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Understanding Calibration Estimators in Survey Sampling

A.C. SINGH and C.A. MOHL'

ABSTRACT

There exist well known methods due to Deville and Sérndal (1992) which adjust sampling weights to meet benchmark
constraints and range restrictions. The resulting estimators are known as calibration estimators. There also exists an earlier,
but perhaps not as well known, method due to Huang and Fuller (1978). In addition, alternative methods were developed
by Singh (1993), who showed that similar to the result of Deville-Sérndal, all these methods are asymptotically equivalent
to the regression method. The purpose of this paper is threefold: (i) to attempt to provide a simple heuristic justification of
all calibration estimators (including both well known and not so well known) by taking a non-traditional approach; to do
this, a model (instead of the distance function) for the weight adjustment factor is first chosen and then a suitable method
of model fitting is shown to correspond to the distance minimization solution, (ii) to provide to practitioners computational
algorithms as a quick reference, and (iii) to illustrate how various methods might compare in terms of distribution of weight
adjustment factors, point estimates, estimated precision, and computational burden by giving numerical examples based
on a real data set. Some interesting observations can be made by means of a descriptive analysis of numerical results which
indicate that while all the calibration methods seem to behave similarly to the regression method for loose bounds, they

however seem to behave differently for tight bounds.
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1. INTRODUCTION

In providing estimates from sample surveys, sampling
weights are commonly adjusted to obtain calibrated weights
in order to match totals or benchmark constraints (BCs) for
auxiliary variables. The methods of regression and raking are
often used for this purpose. Although these methods have
good asymptotic properties (see Deville and Sérndal 1992),
they may lead to calibrated weights with undesirable (finite
sample) properties. The regression method can give negative
weights while the raking procedure can produce very high
weights. For this reason, range restrictions (RRs) may be
imposed on the calibrated weights. It would be desirable to
have a calibration method which (i) produces calibrated
weights close fo the original sampling weights; this can be
achieved via minimization of a suitable distance function
between the two sets of weights, (ii) meets BCs, and (iii)
satisfies RRs. There exist several methods in the literature for
weight adjustment under BCs and RRs, see e.g., Deville and
Sarndal (1992, henceforth referred to as DS) for recent
developments, and Huang and Fuller (1978) for earlier
developments. For a review, as well as some further work, see
Singh (1993, henceforth referred to as Singh). These methods
are iterative in nature and can be classified into two families.
Family I consists of methods which satisfy BCs after cach
iteration and continue to iterate until RRs are met. Family If,
on the other hand, consists of methods which satisfy RRs
after each iteration and continue to iterate until BCs are met.

Methods of DS belong to family IT while that of Huang-Fuller
belongs to family I. Two additional methods, one for each
family, were proposed by Singh. Using arguments similar to
DS, Singh extended the remarkable result of DS by showing
that all of the methods in families I and II are asymptotically
equivalent to the regression method.

In Section 2, a non-traditional approach is followed in
introducing each method which is expected to help in under-
standing of calibration estimators. The functional form of the
weight adjustment factor is first heuristically motivated and
later on a connection between a suitable method of model
fitting and minimization of the distance function is made.
Alongside, computational algorithms are given as a quick
reference for practitioners. A computer program in GAUSS
software is available from the second author; see also Singh
and Mohl (1997). In Section 3, numerical examples are pre-
sented to illustrate various methods using data from Statistics
Canada's Family Expenditure (FAMEX) survey. It is of prac-
tical interest to see how different calibration methods might
compare for a real data set. In particular, we examine by means
of a descriptive analysis the impact of RRs on the computa-
tional burden, distribution of weight adjustment factors, point
estimates and their variance. Related comparative studies on
calibration methods based on real data sets are due to Deville,
Sirndal and Sautory (1993) and Stukel and Boyer (1993).
These studies, however, are restricted to family I methods
and are primarily concerned with the distribution of weight
adjustment factors. Finally, Section 4 contains a discussion.

1 A.C. Singh, Methodology Research Advisory Group, and C.A. Mohl, Health Statistics Methods Section, Household Survey Methods Division, Statistics

Canada, Ottawa, K1A 0T6.



108 Singh and Mohl: Understanding Calibration Estimators in Survey Sampling

2. HEURISTIC JUSTIFICATION OF
CALIBRATION ESTIMATORS

We will use the following notation. Let n, N denote respec-
tively the sample size and the population size. Let &, denote
the initial or h-weight (used in the expansion or Horvitz-
Thompson estimator Y, y ) for the k-th element where y,
is the value of the study variable. It is assumed that the
h-weights include adjustments for any non-response. The
parameter of interest is the population total for y, denoted by
T,. For each k, there are p-auxiliary variables, x,;, j=1, ..., p
for which the population total or benchmark constraint,
Ty = Zivquj for each j is assumed to be known. The
transposed p-vector x, denotes (X, ..., X;,), the k-th row of the
n x p matrix X. Let civ) denote the calibrated or c-weight for
the k-th element at the v-th iteration. At v =0, civ) =h,. The
expansion estimators of population totals for variables y and
x;using c-weights at the v-th iteration are denoted by %(yv ) and %ivj)
respectively.

The RRs are specified by the condition L < g, < U where
g.=c/h and L < 1 < U, where L and U denote suitable lower
and upper bounds. The adjustment factors (i.e., g,'s) are also
called g-weights. First we consider the unrestricted case (i.e.,
calibration without RRs) and then the restricted case. All
methods in the restricted case require iterations for finding a
solution. It is assumed that the iterative process converges in
a finite number of iterations.

The criterion for convergence is defined as follows. For
the iterative process to meet RRs, a tolerance level € (e.g.,
.005 or .01) for family I is defined so that the process ter-
minates if the maximum absolute relative error (ARE) for
RRs is < €. Similarly, a tolerance level (6 > 0) for family II is
defined for meeting BCs by iterations. The reason for this is
that our primary goal is not minimization of the distance
function, but to find a solution which satisfies BCs and RRs.
In addition to € and 0, a parameter v,,,_is defined which limits
the number of iterations.

There are seven methods considered in this paper, two for
the unrestricted case, two for restricted case in family I and
the remaining three also for the restricted case but in family
II. We have given alternative names to existing methods to
facilitate understanding of the relationship between different
methods. The naming convention is based on the well known
distance measures used in the analysis of count data.

Note that since all the methods are asymptotically equiv-
alent to the regression method, the asymptotic variance of Ty
can be estimated for each method by Y,Y (m,, -m,m) =y}
(e.8.)(e,8), as in DS (equation 3.4) where w,, 7, are respec-
tively the first and second order inclusion probabilities,
e, arc the sample residuals y, - ﬁ’xk with B’ = 'T,X)
X', X)!, and I is the n x n matrix diag(h).

2.1 METHOD 1 (Linear Regression or Unrestricted
Modified Chi Square, MCS-u)

This method is the simplest and gives rise to the popular
generalized regression estimator of Sérndal (1980). Here, the

model for the adjustment factor is taken to be linear in x, i.e.,
8, = 1 +x, A, for some p-vector of model parameters A which
satisfies BCs. That is, Y. k(1 +x/A)x; = 1,5, for all j.
This gives rise to AMCS® as (X'T X)'(7, - 1®). The
c-weights remain close to the h-weights in the sense that the
above choice of g-weights minimizes the distance function,
AMSS(e,h) = ¥, (¢, - b, )*/h, subject to BCs. Note that the
g-weights could be negative for some k. This is rather
undesirable in practice although the simplicity of the method
is quite attractive. The computational algorithm for MCS-u is
given in Appendix Al.

2.2 METHOD 2 (Raking or Unrestricted Modified
Discrimination Information, MDI-u)

This method is also commonly used. Here, the model for
the adjustment factor g, is taken as exp(x, A), thus making it
necessarily non-negative. Unlike the case of method 1, the
model parameter vector AMPI™ is obtained iteratively to
meet BCs. The iterations can be started with AM®S™® from
the GR-estimator, i.e., for iteration 1, set A = AMCS_which
implies c§’ = h exp(x;A™). These c-weights, in general,
do not satisfy BCs. For iteration 2 of this method, the A®
is adjusted (by a term of smaller order) to define A®
as AD + X'T,X) ' (t, - ), where I, = diag (c™). The A
term is defined similarly for further iterations until conver-
gence, i.e., until BCs are met. The c-weights remain close to
h-weights because iterations used in the above method
constitute the Newton-Raphson steps for minimizing the dis-
tance function, AMP" (¢, k) = Y, [c, log(c,/h,) - ¢, + b ]
subject to BCs. Note that although the g-weights are non-
negative, they could be very high which is clearly not
desirable in practice. The computational algorithm for MDI-u
is given in Appendix A2.

2.3 METHOD 3 (Modified Huang-Fuller or Scaled
Modified Chi Square, SMCS)

This method belongs to family I of the restricted case and
is a slight modification of the method due to Huang and Fuller
as given in Singh; see also Fuller, Loughin, and Baker (1994).
As in regression, the model for the adjustment factor is taken
to be linear in x. To facilitate the satisfaction of RRs by these
adjustments, a scaling factor g,, (0 < g, < 1), is used for each
k so that the change in h-weights for those units whose g,'s
tend to go outside the bounds [L, U] is reduced. Thus, the
g-weight is given by g, = 1 + g, x; A where the model para-
meters ¢ and A are chosen iteratively in the sense that A is
found for a given q and then ¢ is found for a given A. We start
with g = 1 for all k and setA® = AMSS¥ for iteration 1.
Now, clearly ¢ ¥ satisfies BCs but RRs need not be satisfied.
Depending on the location of g,'s in relation to {L, U]}, a
working rule can be used to define g,'s so that the g,'s
discount more for those units which are farther outside of the
boundaries than those which are nearer. The scaling factors
qil) so determined, define in turn A® for iteration 2 as
(X'T,X)"!(x,~ (") where T, =diag(q; b,), 45 = @4,
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A@ satisfying BCs after the iteration. Note that under usual
regularity conditions, A® differs from A" only by a term of
smaller order, since the maximum absolute difference
g\ - 1|is small. Next, if ¢ (2) after iteration 2 does not satisfy
RRs, the scaling factors q k dare defined appropriately and
compounded with q k LT get qE] for use in iteration 3. The
A® for iteration 3 is then obtained as before so that BCs
are satisfied after the iteration. Iterations continue until
convergence, i.e., until RRs are met. The weight vector ¢SM
is close to k because at each iteration v, ¢ minimizes
the distance function ASMSS(e,h) = Yi.i(c, - ) /gl ™V
subject to BCs, where q[v Ue g0gP .. g0 forv> 1
Note that unlike the previous methods, the distance function
varies from iteration to iteration.

The computational algorithm for SMCS is given in
Appendix A3. Note that in the algorithm, [L, U] is shrunk to
[L’, U’] by means of a parameter o« where L' =aL + 1 - «,
U=aU+1-«a,and 0< ¢ < 1. This implies that some units
that are inside [L, U] but close to the boundary are also
discounted. This helps to speed up the convergence. Another
parameter 3, 0 < P < 1 is also introduced to allow differential
discounting of different units.

24 METHOD 4 (Shrinkage-Minimization, SM)

This method also belongs to family I and is due to Singh.
As in regression, the model for the adjustment factor is taken
to be linear in x, but a new parameter termed the shrinkage
factor ¢, (0 < ¥, < 1) is used for each & so that g,'s meet RRs,
ie., g is setat (1 +y,x; A(k)). Notice that A is allowed to
depend on k through ¥, and x,. Unlike SMCS, here the
g-weights, after discounting, satisfy RRs exactly, i.e., those
g-weights which are outside [L, U] are shrunk to lie on or
inside the boundary. Therefore, {,’s can be defined quite
easily in practice. The model parameters § and A are chosen
iteratively in a manner analogous to that for SMCS. We start
with ¢'¥ =1 and set A® = AMES™" for jteration 1 to obtain

gV as (1 + 4P x;AM). Clearly BCs are satisfied after the
1terat10n but RRs need not be. Before iteration 2, g kl )
shrunk by ¥’ to obtain g’" as (1 + ¢{lx; AV) where ¢! =
YO, which meets RRs. Given y!'), A‘z)(k) is obtained
as AQ+AAMHEX T, X)! (.-t +x X T Xx)!
(t, - 2 )AO where T, = diag(c®™"), ¢{’" = h g(l)*, and
£~ is the expansion estimator using c‘” -weights. Again
BCs are satisfied after the iteration but RRs need not be. Note
that A®@k) differs from A? by a term of smaller order
uniformly over k. Iterations are continued until convergence,
i.e., until RRs are met. The weight vector c™ is close to k
because at each iteration v > 1, ¢ minimizes the distance
function, A™M(c,e V) = T8 (¢, - ¢ VWP subject
to BCs. Note that in practice ¢* can be obtained directly
from ¢ without having to calculate ' separately. As with
SMCS, the distance function depends on the iteration.

The computational algorithm is given in Appendix A4.
Recall that in the above method, if a g-weight falls outside of
the L and U boundaries, an adjustment is made to bring the
g-weight back to the L or U boundary. A new parameter
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a (0 < a < 1) is introduced to allow the user to bring the
g-weight farther inside the boundary to a point L' or U’
(L'=aL+1-0a, U =aU+1-a). This is somewhat
similar to the a parameter of SMCS. Another parameter
1n(0 <m < o < 1) is introduced to adjust the g-weights to the
level L’ or U’ also for those units which are within [L, U], but
close to the boundary in that they are outside [L”, U"] where
L"=nL+1-n, U"= nU+1-n. All these parameters
help speed up the convergence in general.

2.5 METHOD 5 (Linear Truncated or Restricted
Modified Chi Square, MCS-r)

This well known method belongs to family II of the
restricted case and is due to DS. As in SM, the model for the
adjustment factor is taken to be linear in x with a new
parameter termed the truncation factor ¢, (0 < ¢, < 1) which
is used for each k so that g,'s meet RRs, i.e., g, is set at
(1 + ¢,x, A(k)). The only difference between the truncation
factor ¢, used here and the shrinkage factor used in SM is
that here those g-weights which are outside [L, U] are
always adjusted to lie exactly on the boundary. The model
parameters are chosen iteratively. Initially we set d) ¢ =1 and
at iteration 1, A = AMS® to obtain g0 = (1 + ¢0x ’A‘l))
which is further adjusted (or truncated) to obtain g k as
(1 + $Ux /2Dy where ¢ = ¢V ¢, so that RRs are met.
However, g“) may not satisfy BCs. Note that the difference
between g and gM®* is of smaller order. Now, for itera-
tion 2, A is adjusted by a term of smaller order (umformly
over k) to define A®(k) as A® + (1/4)) (X' T X) ! (7, - T,
where I', = diag(h) except that the dlagonal elements are
truncated to zero for all those k for which ¢'y’ © <1,ie.,those
units which were truncated at the previous iteration. This
discounting of diagonal elements is somewhat similar to using
a zero scaling factor in SMCS. In the second iteration, we
have 32 = 1 + ¢}"x; A@(k) and the truncation factors d)( )
are used to obtain g which satisfy RRs. The successive
iterations are defined in a similar manner. Clearly, unlike SM,
here RRs are met at each iteration. Iterations are continued
until BCs are met. The weight vector, ¢¥“" is close to h
because the iterations defined above constitute the Newton-
Raphson steps for minimizing the distance function
AMSS (e k) = ¥, (c, - h, )1k, if Lhy < ¢, < Uhy; < otherwise,
subject to BCs. The computational algorithm is given in
Appendix AS. Note that, in practice, it is more convenient to
work with gk) directly without having to compute d)k
separately.

2.6 METHOD 6 (Restricted Modified Discrimination
Information or MDI-r)

This method also belongs to family IT and was proposed by
Singh following the lines of DS in developing MCS-r. It is
related to MDI-u in the same way as MCS-r is to MCS-u. The
basic idea is to adjust parameters ¢ and A in the adjustment
factor g, = ¢,exp(x, A) so that RRs and BCs are satisfied.
The truncation parameter ¢ is similar to that for MCS-r. This
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is done iteratively. Similar to MCS-r, at iteration 1 we set
gP = dPexp (x; A"Y) where ¢(2) =1,A0 = AMCSv - which
is further adjusted by a term of smaller order to obtain g(kl)
as d)[kl]exp (x;A?) so that RRs are met, i.e., it lies in [L, U].
Next for iteration 2, g,fl) is adjusted by a term of smaller
order to obtain g® as ¢ exp(x;A?), where A -
AV + (X'T,X) " (v, -tM),and T, = diag(h,g,)) except that
the diagonal elements are truncated to O for all those k for
which (b(,lc) < 1. The truncation factors (b(: ) are used to ensure
that RRs are met. Iterations are continued until convergence,
i.e., until BCs are met. The weight vector ¢"™' is close to
h because the iterations defined above constitute the
Newton-Raphson steps for minimizing the distance function
AMPIT (e By = Y7 e log(c,/hy) ~ ¢ + by ] if Lh, < ¢ < Uhy;
otherwise, subject to BCs. Note that in practice, the trunca-
tion factors are not needed separately to compute g(kv).
Appendix A6 gives the computational algorithm for MDI-r.

2.7 METHOD 7 (Logit or Generalized Modified
Discrimination Information, GMDI)

This is the last method considered. This well known
method of family IT is due to DS. As in the raking method, we
start with exp(x, A) and an inverse logii-type transformation
is used to ensure that the adjustment factor satisfies RRs. The
model for the adjustment factor is given by g, = [(U - 1) +
(1 - L) exp(Ax,M)]" [L(U - 1) + UQ1 - L) exp(Ax A)],
where A= (1 - L)' (U - 1)"' (U - L). This adjustment factor,
unlike other methods, lies necessarily inside the interval
[L, U], i.e., does not take boundary values. As L - 0 and
U - o, the factor reduces to the familiar inverse logit form,
exp(x, A)/[1 +exp(x, A)]. The model parameter A is obtained
iteratively to meet BCs. Starting with AM®* as A for
iteration 1, we adjust by a smaller order term to obtain A®
as AU+ (X'T\X) !(t, - t) where T, = diag(h,d.),
dY = W-1)y11 -1 -gP)(e? - L). Further itera-
tions are done in a similar manner until BCs are met. The
weight-vector ¢®™™ is close to k in the sense that subject to
BCs, the above iterative process corresponds to the Newton-
Raphson algorithm for minimizing the distance function
ASMPL(c k) given by A'Y,  h[(g - L) log{(1 - L)'
(8- L)) + (U - g) log{(U - )" (U - g)}]. Appendix A7
gives the computational algorithm for GMDL

3. NUMERICAL EXAMPLES

3.1 Data Description

We consider application of the seven adjustment methods
described above to data from the 1990 Statistics Canada's
Family Expenditure (FAMEX) Survey for the two cities (or
domains) of Regina and Saskatoon in the province of
Saskatchewan. Four study variables are considered: annual
expenditures on owned dwelling for repair and renovation,
furniture and equipment, ladies' clothing , and men's clothing.
The FAMEX survey is a supplementary survey to the
Canadian Labour Force Survey (LFS) and, therefore, is based
on the LFS design — a multistage stratified cluster sample of

households, see Singh er al. (1990). Samples are drawn
independently from the two cities of Regina and Saskatoon.
Respectively for the two cities, the numbers of strata are 30
and 34, and the numbers of primary sampling units (PSUs)
selected in the sample are 111 and 94. The total numbers of
sampled households are 321 and 278, while the corresponding
numbers (n) of individuals are 797 and 712.

3.2 Benchmark Constraints, Range Restrictions and
Common Weights per Household

The number (p) of BCs is four for each domain. They
correspond to the demographic population counts for the four
groups: age < 15, age > 15, one person households, and
households with two or more persons. The corresponding
counts are 40696, 139047, 12746, and 48457 for Regina, and
42544, 139299, 20628, and 52059 for Saskatoon. Thus, the
total numbers of households for the two domains are 61203
and 72687 respectively and the corresponding population
sizes (N) are 179743 and 181843. The auxiliary x-variables
here are indicators for the above four groups.

For Regina, (min, max) of g-weights are obtained as
(-0.72, 2.74) and (0.19, 3.95) respectively for regression and
raking methods. It is therefore of interest to make them
nonnegative for regression and to reduce the high weights for
raking. Two types of RRs are chosen: one has somewhat
loose bounds with L = 1/5 and U = 5 and the other has
somewhat tight bounds with L = 2/5 and U = 5/2. For
Saskatoon, (min, max) of g-weights are obtained as (0.86,
1.08) and (0.87, 1.09) respectively for regression and raking
methods. Note that both methods give g-weights close to 1,
and therefore there is no real need for RRs. However, for the
sake of illustration, we choose L =0.88 and U = 1.12.

The initial sampling weights or A-weights of individuals in
the same household are common and equal to the weight of
that household. It is desirable that after calibration, all
members of a household have the same c-weights. This can be
achieved by modifying the X matrix so that x;-values for each
person in the same household are common and equal to the
average value for the household, see, e.g., Lemaitre and
Dufour (1987). We also perform an initial scaling on the
h-weights so that they add up to N; this is similar to the Hajek
modification of the Horvitz-Thompson estimator. This scaling
essentially redefines [L, U] to make them meaningful for
calibration of h-weights.

3.3 Descriptive Measures for Comparison

For comparing various methods, we consider four types of
descriptive measures:
(i) Summary statistics for the distribution of the g-weights,
(ii) Point estimates for several variables,
(iii) Estimated precision of the calibration estimates, and
(iv) Computational burden imposed by each method.

The first measure consists of a graphical summary using
a box plot for g-weights, and the standard deviation of
g-weights, SD(g), defined as [N 'Y ., 2, (g, - 1)*]". Note
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that the mean of g-weights, i.e, N 'Y} h.g,.is 1in view of
the fact that Y i, =Y ¢, =N, and the SD(g) also equals
IN'Y e (e~ hk)Z/hk]]/z, the square root of a normalized
chi-square type distance for measuring closeness between
h- and c-weights. For comparing point estimates and their
precision for estimating parameter for each variable y of
interest, we compute relative difference (RD) and relative
precision (RP) with respect to the MCS-u weights, i.e.,
relative to the regression estimator. Denoting an estimator
based on c-weights as a c-estimator, we have RD as
(c-estimator minus regression estimator) divided by the
regression estimator, and RP as SE(regression estimator)
divided by SE(c-estimator). Note that for the numerical
examples under consideration, variances are computed using
jackknifing by deleting PSUs. Finally, the computational
burden is expressed in terms of the number of iterations.
Testing has shown that for all the restricted methods, each
iteration takes a similar amount of time and hence a good
comparison of their computational burden is the number of
iterations required for convergence.

3.4 Specification of Other Parameters

We also need to specify some other parameters, namely, «,
B for SMCS, and a, n for SM. Empirically, values of
o =0.67,1=0.9 and 3 = 0.8 are found to perform well. The
tolerance levels € for family I and & for family II are set at
0.01, and v, is set at 10.

3.5 Results: A Descriptive Analysis

3.5.1 Distribution of g-weights

We first consider the Regina data. Figure 1 gives a box
plot of the distribution of g-weights with L =0.4 and U = 2.5.
Note that there are negative g-weights (and hence negative
c-weights) for MCS-u and large g-weights (which produce
large c-weights) for the MDI-u method. For MCS-u, the
fraction of g-weights < 0 is 4.9%, the fraction < 0.4 is 5.9%,
the fraction above 2.5 is 1.25% while above 3.5 is 0%. For
MDI-u, the fraction below 0.4 is 4.9%, the fraction > 2.5 is
4.3% and above 3.5 is 1.25%. Thus, both methods yield
c-weights which are out of bounds with respect to RRs with
tight bounds. The range restricted methods all have median
g-weights between 0.65 and 0.75; the SMCS g-weights show,
however, the most clustering around the median. Table 1
shows that under loose bounds, the SD(g) for each restricted
method is slightly higher (about 7%) than the regression
method, but for tight bounds, the difference increases to about
15% for family I and about 10% for family II.

Now for the Saskatoon data, Figure 2 gives a box plot of
g-weights with L = 0.88 and U = 1.12. For both regression
and raking methods, about 5.6% are below L and 0% are
above U. All methods have similar interquartile range for
g-weights with medians slightly above 1. Also it is seen from
Table 1 that SD(g) for all the methods (restricted and
unrestricted) are about the same and quite small.

111
Table 1
Number of Iterations and SD(g)
(0=.67,=8,1n=.9,e=06=.01, v, =10)
Regina Saskatoon
L=02,U=50 L=04,U=25 L=0.88,
Method (Loose bounds) (Tight bounds) U=1.12
Number of Number of Number of
iterations Dig) iterations SD(g) iterations SD()
Family |
SMCS 2 0.647 3 0.702 2 0.071
SM 2 0.636 4 0.689 2 0.070
Family 11
MCS-r 2 0.628 3 0.654 1 0.069
MDI-r 3 0.642 3 0.660 1 0.069
GMDI 3 0.640 3 0.659 2 0.069

Note: For the unrestricted (or no bounds) case, the number of iterations and
SD(g) are: for Regina MCS-u and MDI-u are (1,0.599) and (3,0.647)
respectively; for Saskatoon MCS-u and MDI-u are (1,0.070) and
(1,0.069) respectively.

3.5.2 Relative Difference of Point Estimates

Tables 2(a) and (b) show that for Regina, under loose
bounds RD is small for all the methods for each of the
variables. In fact, it is negligible except for the variable
“owned dwelling” for which it is generally under 4%.
However, under tight bounds, it increases somewhat but
remains small with values ranging between 1% and 5%. For
Saskatoon (Table 2c), under the given bounds RD is
negligible for all the methods.

3.5.3 [Estimated Relative Precision of Estimates

For Regina, under loose bounds, RP is generally within 5%
(of the precision of the regression estimator) for all methods
and all variables except for MDI-r with the variable “ladies'
clothing” for which it is lower by 9%. However, under tight
bounds, RP varies more and is now generally within 9%
except for SMCS and SM with the variable “Men's clothing”
(RP is lower by 20%) and MDI-r for the variable “Ladies'
clothing” for which RP is lower by 11%. For Saskatoon
(Table 2c), under the chosen bounds RP is close to 1 for all
cases.

3.5.4 Computational Burden

For Regina (Table 1), under loose bounds each method
takes two or three iterations. As the bounds are tightened,
most of the methods require more iterations to converge. To
see how tightly the bounds could be squeezed before
encountering convergence problems, three more sets of
bounds were used with [L, U] = [0.425, 2.35], [0.45, 2.22]
and [0.475, 2.11]. These results are not shown in the table.
With v, as 10, the SM method does not converge for [0.425,
2.35]. The SMCS and GMDI methods do not converge
for [0.45, 2.22] and the MCS-r and MDI-r finally have



g-weights

g-weights

-
-
N

Singh and Mohl: Understanding Calibration Estimators in Survey Sampling

265 3.0 35 40
I

1.6 20

3
us
-+
.
o

0.0

-1.0

1 2 3 4 5 6 7

MCS-u MDi-u SMCS SM MCS-r MDi-r GMDI

Figure 1. Box Plot: g-weights for Regina FAMEX data (L =04, U=2.5)

N
©
oL 1 L i
<
o | .
() W — —— S b
Ol - —-- 3 - = — - — - [~ 4 = — ~ 1 e - e T - - =k = = =~
©
O).- -
o
S
o.
©
- R e el
o
<
o
© 1 2 3 4 5 6 7
MCS-u MDl-u SMCS SM MCS-r MDI-r GMDI

Figure 2. Box Plot; g-weights for Saskatoon FAMEX data (L =0.88, U = 1.12)



Survey Methodology, December 1996

Table 2a
Difference in Point Estimates and Precision Relative to
Regression Estimator (¢ =.67,p=.8,1=.9,e =6=.01, v, =10)
Regina: L =0.2, U = 5.0 (Loose Bounds)
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Table 2¢
Difference in Point Estimates and Precision Relative to
Regression Estimator (o = .67, =.8,1=.9,€ =6=.01, v, = 10)
Saskatoon: L=0.88, U=1.12

Owned Dwelling Furniture\Equipment Owned Dwelling Furniture\Equipment
RD RP RD RP RD RP RD RP
Family I Family I
SMCS ~0.043 1.047 0.001 1.032 SMCS -0.001 1.001 -0.001 0.999
SM ~0.036 1.032 -0.002 1.040 SM -0.000 1.001 -0.000 0.999
Family I Family IT
MCS-r -0.032 1.035 0.002 1.034 MCS-r 0.000 0.999 0.000 1.000
MDI-r -0.033 0.991 -0.008 1.037 MDI-r 0.002 0.997 0.002 0.994
GMDI -0.037 0.999 -0.004 1.041 GMDI -0.000 1.007 -0.000 0.990
Ladies’ Clothing Men’s Clothing Ladies’ Clothing Men’s Clothing
Family I Family I
SMCS 0.015 0.931 0.009 0.952 SMCS 0.000 1.013 -0.001 0.999
SM 0.010 0.951 0.006 0.968 SM -0.000 1.002 -0.000 0.998
Family I Family IT
MCS-r 0.011 0.950 0.008 0.964 MCS-r 0.000 0.990 0.000 0.994
MDI-r 0.007 0911 -0.001 0.961 MDI-r 0.002 1.001 0.002 0.983
GMDI 0.009 0.940 0.002 0.968 GMDI 0.000 0.977 -0.000 0.990
Notes: Notes:
1. RD and RP denote respectively “relative difference” and “relative 1. For the unrestricted (or no bounds) case, the corresponding measures for

precision”.

2. For the unrestricted (or no bounds) case, the corresponding measures for
the raking (MDI-u) method relative to regression are (-0.034, 1.005),
(-0.008, 1.049), (0.004, 0.968) and (0.002, 0.980) for the four study
variables respectively.

Table 2b
Difference in Point Estimates and Precision Relative to
Regression Estimator (o = .67, =.8,1=.9,e=6=.01, v, = 10)
Regina: L = 0.4, U= 2.5 (Tight Bounds)

Owned Dwelling Furniture\Equipment
RD RP RD RP
Family I
SMCS -0.056 1.100 0.012 1.000
SM -0.055 0.992 0.017 0.919
Family I
MCS-r -0.048 1.073 0.008 0.952
MDIr -0.045 1.087 0.012 0.965
GMDI -0.047 1.077 0.009 1.006
Ladies’ Clothing Men’s Clothing
Family I
SMCS 0.024 0917 0.038 0.808
SM 0.025 0917 0.024 0.801
Family I
MCS-r 0.020 0.904 0.012 0.922
MDIr 0.025 0.888 0.012 0.922
GMDI 0.021 0.938 0.018 0.917

Note: During the jackknifing procedure, the SM method failed to converge
in ten iterations for four pseudo-replicates (out of a total of 111).

the raking (MDI-u) method relative to regression are (0.002, 1.000),
(0.002, 1.000), (0.002, 1.002) and (0.002, 0.995) for the four study
variables respectively.

2. During the jackknifing procedure, the SM method failed to converge in
ten iterations for two pseudo-replicates (out of a total of 94).

convergence problems for [0.475, 2.11]. For Saskatoon
(Table 1), under the chosen bounds each method takes only
one or two iterations. With v, as 10, as bounds are tightened
to {0.92, 1.08], SM does not converge. At [0.93, 1.07],
SMCS, MCS-r, and MDI-r have convergence problems, and
finally at [0.96, 1.06], GMDI has problems.

4. DISCUSSION

Although numerical results for a few variables for two
different domains considered in this paper are quite limited to
draw general conclusions, the results based on a descriptive
analysis are nevertheless interesting and may provide some
indications which might be useful in practice. These can be
summarized in the following observations. For loose bounds,
all the restricted methods seem to perform almost at par with
the regression method. However, for tight bounds, there seem
to be a difference in point estimates and especially in
estimated precision. This observation clearly needs further
study in light of the fact that all methods are asymptotically
equivalent to the regression method. A simulation study in
this regard would be desirable. The recent study of Stukel,
Hidiroglou, and Sirndal (1996) sheds some light on this issue.
Moreover, for tight bounds, there may not be convergence
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under the specified number of iterations even if a solution
exists. This problem may be more apparent in dealing with
jackknife replicates. Therefore, caution should be exercised
in choosing the maximum number of iterations for tight
bounds. Finally, in practice, it is possible that even with
minimal requirements on BCs and RRs, none of the cali-
bration estimators converge within a reasonable number of
iterations. In this situation, it would be of interest to investi-
gate whether the (asymptotic) design consistency of calibra-
tion estimators could be preserved while allowing deviation
from BCs. The idea of using ridge regression by Bardsley and
Chambers (1984), although not in the design-based context,
may be useful for this purpose. This problem is currently
being investigated in collaboration with J.N.K. Rao.

APPENDIX

Here we provide computational algorithms for all seven
methods of weight adjustment. These algorithms were used to
write computer programs in GAUSS software for the
numerical examples presented in this paper.

In all the methods, some form of the following expression
denoted by the n-vector f, is used repeatedly for computing

& forv=1,2,.
fO=XXT, X0 ', -t") 1)
where I, 4 is an n x n diagonal matrix defined below in the
algorithm for each method. Initially I', = diag(k) and
1O =Yx.h,

Al. METHOD 1 (MCS-u)

The solution is non-iterative and is given in two steps as
follows.
(i) Compute f k=1 to n from (1) by setting ', ;) = I';.
(i) Computeg,as 1 +f and then "™ ash, g,

A2. METHOD 2 (MDI-u)

The solution is obtained iteratively by the following steps

forv=1,2,...

6)] Set the tolerance level & > 0 for meeting BCs at some
small value.

(i)  For the v-th iteration, compute f  »k=1ton, from
(1) bysetting I',_; = dlag(ck )).

(i) For v = 1,2, .. compute gk) as g% Vexp(f{)
gfco) =1 and then ck ) from hkgk .

(iv) Repeat steps (ii)-(iii) until the BCs are met up to the
tolerance level & or the number of iterations is at its

maximum, v,,.. The last iteration gives ckMDI ",

(v)

A3. METHOD 3 (SMCS)

The solution is obtained iteratively as follows.
@) Set the RRs, i.e., choose Land U, L< 1< U.
(i)  Set the tolerance level € > O at a small value for
meeting the RRs.

(i) Choose a parameter o between 0 and 1 (e.g. 2/3) and
set L' =aL+1-0a, U =alU+1-a. The default
value of 1 for « is also allowed in which case L' = L,
U =U.

(iv) For the v-th iteration with gk ) =1, define ﬁ( M=
G- DL - Difgd < 1, (g(v Do DU - 1)
0therw1se

(v)  Choose another parameter 3 between 0 and 1 (e.g.,
4/5).Set ¢V = 1iF EC V< 125 1- BES V- 12)?
if12 <8 V<1; (1 - [3/4)/6v B if €0V > 1 and then
define for v =1, 2, ..., gl" =¢Q ... g{'" where

q(o) =1. Note compounding of g-factors in defining

1
a; .

(vi) Compute £ from (1) by setting T',_
and 1:(" 1) =39 forall v.

(vii) Find g’ as 1 +¢" "f" and then ¢ as gl

(viii) Repeat steps (iv)-(vii) unt11 the RRs are met up to the
tolerance level € or v = v, The last iteration gives
c,fMCS. The value of  should remain the same at each
iteration.

 =diag(h, g™,

A4. METHOD 4 (SM)

This method consists of the following steps performed
iteratively.
(i)-(ii) Same as in Method 3.
(iii) Choose parameters &, 1, 0<a <n<1,(eg, o =2/3,
n = 9/10) and define
L'=aL+(1-@a), U=aU+(1-0a)
L"=nL+(1-n)U" =nU+1-mn).
The default option for « and n is 1 in which case
L'=L"=L U =U"=U.
(iv)  (Shrinkage). The c( ) from the v th 1terat10n 1s shrunk
to obtain cfc) accordm to ¢ =L'hy if e’ <L"hy;
Uk, if > Uk ¢ otherw1se For v = 0,
(0) - C(O)* - h
W) (Mlmnuzatlon) Find f(v) from (1) by setting
T, —dlag(c(v ") and FD =gle,
(vi) Compute gl of as go” 1)*(1 f(vf) where g\ V" =
¢"V*/h, and then c{” from h,g%.
(vit) Repeat steps (iv)-(vi) until the RRs are satisfied up to

tolerance € or v = v,,,.. The last iteration gives ¢} .

A5. METHOD 5 MCS-r)

The iterative algorithm consists of the following steps.

(i) SetLandU.

(i)  Setthe tolerance level & > 0 for meeting the BCs

(i) Compute " from (1) by setting T, , = diag(h,a} ")
where a{"V = 1 if g{'"" was truncated to Lor U, and
0 otherwise.

Gv) Set g¥=1 and compute g} as g\ " fOif
L < g% < U; otherwise truncate g§” to L or U as the
case may be, and then ¢}’ as hkg(k”).

(v)  Repeat steps (iii)-(iv) until BCs are met at the
tolerance level 6 or v = v,,.. The last iteration gives

MCS-r
Ck .



Survey Methodology, December 1996

A6. METHOD 6 (MDI-r)

The iterative algorithm consists of the following steps.

(i)-(ii) Same as in Method 5.

(iti) Compute f{” from (1) by seting T'\.,-
diag(c{ Pal" V) where a\" is defined as in Step
(iii) of Method 5.

Gv) Set g¥=1 and compute g =g Vexp(fY’) if
L < g < U; otherwise truncate g§” to L or U as the
case may be, and then ¢ as h,g%.

(v)  Repeat steps (iii)-(iv) until BCs are satisfied at

Lo MDI-
tolerance 8 or v = v,,,,. The last iteration gives ¢, .

A7. METHOD 7 (GMDI)

The iterative algorithm consists of the following steps.

(i)-(ii) Same as in Method 5.

(iti) Compute f¢’ from (1) by setting T
diag(h, d{*"V) where d{’ " is analogous to d{" of
Section 2.7.

(iv) Using x; A% =x/A" D+ £, find g from the
forrm)lla for g, given in Section 2.7, and then civ) as
hkggcV .

(v)  Repeat steps (iii)-(iv) until BCs are met at tolerance &

. . . GMDI
or v = v,,,.. The last iteration gives ¢

1l
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