [kesy, M, is1 kesy

ny,

An analogue of equation (3.2) is also suggested by Sidrndal
(1982) in the context of two-stage sampling, but for Yates-
Grundy type variance estimators. Now Deville and Sarndal
(1992) show that any distance function which obeys a set of
general conditions will produce an estimator that is asympto-
tically equivalent to the one produced by the GLS distance
function, that is, ?W(GREG) given by (2.5). Singh and Mohl
(1996) extend this result to include the Modified Huang-
Fuller and Shrinkage-Minimization distance functions. As a
result, the asymptotic variance of the calibration estimator fw
can be considered to be roughly equal to that of YW(GREG).
This observation leads to a method for estimating the Taylor
variance which is common to all calibration estimators,
namely, to estimate the variance of fw using a modification
of the Taylor variance estimator employed for YW(GREG),
rather then rederiving the Taylor formula for each of the
distance functions separately. Thus, whenever a variance
estimator associated with a distance function different from
the GLS is required, equation (3.2) is used, replacing the final
weights {w,;,} from the GLS distance function with those
from the distance function in question.

It is straightforward to apply the Jackknife procedure to
obtain a variance estimator for ?w, regardless of the distance
function used to obtain the final calibrated weights. An
expression for the variance formula under a stratified multi-
stage design using with replacement sampling at the first stage
is given by:

- A L -1 .
V)= S (7 hi) - 7 (33)
h=1 i=1

n,

where Yw(h i) is often referred to as the “replicate estimator”;
“replicates” are formed by taking what remains of the sample
after removing PSU i from stratum A. Thus, ?w (hi) is
calculated by recomputing ?w after removing the i-th PSU
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from the h-th stratum, A=1, ..., L; i =1, ..., n,, i.e., with the
original sampling weights altered to reflect the PSU removal
and the g-factors recalculated based on the reduced sample or
replicate. Finally, the Jackknife estimator is constructed by
repeatedly removing PSUs one at a time, calculating the
corresponding replicate estimator, and then assembling the
final estimator using (3.3). The Jackknife variance estimator
given by (3.3) is the most conservative among the four varia-
tions suggested in the extensive discussion on the subject by
Wolter (1985).

It is interesting to note that, for the GREG estimator, Yung
and Rao (1996) obtain (3.2) as an approximation to the
Jackknife variance estimator given by (3.3); they call (3.2) the
“Jackknife Linearization Variance Estimator”. Their simul-
ation study shows that biases (both conditional and uncon-
ditional) of the Taylor variance estimator (equation (3.1)), the
Jackknife Linearization variance estimator (equation (3.2))
and the Jackknife variance estimator (equation (3.3)) behave
similarly. While their simulation focuses on variance esti-
mators for the unrestricted GREG estimator, our simulation
study, which we discuss next, focuses on variance estimators
for the GREG as well as for estimators based on other
restricted and unrestricted distance functions.

4. MONTE CARLO SIMULATION STUDY

4.1 Design of the Study

In order to compare the performance of the calibration
estimators and their corresponding Taylor and Jackknife
variance estimators, we undertook a Monte Carlo simulation
study, in which we investigated their finite sample design-
based frequentist properties.

December 1990 Labour Force Survey (LFS) sample data
for the province of Newfoundland was used to simulate a
finite population, from which repeated samples were drawn.
The LFS is the largest ongoing household sample survey
conducted by Statistics Canada. Monthly data relating to the
labour market is collected using a complex multi-stage
sampling design with several levels of stratification. The
details of the design of the survey prior to the 1991 redesign
can be found in Singh, Drew, Gambino and Mayda (1990).
In general, provinces are stratified into “economic regions”,
which are large areas of similar economic structure; New-
foundland has four such economic regions. The economic
regions are further substratified into “self-representing units™
(SRUs) and “non self-representing units” (NSRUs), which
are, in turn, further substratified into lower level substrata.
SRUs are cities whose population exceeds 15,000, such as
St. John’s and Cornerbrook, in the case of Newfoundland.
Now, the lowest level of stratification in Newfoundland
yielded 45 strata, each of which contained less than 6 primary
sampling units (PSUs), which was an insufficient number
from which to sample, for the purposes of the simulation.
Thus, the 45 strata were collapsed down to 18, each
containing between 6 and 18 PSUs. In collapsing the strata,
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economic regions were kept intact, as were the Census
Metropolitan Areas (CMAs) of St. John’s and Cornerbrook.

For the Monte Carlo study, R = 4,000 samples, each of size
approximately 1,000, were drawn from the Newfoundland
“population” (which was of size 9,152), according to a two-
stage design. For collapsed strata belonging to NSRUs, two
PSUs were selected at the first stage using Probability
Proportional to Size (PPS) with replacement (WR) sampling,
where the size measure used was the number of dwellings in
the PSU. At the second stage, one in five dwellings were
selected from the sampled PSUs using Simple Random
Sampling (SRS) without replacement (WOR). For collapsed
strata belonging to SRUs, three PSUs were selected at the
first stage using PPS WR sampling. At the second stage, all
the dwellings in the sampled PSUs were selected, reducing
this part of the design to one-stage take-all cluster sampling.
This feature was necessary since there were not enough
dwellings per PSU to subsample in SRUs. The selection of
two PSUs in NSRU strata versus three in SRU strata was
driven by the fact that, in general, NSRU strata had fewer
population PSUs from which to sample than did SRU
strata. In all, there were 47 sampled PSUs. In either case
(NSRUs or SRUS5), all dwelling members were included in the
sample. Although this design is a hybrid between a one and
two-stage design, we shall refer to it as a two-stage design, for
convenience.

We took Y, the total number of unemployed, to be the
parameter of interest. This was calculated from the finite
populationby: Y =Y, .y, = szz ¥, where y, = 1 if individual
k was unemployed; 0 otherwise. For each of the R = 4,000
samples, we calculated Y , the estimated total number of
unemployed as Y Zkeswkyk The {w,:kes} were deter-
mined by the followmg six distance functions discussed
earlier:

(1) the Generalized Least Squares (GLS) Distance Function
(equation (2.4)),

(2) the Raking Ratio (RR) Distance Function (equation
2.7)),

(3) the Restricted GLS (RGLS) Distance Function (equation
(2.8)),

(4) the Restricted RR (RRR) or Logit Distance Function
(equation (2.9)),

(5) the Modified Huang-Fuller (MHF) Distance Function
(o = .67, & = .8) (equation (2.10)), and

(6) the Shrinkage-Minimization (SM) Distance Function
(o =.67, n =.9) (equation (2.11)).

For the latter four distance functions, the following four
sets of bounds were imposed on each to restrict the
minimization: 1) L=0,U=4, (ii)) L= 4, U=2, (iii) L = .68,
U =16 and (iv) L = .8, U = 1.3. This yielded a total of
eighteen point estimators. For each of the eighteen point
estimators, the calibration used auxiliary information based
on Census projections at the province level for 10 mutually
exclusive and exhaustive age/sex categories (age categories:
< = 14, 15-24, 25-44, 45-64, > = 65 crossed with the two
sexes) and the four economic regions of Newfoundland.

Thus, the auxiliary information for each individual was a
vector of length fourteen having exactly two ones and twelve
zeros. However, for computational purposes, the dimen-
sionality of the vector had to be reduced to thirteen when
using the Newton-Raphson procedure to solve equation (2.3).
For the first four distance functions, we set ¢, = 1.

For each of the R = 4,000 samples and each of the eighteen
point estimators, we calculated the Jackknife variance esti-
mator given by equation (3.3). We also calculated the Taylor
variance estimator given by equation (3.2), and the modifica-
tion suggested in section 3 was used for distance functions
other than the GLS. Note that since PPSWR, rather than
PPSWOR, was used at the first stage of sampling, the use of
the variance estimator given by equation (3.2) was entirely
appropriate for our simulation. Finally, for the GLS distance
function only, the formula (3.1) was calculated to observe the
impact of omitting g-factors from the variance estimator.

For each of the six distance functions given above, a
number of frequentist properties were investigated. These are
given below.

(A) The Percent Relative Bias of the Estimated Number of
Unemployed (with respect to the population value) is
estimated by:

E, (Y)-Y
L"’)__*IOO 4.1
where
N 1 &
w(¥) =—
o-13i,

is the Monte Carlo expectation of the point estimator Y
taken over the R samples, and Y is the value of Y for
sample r.

(B) The Percent Relative Bias of the Taylor/Jackknife
Variance Estimator (with respect to the true variance) is
estimated by:

E,VE)N-V,.)

* 100 4.2)
VIIue
where
N s 1 & s s
E,VE@)==Y V(T
R r=1
and
1 R
Viwe =5 2 (T, - Ey(F))
R A

and Vr(Yw) is the value of V(Yw) (Taylor or Jackknife) for
sample r.

(C) The Percent Coefficient of Variation of the Taylor/
Jackknife Variance Estimator (with respect to the true
variance) is estimated by:
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M=

1
\R =

—

* 100 4.3)

V(F)-V_ )
1%

true

i.e., the root mean squared error of the variance estimator
divided by the true variance, expressed as a percentage.
Although most studies focus on the bias of the variance
estimators, it is also of secondary interest to look at the
coefficient of variation of the variance estimators to see how
variable the variance estimates themselves are.

Note that in equations (4.2) and (4.3), it may have been
more appropriate to make comparisons relative to a “true
mean squared error” rather than a “true variance”. However,
for our simulation, the relative biases were so small that the
differences between the two types of comparisons are vir-
tually negligible.

Finally, in order to assess the appropriateness of the choice
of number of repeated samples, we calculated Monte Carlo
errors, using as a measure the Percent Coefficient of Varia-
tion of E M(V(Yw)), given by:

4.4)

E,(V({¥,)

The Monte Carlo errors were found to be consistently low
(between .99% and 3.60%) for both the Jackknife and Taylor
using R = 4,000, indicating stable results.
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4.2 Results of the Study

Table 1 gives the Percent Relative Bias of the Point Esti-
mators (equation (4.1)) as well as the Percent Relative Bias of
the Taylor and Jackknife Variance Estimators (equation (4.2))
and the Percent CVs of the Taylor and Jackknife Variance
Estimators (equation (4.3)). The percent relative bias for all
the point estimates (column two) is negligible, ranging in
value from 0.10% to 0.52%, but much less than 1% in all
cases. The fact that all point estimates have a similar bias
seems reasonable, given the asymptotic equivalence of all
calibration estimators to the regression estimator.

The third column gives the percent relative bias of the
Taylor variance estimator. Here, the true variance is always
underestimated, but never by more than 6.2%. In the case of
the regression estimator, it appears to make little difference
whether or not the g-factor is included in the variance formula
(equation (3.1) versus (3.2)); the bias improves only slightly
for the case of the g-factor included (~5.82% versus -6.01%).
The Jackknife variance estimator (column four), on the other
hand, outperforms the Taylor variance estimator uniformly.
The Jackknife almost always underestimates the true variance,
but by less than 2% in all cases.

To produce a solution, all distance functions but the GLS
required an iterative algorithm. This being the case, some of
the 4,000 samples experienced convergence problems, parti-
cularly in the case of extreme bounding on the g-factors.
Those samples for which the algorithm did not converge were
discarded. Thus, they did not contribute to the various Monte
Carlo measures. The number of such discarded samples is

Table 1
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and
Jackknife Variance Estimators (Sample Size About 1000)

Percent "Percent Percent p C p cv Number of
Di R . Relative Relative Relative crcenlt v erc;lr(xltl. ‘ Discarded
istance Function BiasPoint  Bias Taylor Bias Jackknife Taylor fackknife Samples

Estimator Variance Variance Variance ariance (From 4000)

GLS (Regression) A1 -6.01 (eq 3.1) -1.73 60.79 (eq 3.1) 62.86 0
-5.82(eq3.2) 59.60 (eq 3.2)

Restricted GLS (L=0,U=4) 1 -5.82 -1.73 59.60 62.86 0
(L=4,U=2) .10 -5.36 -1.27 59.93 63.21 32
Raking Ratio 52 -6.20 0.84 59.45 63.35 0
Restricted RR (L=0,U=4) .50 -6.09 -0.31 59.48 63.47 0
L=.4,U=2) 46 -5.69 -0.39 59.81 64.21 32
Modified (L=0,U=4) 11 -5.82 -1.73 59.60 62.86 0
Huang-Fuller L=.4,U=2) .10 -5.36 -1.20 59.94 63.27 32
Shrinkage- (L=0,U=4) 11 -5.82 -1.73 59.60 62.86 0
Minimization (L=4,U=2) .10 -5.36 -1.27 59.94 63.25 32
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indicated in the last column of Table 1. In the case of extreme
bounds (L = .68, U = 1.6 and L = .8, U = 1.3), so many
samples were discarded (between 231 and 234 for the cases
L = .68, U= 1.6 and between 1,562 and 1,602 for the cases
L =8, U = 1.3) that the results were not considered reliable,
and so are not reported here. However, these tighter bounds
were of interest, so the simulation was rerun using
approximately double the sample size (increase from roughly
1,000 to 2,000). Note that Deville and Siarndal (1992) show
that convergence is achieved for all distance functions with
probability one as the sample size increases.

Columns five and six of Table 1 give the Percent CVs of
the Taylor and Jackknife Variance Estimators. The coeffi-
cients of variation are similar for all distance functions,
ranging in value from 59.45% to 64.21%. However, the CVs
corresponding to the Jackknife are always slightly larger than
that of Taylor. Coefficients of variation of this magnitude,
although large, have been encountered in other simulation
studies relating to variances. See, for example, Kovacevic,
Yung and Pandher (1995). However, we were interested in
seeing if the key results relating to the bias of the variance
estimators would still hold if the CVs were lowered.
Therefore, at the suggestion of a referee, we reran the simu-
lation, increasing the number of PSUs drawn from 47 to 83,

since CVs of variance estimators are known to be approxi-
mately inversely related to the number of PSUs drawn. The
PSUs were increased in such a way that the overall design
was made self-weighting; this approach appeared to have the
greatest effect on lowering the CVs. The second stage of
sampling remained the sarne as before. Rerunning the simu-
lation had the secondary benefit of roughly doubling the
sample size, and thus, solving the convergence problems
referred to in the last paragraph.

The results from the second run of the simulation are
reported in Table 2. The last column in Table 2 shows the
reduced number of discarded samples due to convergence
problems. The fifth and sixth column of this table show that
the CVs are significantly reduced to between 22.70% and
24.2% with the Jackknife consistently exhibiting slightly
higher values. Now, as before, the percent relative bias in the
point estimator is negligible, always being well under 1%. In
the previous run, the percent relative biases for the Taylor
estimator were always roughly -6%; here, they are always
about -3%, again implying underestimation of the true vari-
ance. Once more, in the case of the GLS distance function,
there is very little difference in the bias that results from using
equation (3.1) versus (3.2). The percent relative bias in the
Jackknife estimator (always roughly -1.5%) is consistently

Table 2
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and
Jackknife Variance Estimators (Sample Size About 2000)

Percent Percent Percent Percent CV Percent CV Number of
Distance Function Relati\_le Relative ) Relative . Taylor Jackknife Discarded
Bias Point Bias Taylor  Bias Jackknife Variance Variance Samples
Estimator Variance Variance (From 4000)
GLS (Regression) .02 -2.71 (eq 3.1) -1.43 23.03 (eq 3.1) 23.29 0
-2.61 (eq3.2) 22.84 (eq 3.2)
Restricted GLS (L= 0,U=4) .02 -2.61 -1.43 22.84 23.29 0
(L=4,U=2) .02 -2.61 -1.43 22.84 23.29 0
(L=.68,U=1.6) .02 -2.61 -1.44 22.84 23.29 0
L=38,U=13) .02 -2.75 -1.56 22.70 23.15 118
Raking Ratio 25 -2.75 -1.15 22.84 23.43 0
Restricted RR (L=0,U=4) 17 -2.67 -1.36 22.84 23.30 0
(L=4,U=2) .16 -2.70 -142 22.84 23.29 0
(L=.68,U=1.6) 31 -2.77 -0.49 22.83 24.20 0
L=38,U=13) 27 -291 * 22.70 * 118
Modified (L=0,U=4) .02 -2.61 -1.43 22.84 23.29 0
Huang-Fuller (L=4,U=2) .02 -2.61 -1.43 22.84 23.29 0
(L=.68,U=1.6) .02 -2.61 -1.44 22.84 23.29 0
(L=.38,U=1.3) .02 -2.58 -1.36 22.73 23.18 116
Shrinkage- (L=0,U=4) .02 -2.61 -1.43 22.84 23.29 0
Minimization L=4,U=2) .02 -2.61 -1.43 22.84 23.29 0
L=.68,U=1.6) .02 -2.61 -1.44 22.84 23.29 0
(L=.38,U=1.3) .02 -2.61 -1.24° 22.73 23.63 118
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smaller in absolute value than that of Taylor. For the Jack-
knife estimator, there is one case (Restricted RR (L = .§,
U = 1.3)) where there were convergence problems; those
results are omitted, indicated by a “*””. Surprisingly, for both
the Taylor and Jackknife, there is virtually no change in bias
for the restricted distance functions as the bounds are made
successively more tight. In fact, there seems to be very little
difference in the percent relative bias across all of the distance
functions, for both the Taylor and the Jackknife. Note that for
the rerun of the simulation, the Monte Carlo errors ranged
between .37% and 2.13%.

5. CONCLUSIONS

This paper focused on exploring the behaviour of point
estimators and their corresponding Taylor and Jackknife
variance estimators for a number of different distance
functions available through calibration theory. Particular
emphasis was given to those distance functions which
allowed range restrictions to be imposed on the g-factors,
eliminating the possibility of negative and high positive final
weights. All of the point estimators which were investigated
exhibited a negligible bias.

Both the Jackknife and Taylor variance estimators
exhibited small underestimation of the true variance, although
the Jackknife consistently had smaller biases (in absolute
value) than the Taylor. The most striking result was that, for
both Taylor and Jackknife, the biases remained roughly the
same in the cases of extreme bounding on the g-factors as in
the cases of less restrictive bounding. In general, however,
caution should be exercised in the use of extreme bounds, due
to the convergence problems that may be experienced,
particularly when Jackknifing is used for variance estimation
and the point estimators must be recalculated repeatedly. If
the main objective of using the restricted distance functions
is to eliminate the possibility of negative or high positive
weights, then modest bounds on the g-factors should suffice.

As a final remark, it is interesting to note that roughly 97%
of the computing time was spent Jackknifing while the
remaining 3% was spent on Taylor linearization. This rather
extreme difference in computation time may give the Taylor
method an advantageous edge if measures of precision are
required for a large number of domains. However, given
recent developments in the computational efficiency of the
Jackknife variance estimator (for example, the program
WESVARPC (1995)), it may be possible to offset this im-
balance. Even so, it should be noted that, at this time,
WESVARPC has improved the computational efficiency for
designs having only two PSUs per stratum, and poststratified
estimators having only one dimension.

In conclusion, since our study does not conclusively show
either variance estimator to be clearly superior and shows
both to behave reasonably well for all distance functions, it is
up to the user to decide which variance/ distance function
combination best fits the system requirements.
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