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Jackknife Linearization Variance Estimators Under Stratified
Multi-Stage Sampling

W. YUNG and J.N.K. RAO!

ABSTRACT

Variance estimation for the poststratified estimator and the generalized regression estimator of a total under stratified
multi-stage sampling is considered. By linearizing the jackknife variance estimator, a jackknife linearization variance
estimator is obtained which is different from the standard linearization variance estimator. This variance estimator
is computationally simpler than the jackknife variance estimator and yet leads to values close to the jackknife.
Properties of the jackknife linearization variance estimator, the standard linearized variance estimator, and the
jackknife variance estimator are studied through a simulation study. All of the variance estimators performed well
both unconditionally and conditionally given a measure of how far away the estimated totals of auxiliary variables
are from the known population totals. A jackknife variance estimator based on incorrect reweighting performed
poorly, indicating the importance of correct reweighting when using the jackknife method.

KEY WORDS: Generalized regression estimator; Jackknife variance estimator; Linearized variance estimator;

Poststratified estimator.

1. INTRODUCTION

Large-scale sample surveys often use stratified multi-
stage designs with large numbers of strata, L, and
relatively few primary sampling units (clusters), n, (= 2),
sampled within each stratum. Within each cluster, some
elements (ultimate units) are sampled according to some
sampling method. We do not specify the number of stages
or the sampling methods used after the first-stage sampling,
but we assume that subsampling within sampled clusters
is performed to ensure unbiased estimation of cluster
totals, YVy;, i = 1, ...,m; A =1, ..., L.

From the specification of the survey design, basic
weights wy;, ( > 0), attached to the (hik)-th element, are
obtained. Often these basic weights wy;; are subjected to
poststratification adjustment to ensure consistency with
known totals of poststratification variables. In the case of
a single poststratifier, the weights are ratio-adjusted to the
known population counts (e.g., age-sex counts). To handle
two or more poststratifiers with known marginal popula-
tion counts, the weights wy;, can be calibrated through
generalized regression (see section 4), as in the Canadian
Labour Force Survey(CLFS).

The CLFS uses the jackknife method for estimating the
variance of the generalized regression estimator. The jack-
knife method is computer intensive but it is readily applicable
to general smooth statistics, unlike the linearization method.
Moreover, it possesses good conditional properties. For
example, in the context of simple random sampling and
the ratio estimator, Royall and Cumberland (1981) showed
that the jackknife variance estimator tracks the conditional
variance given the sample mean of the auxiliary variable x.

The main purpose of this paper is to study variance
estimation for the ratio-adjusted poststratified estimator
and the generalized regression estimator under stratified
sampling. By linearizing the jackknife variance estimator,
a jackknife linearization variance estimator is obtained
which is different from the standard linearization variance
estimator. In the case of the poststratified estimator, this
variance estimator is identical to Rao’s (1985) variance
estimator. The proposed variance estimator is computa-
tionally simpler than the jackknife variance estimator and
yet leads to values close to the jackknife.

Section 2 introduces the jackknife variance estimator
for the basic expansion estimator of the total, Y. Section 3
presents the jackknife and the jackknife linearization
variance estimators for the poststratified estimator. These
results are extended in section 4 to the generalized regres-
sion estimator in the context of multiple poststratification
variables. Section 5 deals with variance estimation for a
ratio of two totals, both of which are estimated using a
generalized regression estimator. Results of a simulation
study on the relative performances of the usual lineariza-
tion variance estimator, the jackknife and the jackknife
linearization variance estimators are reported in section 6.

2. BASIC ESTIMATOR

Using the basic weights wy;, an unbiased estimator of
the population total Y is of the form

Y = 2 Whik Vhik » 2.1
(hik)es
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where s denotes the sample of elements and y,; is the
value of the characteristic of interest associated with the
sample element (hik)€s. For simplicity, we assume
complete response in this paper.

It is common practice to sample clusters without replace-
ment. However, at the stage of variance estimation, the
calculations are greatly simplified by treating the sample
as if the clusters are sampled with replacement. This
approximation generally leads to overestimation of the
variance of Y, but the relative bias is likely to be small if
the first-stage sampling fractions are small.

An estimator of the variance of Y is given by
L
v(Y) = E Z Oni =) =vm), (2.2)
aoy ey — 1)

where yp; = Li(myWhik) Vi, and 3, = (1/ny) L Vpi-
The operator notation v(y,;) denotes that v(Y) depends
only on the y;’s.

To introduce the jackknife method, we need the esti-
mator Y, for each (gj) obtained from the sample
after omitting the data from the j-th sampled cluster in
the g-th stratum (j =1, ..., n,; 2 =1, , L). Itis
simply obtained from (2.1) by letting w,;, = 0, changing
Wi (i # J) to ngwe/(n, — 1) and retaining the original
weights wy, for & # g, i.e.,

0 it (h) = (g))
n M . -
Whik(g)) = Til) Wew If h =g and i#j
Whik if h#g.

These jackknife weights, wy; (., are calculated for each
cluster (gj). The resulting estimator of Y is

Yig) = E Whik (gj) Y hik -
(hik)es

The jackknife variance estimator is then given by

vi(Y) = - )2 2.3)

g=1

The variance estimator (2.3) is applicable to general
smooth statistics, say § = g(¥), by simply replacing
Y(g, and Y with O(g,) = g(Y(g,)) and 6 respectively. In
the linear case, § = Y, the jackknife variance estimator
is identical to the customary variance estimator (2.2).

3. POSTSTRATIFIED ESTIMATOR

Suppose the population is partitioned into C poststrata
with known population counts M, ¢ = 1, , C. We
will use the prescript ¢ to denote poststrata. An estimator
of .M is given by

cM: E Whik » (31)

where s is the sample of elements belonging to the c-th
poststratum. Similarly, an estimator of the poststratum
total .Y is

E Whik ik -
(hik)€.s

Using the estimators .Y and .M, we obtain a poststratified
estimator of the total Y as

Ypo= ) °
e €

N

Y. (3.2)

E)

We can rewrite (3.2) as

Yps = E E Whik ik

¢ (hik)é€cs

where Wy = Whix (-M/.M) is the ratio-adjusted weight
for (hik)e.s. If y,; is the indicator variable for a post-
stratum, say c, then Yps = .M, thus ensuring consistency
with known totals, .M

The standard linearization variance estimator is given
by (2.2) with y,; changed to

&i = Y, Y (MuWhi)chiks

c kecs

where .e, = Yux — Y/.M for the k-th element in the
(hi)-th cluster belonging to .s, i.e.,

v (Yp) = v(En). (3.3)

Rao (1985) proposed an alternative linearization variance
estimator using the ratio-adjusted weights .wy;.:

Ve (Yps) = vi(en) 3.4

where

¥ __
e =Y ) (M Wiir) ceri-

¢ kecs

Turning to the jackknife method, we need to recalculate
the poststratification weights .wy; each time a cluster
(gJj) is deleted. This is done by using the jackknife weights
Whik(gi) it (3.1) to get .M ,;, and then using Wy(gj) =
(MM (4)) Whik g5y tO get
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ps(g/) - E E thlk(g[)yhlk
¢ (hik)€cs

The jackknife variance estimator is then obtained as

n
— g
n g 1 ~

2 ( ps(g/) - Yps)z- (35)

=

vJ( Y;)S) =
g=1

By linearizing (3.5), we obtain a jackknife linearization
variance estimator, v ; ( fj,s), which is identical to Rao’s
variance estimator (3.4); see also Valliant (1993). In the
important special case of n, = 2 clusters per stratum, (3.4)
and (3.5) are in fact asymptotically equal to higher order
terms, as the number of strata L increases (Yung 1996).

Rao (1985) justified (3.4) on heuristic grounds by noting
that for simple random sampling it reduces to a condi-
tionally valid variance estimator given the poststrata
sample sizes, unlike the standard linearization variance
estimator (3.3). Siarndal, Swensson and Wretman (1989)
obtained a variance estimator of the form (3.4) in the
context of unistage sampling under a model-assisted
framework. Since v,; ( ¥,5) and v,(Y,,) are approximately
equal, the foregoing results suggest that both variance
estimators should be ‘‘robust’’ in the sense of possessing
good conditional properties given the estimated poststrata
counts. Valliant (1993) conducted a simulation study to
demonstrate the *‘robustness’ of v;( ¥,s) and vz ( Yps).

4. GENERALIZED REGRESSION
ESTIMATOR

In practice, it is common to form poststrata according
to two or more auxiliary variables. If the resulting cell level
population counts are available, the ratio-adjusted post-
stratified estimator can be used to increase the efficiency
of the estimates. However, these cell counts may not be
known in practice. For instance, marginal counts may be
known only for age groups and race groups but not cell
counts for the individual age-race groups. This means that
in terms of a two-way table, the marginal counts are
known but not the cell level counts. To handle several
poststratifiers with known marginal population counts, we
can use a generalized regression estimator of Y by using
indicator auxiliary variables to denote the categories of
the poststratifiers (Huang and Fuller 1978; Deville and
Siarndal 1992).

Let x;,; be a vector of auxiliary variables with known
population totals X. The generalized regression estimator
of Y is then given by

=7+ (X - X)B, 4.1)
where

X = E Whik Xhiks
(hik)€s
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and B is the vector of estimated regression coefficients

B =A7"5,
where
i _ T
A= E WhikXpnik X hik s
(hik)€s
and

E WhirXnik Y hik -
(hik)es

The poststratified estimator, Yps, is a special case of
(4.1) by letting x,;, denote the vector of indicator variables
for the poststrata. In this case, X = (\M, ..., cM) 7,
X=GM,...,cM)T,and B = (R, ..., CR)Tw1th

R = .Y/.M. Thus,

Y+ ) R(M - M) = Y.

(4

In the case of two or more poststratifiers, X corresponds
to the vector of marginal population counts.

The generalized regression estimator may be rewritten
as

*
E Whik Y hik s
(hik)es
where

Whik = Whik @ik 4.2)
is the “‘final’’ or ‘‘calibration’’ weight with
Apik = 1 + x,T,}kz‘i‘—l(X - X)

In the special case of ¥, ps» W€ have ap; = M/CM for
(hik)€.s. Writing ¥, in the operator notation as Y, (Vi)
it is readily verified that the generalized regression
estimator X, = Y,(x,;) = X, thus ensuring consistency
with known totals X.

Turning to variance estimation, the standard lineariza-
tion variance estimator is again given by (2.2) with y;
changed to

& = Y, (MaWhik)ehik,

where

enx = Yhix — XhuB 4.3)
are the estimated residuals, i.e.,

vi(Y) = v(éy). 4.4
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For the jackknife method we need to recalculate the
calibration weights w};, each time a cluster (g/) is deleted.
These weights are given by

% —
Whik gy = Whik(gj)Phik(gj)s

where
T 2-1 %
Ghikg) = 1 + XnicAg) (X — Xgp)s
4 T
A = E Whik (gj) XhikX hik>
(hik)es
and

Xg) = E Whik (gj) X hik
(hik)€s

Denote the resulting generalized regression estimator as

Yigh = E W?&k(g/))’hik
(hik)es

= Y + (X — X)) Bg))

where l?( g is the vector of estimated regression coeffi-
cients when the (gj)-th cluster is deleted:

s ain
By = Ajybe
with

b = E Whik (gj) XhikY hik+
(hik)€s

The jackknife variance estimator of ¥, is then given by

L n

N n,—1 & . .

W) = P E =) (R - 0% @)
g=1 g i=1

It is shown in the Appendix that by linearizing the
jackknife variance estimator (4.5), one obtains

vi(Y,) = v(eh) 4.6)
with

¥ *
en =Y, (mWhi)en
k

where w}y is defined in (4.2) and ey, is defined in (4.3). It
is interesting to note that the jackknife linearization variance
estimator (4.6) is similar to the model-assisted variance
estimator proposed by Siarndal, Swensson and Wretman
(1989) in the context of unistage sampling. Yung (1996)
established the asymptotic equivalence of v;(Y,) and
vy (Y,) to higher order terms in the important special case
of n;, = 2 clusters per stratum. Note that the above results
are also applicable to general auxiliary variables, xy;; .

Binder (1996) proposed a new linearization method which
also leads to vy, ( ¥,). In this method, the partial derivatives
are evaluated at the estimates Y, X and B, rather than the
population values Y, X and B as in the traditional lineariza-
tion method. Given that v; and v;; are design-consistent
(Yung 1996) and possess good conditional properties, our
results provide theoretical justification for Binder’s method
which was proposed as a ‘‘cookbook approach’.

The computation of the jackknife variance estimator
involves the inversion of the matrix /i( ) for each (gj).
However, the jackknife variance estimator can be approx-
imated by retaining the inverse for the full sample, A1,
and then using modified weights

Whik (&) = Whik(g)) Fhik (2))
with
Ghiigy = 1 + (Whie/ Whikgiy) Xhn A~ (X — Xgi)-

The resulting estimator of Y, when the (gj)-th cluster is
deleted, is given by

Yogh = ), Whik(ghYhik
(hik)es

and the corresponding jackknife variance estimator is

n, — 1

=

vn(Y,) = Y Gy — )% @D
i=1

n
g=1 8

It is readily seen that (4.7) is exactly equal to the standard
linearization variance estimator (4.4).

5. ESTIMATION OF A RATIO
Often a ratio of two estimated totals is required. For

example, in a family expenditure survey, one may be inter-
ested in the proportion of income spent on clothing. Let

Y=Y+ (X - X)TB,

be a generalized regression estimator of the total amount
spent on clothing, Y. Similarly, let

Z. =72+ (X -X)7TB,
be a generalized regression estimator of the total income,
Z. The proportion of interest is @ = Y/Z, and can be

estimated by

b =Y/Z.
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The jackknife variance estimator is given by

n
g 4

R -1 o o
V() = E e E (0(3,') — 0)2 5.1
J

where
beiy = Yrigh/Zrg)-

Linearizing the jackknife variance estimator, (5.1), we
obtain a jackknife linearization variance estimator

v () = v(r®) (5.2)
where
rE¥ = 1 E (naWhi) ehin
1 Zr 1 1,
k
with
Y,
Chik = €hik — = Chik >
r
and

_ T B 5 T B
enik = Ynik — XnieB1,  Enik = Znik — XhixBa-

Proof of (5.2) is omitted for simplicity.

6. SIMULATION STUDY

We performed a simulation study to investigate the un-
conditional and conditional finite sample properties of the
variance estimators in the case of a single poststratifier as
well as two poststratification variables. For this purpose,
we used a fixed finite population, considered by Valliant
(1993), consisting of 10,841 persons included in the
September 1988 Current Population Survey (CPS) of the
United States. The variable of interest, y, is the weekly wages
for each person. The single poststratifier was defined on
the basis of age, race and sex, while the two poststratifiers
were based on the variables age, with five levels, and race,
with two levels (see Tables 1 and 2 for details).

Table 1

Assignment of Age/Race/Sex Categories to Poststrata:
Single Poststratifier

Nonblack Black

Age

Male Female Male Female
19 and under 1 1 1 1
20-24 2 3 3 3
25-34 5 6 4 4
35-64 7 8 4 4
65 and over 2 3 3 1

Note: Cell numbers (1-8) are poststratum identification numbers.
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Table 2

Assignment of Age/Race Categories to Poststrata:
Two Poststratifiers

Age Nonblack Black

19 and under (1,1) (1,2) PS1(1)

20-24 2,1 2,2) PS1(2)

25-34 @3, 3,2) PS1(3)

35-64 4,1) “4,2) PS1(4)

65 and over G, 5,2) PS1(5)
PS2(1) PS2(2)

Note: Number in margins are poststratum identification numbers.
Cells (i,j) denote poststrata (i = 1, ..., 5;j = 1, 2).

The study population contained 2,826 geographical
segments, each composed of about four neighbouring
households. One hundred design strata (L = 100) were
created with each stratum having about the same total
number of households. We used a stratified two-stage
sampling design with segments as clusters and persons as
the second-stage units. In each stratum n;, = 2 segments
were selected with probability proportional to the number
of persons in each segment, and a simple random sample
of my; = 4 persons was selected without replacement if
the sample segment contained more than four persons. In
sample segments with four or fewer persons, all persons

_ in the segment were selected. Using this design, we selected

two sets of 10,000 independent samples, one set for the
one-way poststratification case and the other set for the
two-way poststratification case.

From each sample, we computed the basic estimator,
the relevant poststratified estimator, ¥, or ¥,, and four
variance estimators: the standard linearization variance
estimator v;, the jackknife linearization variance estimator
v, the jackknife v;, and an incorrect jackknife variance
estimator v}. In applying the jackknife procedure, it is
questioned whether or not the ‘“final’’ or ‘‘calibrated”’
weights need to be recalculated each time a cluster is
deleted. The correct jackknife variance estimator does
recalculate the ¢‘final’’ weight whenever a cluster is deleted
while the incorrect jackknife variance estimator fails to do
this. For the one-way poststratification case, v} ( Y;,s) uses
the full adjustment .M/ M instead of .M/ M 4; when
the (g/)-th cluster is deleted, i.e., f;,s(gi) uses the weights
(e M/ M) Wpir () instead of (;M/ .M gj)) Whik(g)- Similarly,
for the two-way poststratification case, v} (Y,) uses the
full adjustment ay; instead of @y (,;) when the (gj)-th
cluster is deleted, i.e., Y, uses the weights Wy (i\@nix
instead of Wy (gj)@nik (gj)- The linearized version of viis
the same as the variance estimator vy (equation 3.4) with
c€nix replaced by v, in the case of Yps , and v (equation
4.6) with e,,;; replaced by y,; in the case of the generalized
regression estimator Y,. That is,

V(Y = vrk)
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with
Vi = E E (Py Whik) Yhik
¢ keps
and
Vi(Y,) = vk
with

* %
Yhi = E (P Whik ) Y hikc-
kes

Since v} uses the y’s instead of the residuals ¢’s, it is clear
that v} should overestimate the true variance of the esti-
mator, although it is computationally simpler than v;.

(i) Unconditional Results

To compare the unconditional performances of the
variance estimators we computed the empirical relative
bias (RB) for each variance estimator: RB of a variance
estimator v is

V]] -1

where v; is the value of v for the i-th simulated sample
(i =1,...,10,000) and MSE is the empirical MSE of the
estimator, say Y:

1 1
RB=—=|—=
MSE [10,000 -

1 .
MSE = —— Y, — Y)?
10,00021_: (% )

where Y, is the value of Y in the i-th simulated sample.

Error rates for normal theory confidence intervals on
the total Y were also calculated for each variance esti-
mator, using a nominal error rate of 5%:

error rate =

1 - (number of samples with L; = Y < U)),
10,000

where L; < Y =< U;is a confidence interval on Y for the
i-th simulated sample. Lower and upper error rates were

calculated as:

lower error rate =

1
(number of samples with ¥ < L;)
10,000

upper error rate =

(number of samples with Y > Uj;).
10,000

We also calculated the average lengths of the confidence
intervals as

1
average length = —— U, - L)).
ge leng 10’000; (U )

Table 3 reports the unconditional results for the post-
stratified estimator )A’;,S using the above performance
measures. With respect to relative bias, v;; and v, both
perform well with RB < 1% while the incorrect jackknife
v¥ severely overestimates the MSE (RB = 37%). We
note that v; is also estimating the MSE of Yps well un-
conditionally (RB < 1%), contrary to Valliant’s (1993)
claim. Valliant (1993) reported RB of 35% for v; using
the same data set. In view of the design-consistency of v,
supplemented by our simulation results on v;, we conjec-
ture that Valliant’s calculations on v; might be incorrect.

Table 3
Unconditional Results for the Poststratified Estimator

Performance VLT v (Bpe) V(T V3 ()
Relative bias (%) -0.44 0.12 0.26 37.16
Error rate (%) 5.20 5.09 5.06 2.41
Lower error rate (%) 2.41 2.35 2.33 0.99
Upper error rate (%) 2.79 2.74 2.73 1.42
Average length 3.81 3.82 3.83 4.48

Turning to confidence interval performance, Table 3
shows that the error rates associated with v,, v;; and v,
are close to the nominal 5% while the error rate for vJ is
considerably lower than 5% (about 2.5%). Performances
with respect to lower and upper error rates are also similar.
The variance estimators, v, v;; and v; , perform similarly
in terms of average length of confidence intervals while
the average length associated with v is significantly
larger due to overestimation bias. Finally, we note that the
performance measures for v; and v, are very close,
supporting the asymptotic equivalence of v; and vy; .

Table 4
Unconditional Results for the Generalized Regression
Estimator
Performance v (%) v %) v(T)  vE(T)
Measure r r A S
Relative bias (%) —-0.96 0.76 0.57 25.87
Error rate (%) 5.30 5.27 5.23 3.07
Lower error rate (%) 2.24 2.21 2.19 1.08
Upper error rate (%) 3.06 3.06 3.04 1.99
Average length 3.94 3.95 3.95 4.44
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Unconditional results for the generalized regression
estimator Y, are reported in Table 4. As in the case of
Yps, the variance estimators v;, v;; and v; perform well
both in terms of relative bias and error rates of confidence
intervals. On the other hand, the incorrect jackknife v}
leads to severe overestimation which in turn is reflected
in the lower than nominal error rates and larger average
length of confidence intervals.

(i) Conditional Results

We have also studied conditional properties of the
variance estimators, following Valliant (1993). For the
poststratified estimator, we divided the 10,000 simulated
samples into 10 groups each containing 1,000 samples
using the measure (Valliant 1993)

Dy = Y, (AA/I[ - 1>.

c

The measure D, was calculated for each sample and the
10,000 samples were sorted in ascending order according
to the Dp-values and then divided into groups. We may
interpret D, as a measure of how ‘‘balanced’’ the sample
is with respect to the distribution of the poststrata counts.

For the generalized regression estimator, we used the
following natural extension of Dp:

ap (&) ()

a b

where a and b index the levels of the two poststratification
variables and (,M, ,M) and (,M, ,M) are the corre-
sponding marginal counts. We may interpret D, as a
measure of how ‘‘balanced’’ the sample is with respect to
the distribution of the marginal poststrata counts.

Table 5§
Conditional Relative Biases (%) for the Poststratified
Estimator
Group vy (¥p) Vi (Tp) V(Ys) V3 (V)

1 —-5.00 —8.05 —17.88 17.83
2 0.55 -1.18 —1.01 28.06
3 8.33 7.03 7.19 41.29
4 —1.10 —1.56 -1.42 31.82
5 -0.76 —0.69 -0.55 34.77
6 2.50 3.39 3.53 41.69
7 6.10 7.51 7.66 48.86
8 6.60 8.82 8.96 53.54
9 —4.46 -1.43 —-1.31 41.11

10 —13.56 -9.17 -9.07 36.63
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Table 6
Conditional Error Rates (%) for the Poststratified
Estimator
Group  vp(Yp) VL (Yp) vy (Yps) V3 (Yps)
1 5.5 5.9 5.9 3.4
2 4.6 4.8 4.8 2.9
3 3.7 3.8 3.8 1.9
4 5.7 5.8 5.8 2.9
5 4.9 4.8 4.7 2.6
6 5.1 5.0 4.8 2.2
7 5.2 4.8 4.8 2.1
8 4.5 4.3 4.3 1.3
9 5.8 5.4 5.4 2.4
10 7.0 6.3 6.3 2.4

The results for the poststratified estimator are given in
Tables 5 and 6: conditional relative biases in Table 5 and
conditional error rates (nominal 5%) in Table 6. These
performance measures were computed in the same manner
as the unconditional case but from each group separately.
It is clear from Tables 5 and 6 that v;, v;; and v; all
perform well, although v; is somewhat worse in the
extreme groups 1 and 10, while v} performed poorly as
before. It is somewhat surprising to see v; performing so
well conditionally. A possible explanation is that with our
particular sampling design we have M = ¥ hiyes Whix = M
so that

ECM=M=M.

c

Because of this, we do not obtain samples which are poorly
balanced since if some poststrata counts .M are gross
overestimates, say, then the other counts correct for the
overestimation in order to satisfy the above constraint.
Thus, we see mostly well balanced samples in which case
v, is expected to perform well.

Table 7

Conditional Relative Biases (%) for the Generalized
Regression Estimator

Group v (Y)) v (Y) V() vi(Y,)
1 9.25 4.95 5.13 26.51
2 3.99 1.50 1.67 24.96
3 ~3.24 —-4.76 —4.59 17.53
4 —2.66 ~3.43 ~3.26 20.53
5 7.90 7.61 7.80 35.46
6 -3.60 ~3.12 —-2.94 23.38
7 ~9.24 ~8.27 —8.08 17.41
8 3.34 5.30 5.50 35.84
9 -3.75 ~0.85 ~0.62 30.84

10 —8.68 —4.15 ~3.92 28.50
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Table 8
Conditional Error Rates (%) for the Generalized Regression
Estimator
Group v (Y,) v (Y) vi(Y,) vi(Y,)
1 4.3 4.5 4.4 3.0
2 4.9 5.0 5.0 3.3
3 5.0 5.1 5.1 3.8
4 5.7 5.9 5.9 3.3
5 3.9 4.0 4.0 2.3
6 5.7 5.8 5.7 3.0
7 5.9 5.8 5.8 2.9
8 5.8 5.7 5.7 2.8
9 5.5 5.1 4.9 3.0
10 6.3 5.8 5.8 3.3

The results for the generalized regression estimator are
given in Tables 7 and 8: conditional relative biases in
Table 7 and conditional error rates (nominal 5%) in
Table 8. The results are very similar to those for the one
stratifier case. In both cases we again note that the perfor-
mance measures for vyand vy, are very close, supporting
the asymptotic equivalence of v; and v;.

In summary, the three variance estimators v;, v;; and
v, performed similarly. The incorrect jackknife v} per-
formed poorly indicating that reweighting must be done
each time a cluster is deleted.

7. CONCLUDING REMARKS

Beebakhee (1995) applied the three variance estimators,
vy, vy and vz, to a number of household surveys con-
ducted by Statistics Canada. Her empirical results showed
that the jackknife linearization variance estimator, v, ,
consistently consumed less time and money for all study
surveys than the jackknife variance estimator, v,, and yet
approximated v, very well. These results are practically
important because the users wanted a computationally
simpler variance estimator which can approximate the
currently used v, very well. The standard linearization
variance estimator v; performed similar to v,; in terms
of cost and time, but it did not approximate v; as well
as vy .

If the primary interest is the estimation of totals or
ratios, then the jackknife linearization variance estimator,
v, is attractive because it is computationally simpler
than the jackknife variance estimator, v;, and yet leads
to values close to the jackknife. But for general smooth
statistics v;; suffers from the same disadvantage as the
standard linearization variance estimator, v; , in the sense
that both require the derivation of a separate formula for
each statistic, unlike v;. In terms of statistical properties,
our simulation study suggests that the three variance

estimators, v;, vy, and v;, perform similarly. On the
other hand, the incorrect jackknife v}, which uses the
same adjustment whenever a cluster is deleted, performs
poorly indicating that reweighting must be done each time
a cluster is deleted.
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APPENDIX

Proof of the Result v,(¥,) = v, (¥})

To establish the desired result, we first approximate the
difference A}, — A ~'. Using the matrix identity,

(I+PQ)~'=I1—-PUI+ QP 'Q
we get

ACR}) - A\_l =A_1[I+ (/i(g/) —A‘)A_l]_l - /i\_l

AT — (A — A)

Il

T+ A VA, - A) A" -A7
= — A—I(A(g) - A‘)A_l' (Al)

The approximation (A.1) follows by noting that (i)
A @ — A is of lower order than 4 under the assumption
that no cluster contribution is of disproportionate size as the
number of strata L increases (see Yung (1996) for details
on regularity conditions) and (ii) (7 + A~" (A ) —A)]1 ™' =
I—A Ay — A.

Using (A.1), we obtain

- A%

U

(A\CRII) —A_1)5+ /i—l(b’\(g/') - I;)

U

—A YAy, - DB+ A (b - b).
(A.2)

It now follows from (A.2) that

Yy = = (Figp — N — Xy - X'B

—(X-x7TB - B

er — ef), A3
G A (A3)
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where ef; = Yi(n,wgi)eg and ef = (1/ng) ¥ ef;. We
used the following results in arriving at (A.3):

. . A P 1
Yoy = V) = Xy = XN'B = 1 (&g — eg)
and

X -Xx)7(B,, — B =

(X - X)T/i‘l[ " (7, — ug,)],

ng
where e;; = Y (ngWyi)egie and ug; = ¥ i (1 Wyja ) Xk i -

It now follows from (A.3) that

_ L 1 h
vi(f) = Y ———— ¥ (el — &)’

pmt Mt = 1)

= v(ef) = vu(Y,).
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