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Small Area Estimation Under an Inverse Gaussian Model

Y.P. CHAUBEY, F. NEBEBE and P.S. CHEN!

ABSTRACT

In this paper, we consider analysis of variance methodology for inverse Gaussian distribution and adapt it for estimation
of small area parameters in finite populations. It is demonstrated, through a Monte Carlo study, that these estimators
offer a competitive choice for positively skewed survey data such as income or yield of a particular sector.

KEY WORDS: Interactions; Inverse Gaussian; Monte Carlo; Regression estimates; Synthetic estimates; Sarndal-

Hidiroglou estimator; Unbalanced model.

1. INTRODUCTION

Recently, a large number of methods appeared in the
literature for the problem of small area estimation; for
example Prasad and Rao (1990), Sirndal and Hidiroglou
(1989), Choudhry and Rao (1988), and Sirndal (1984) and
the references cited there, especially Sarndal and R4bick
(1983), Fay and Herriot (1979), Schaible (1979), Holt,
Smith and Tomberlin (1979), and Gonzalez and Hoza
(1978), to name a few. The need for small area estimates
of several characteristics of a given population has gener-
ated various useful procedures that produced realistic and
sufficiently accurate estimates for local areas and other
special subgroups. Several of the techniques suggested by
the authors mentioned above were implicitly and/or
explicitly model-based and utilized the standard normal
theory. Others have tackled the provision of estimates for
local areas from Bayesian and empirical Bayes perspectives
by finding a compromise between the sample mean of an
area (that is assumed to be normal) and an estimator based
on regression on one or more covariates (see e.g., Stroud
1987; MacGibbon and Tomberlin 1989). For an extensive
review of recent developments in small area estimation,
the reader may refer to Ghosh and Rao (1994).

The standard normal theory analysis of factorial exper-
iments may be inappropriate to apply in situations where
data are generated from markedly positively skewed
distributions. While most of the inference procedures are
analytically tractable, the accuracy and reliability of the
results may be questionable in many practical applications.
Thus, such an analysis based on positively skewed distri-
butions is called for.

The objective of this paper is to consider inference proce-
dures for unbalanced as well as balanced two-factor exper-
iments under inverse Gaussian model that may be used to
produce estimates for small regions. Hidiroglou and Siarndal
(1985) reported on a Monte Carlo study where a modified

regression estimator is preferred as a compromise between
the synthetic estimator and the generalized regression
estimator. Sdrndal and Hidiroglou (1989) also presented
further comparisons of estimators on the basis of condi-
tional inference. The generalized regression estimator is
basically derived from a super population regression
model without any distributional assumptions. Chaubey
(1991) considered super population models of Durbin
(1959) with gamma auxiliary and inverse Gaussian auxil-
iary in which case the generalized regression estimator has
the property of being the best linear unbiased predictor
(see Prasad and Rao 1990). In fact, the best linear unbiased
predictor for the population total does not depend on the
form of the distribution of the characteristic variable,
hence this technique is preferable given that maximum
likelihood estimates (MLE) may be hard to obtain. As we
have seen that the super population distributions (as
transfused in the populations) may resemble closely to
inverse Gaussian distributions for variety of populations
we would like to exploit this aspect of the population.
The use of inverse Gaussian distribution is not merely
a superficial one but it has been used successfully in many
situations (see Folks and Chhikara 1978) and resembles
closely to gamma, log normal and Weibull populations
which are common in modeling positively skewed non
negative random variables. In this paper, we study the use
of inverse Gaussian model in applying to the small area
estimation. The approach of Fries and Bhattacharyya
(1983) which discusses the analysis of two factor experi-
ments under an inverse Gaussian model is of major impor-
tance. The above paper gives estimation in balanced,
no-interaction model. We have extended this approach to
unbalanced case, which is essential for estimation of
domain totals or means. In this respect the general multiple
regression approach of Bhattacharyya and Fries (1986),
and Whitmore (1983) may be adapted, but we have chosen
to take the direct approach. In Section 2 we specify the
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model and present our proposed estimators under the
inverse Gaussian model. In Section 3, a numerical study
is carried out for evaluation of the performance of the
proposed estimator through Monte Carlo simulation.
Finally, Section 4 presents summary and conslusions.

2. THE INVERSE GAUSSIAN REGRESSION
MODEL FOR SMALL AREA
ESTIMATION

Suppose that a finite population U is divided into D
non-overlapping domains U, , d = 1(1)D, with N, as
the size of U, . The population is further divided along a
second dimension, into G non-overlapping groups U ,,
g = 1(1)G, with the size of U, denoted by N,. The
cross-classification of domains and groups give rise to DG
population cells Uy, d = 1(1)D, g = 1(1)G, with Ny,
as the size of Uy,. The population size N can then be
expressed as N = Y4 N, = YeNg = Y Ng. Our
interest lies in estimating domain totals 3 = Yy, Y,
where y represents the characteristic variable and y, is the
observation on k-th unit. A sample s of size n is selected
from ‘U by a simple random sampling. Denote by 54, 5 5
and s4, the parts of s that happen to fall in Uy, U, and
Uy, - The corresponding sample sizes are denoted by n,,
n, and ng,, respectively.

2.1 Regression Method for Inverse Gaussian Data

We refer readers to two recent comprehensive reviews
about the developments in the inverse Gaussian distri-
bution, namely, Chhikara and Folks (1989), and Iyengar
and Patwardhan (1988). The probability density function
of an inverse Gaussian variate with parameters (6, o),
IG(6, o), is given by

f(;6,0) = (2m0) "2y~ exp[— (20y) T1(y6 7! — 1)?1;
Q.0

withy > 0,8 > 0,0 > 0. Themean and variance of this
distribution are 6 and 630, respectively. Bhattacharyya
and Fries (1982) proposed a reciprocal linear model for 6.
Specifically, they assume a model of the form 6 V= xi.
An estimator of g, similar to the estimator of the regression
parameter in the usual linear model (see Sdrndal 1984) in
this situation is given by

i =( E xkxli)’k) -! e 2.2)
keSg

T
keSy. k Tk

This is called pseudo Maximum Likelihood estimator,
because it is obtained by unconditional maximization of
the likelihood function and therefore x;% > 0 may not
be satisfied for all k. Then an estimator of the total ¢, of

the d-th domain in the spirit of Sarndal’s (1984) modified
regression estimator may be constructed as

fwe- Y S+ Y f"— @.3)
k

keUy. keSg.

where §, = x/7and ¢, = y; — J;. In what follows, we
denote the mean of the (d,g) cell by 6,4, and consider the
case of simple random sampling in which case m,’s are con-
stant. We first discuss the prediction of observations for
the use of (2.3) based on an additive effects model given by,

O =p+ g+ B Y aa=) B,=0 (24

where g, ay’s and §,’s represent the overall effect, the
domain or row effects, and the group or column effects,
respectively. For the inverse Gaussian distribution we must
also have §,, > 0 for all (d,g) and ¢ > 0. Thus the para-
meters p, @ = (ap, a,. .., ap), B = (B, Bas -5 B
and oliein theset @ = {(u,,B,0): Lgog = 0, Y8, = 0;
p+ ag + By > 0, v(d,g); o > 0}. Under this setup
estimation of parameters for prediction can be accom-
plished through unconditional maximization of the like-
lihood function. Conditional on the population and the
sample sizes n4, and referring to (2.1) and (2.3), the log-
likelihood function of the parameters is given by

1
£’=—ElogaEEndg
d g

=)' Y Y Y vask D (i + e+ B) =112 (2.5)

d g k

We first note that the parameters are effectively given by
(#s04,Bg,d = 1,2, ...,D— 1,8 = 1,2, ., G=D.
Thus, differentiating the above with respect to (u, oy, By
d=12,....D-1;g = 1,2,...,G — 1)and equating
the resulting partial derivatives to zero gives the following
equations for the estimators (fi, &g, Bg, d=12,...,
D-1;g=12,...,G—1),

D-1 G—1
iy, + Y @a — yp) + ), By — ¥6) = 1.,
d=1 g=1
D—1
p(va — ¥p) + &aya + Y, 4.
j=1

G-1
+ E Bel (Yag — ¥pg) — (Yag —YpG)} = na. — Np.»
g=1

D-1
B(yg —ye) + E &gl Vag — Yac) — Upg — Ypo) }
d=1
G-1

+ Bgy.g + E Bjy.G = n.g — Ng, (26)
Jj=1
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where the totals and means are represented by the
notations

Ydg = E Yagks Vd. = E Ydgs Vg = E Ydg» (2.7a)
k g d

. = E Rag, Mg = E Ngg, N = E E nge. (2.7b)
d d g

4

The solutions (&, &, 8,), d = 1(1)D, g = 1(1)G,
provide the pseudo Maximum Likelihood estimator and
may not yield nonnegative response estimates but will
coincide with proper MLE as ng, — oo (see Fries and
Bhattacharyya 1983) with probability one. Negative
values of the response estimates may thus be truncated
to zero.

In the case of the IG (0, o) model with interaction, the
usual parameterization of the interaction effects suggests
the model

0k =n + ag + By + Yags
E%=Eﬁg =E’ng =E’ng =0, (2.8
d g

where now v,, is the interaction effect when domain is at
the d-th level and group is at the g-th level. The estimators
of parameters may be obtained in this case following the
method outlined above. However, noting that the max-
imum likelihood estimator (MLE) of 6, is 7,4, and there
is one to one relation between the parameters in the repa-
rametrized model in terms of (u, oy, B, v4e) and the
original parameters 6, , explicit formulae for the MLE of
different parameters are not needed. Corresponding to
equation (2.3), therefore, for a two-factor model with
interaction, our estimator is

fawr = E Nyg Vg s 2.9
g

which is the post stratified estimator and is not of further
interest in small area estimation. For the model without
interaction, the estimator is given as

Lawor = E Nyglye + E Ny (Fag — 040), (2.10)
g g

where 0};‘ =0+ &g + ﬁg, the estimators being
obtained from (2.6) and Ny, = ngN/n_.

In order to judge the effectiveness of this estimator a
numerical study has been performed and is reported in the
following section.
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3. A NUMERICAL STUDY OF THE INVERSE
GAUSSIAN REGRESSION
ESTIMATOR

In this section we provide the results of a simulation
study which evaluates the performance of the estimators
developed in the previous section. The modified regression
estimator due to Sdrndal and Hidiroglou (1989) given
below will be used as the bench mark for the above
purpose;

lys—pg = E Ngpy, + E FiNg(Pag — 75), (3.1
14 g

where F; = N, /N, if N; = N, , otherwise F; = N; /N, .
Here, N, = ny;N/n_. An alternative form of this esti-
mator which takes into account both group and domain
effects can be obtained by replacing y , by y , + 74 — 7.
but this has not been pursued here. It should be noted that
the above estimators cannot be computed when ng, is
zero. When this happens the estimators are simply taken
to be the sample means of the respective domains. We also
include the following modified version of Z;m0y,

lawomr = Y Nygba + Y FaNug(Fag ~ b40), (3.2)
4 g

for comparison.

3.1 Design of the Simulation Study

We consider Household Income data for Canadians in
1986, obtained from Household Income, Facilities and
Equipment microdata tape of Statistics Canada (1987), for
generating the values of parameters to be used for simula-
tion. Using Household incomes, from these data, dividing
them into 10 provinces and 6 educational groups, we first
fit an inverse Gaussian model given by equation (2.4). The
estimates of parameters are then used in forming the true
parameters of the inverse Gaussian super population model
which are summarized in appendix A. The values of D,
G, N, are chosen from this population (see appendix B),
where D represents the number of provinces (i.e., D = 10)
and G represents the number of education groups (i.e.,
G = 6). Further sets of values of §,, and ¢ are obtained by
considering various combinations of (¢;,¢,); ¢; = 0(1)4
and ¢; = 1,.25, .1, .01 where c, is used to transform 6,
to 10 ™16, and c; is used to transform o to ¢, 0. Note that
¢; = 0 and ¢, = 1 gives the parameter values for the
original population. Also, the higher values of ¢, indicate
smaller values of the means and those of ¢, indicate
higher value of the dispersion parameter.

For the simulation study, first we generate for a given
set of 4, and o values an inverse Gaussian random
sample using the algorithm in Michael et al. (1976) with
number of observations according to the values given in
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the appendix B. This random sample is then used as a finite 1000
population from which we select 1000 random samples for MARE(f;) = — | tgi — tq /g (3.3)
each of the sample fractions, 1%, and 5% with replace- 1000 i=1
ment. We had actually selected several random samples
and obtained similar results as reported here. From each ARB(7)) = . 14
sample we computed the estimators of totals for the B(ta) = 1000 . lai = la / fa- 3.4
10 domains using estimators fys_ . fawor and fawom - =1
The criteria for evaluating the performance of the esti- Here 7, denotes a typical estimator of #; and {4 denotes
mators are the mean absolute relative error (MARE) and the value of the i-th Monte Carlo sample (i = 1, ...,
the absolute relative bias (ARB) defined as follows: 1000).
Table 1
Mean Absolute Relative Error (%) of Different Estimators
1% Sample 5% Sample 1% Sample 5% Sample
Domain
SH WOl WOIM SH WOl WOIM SH WOI WOIM SH WOl WOIM
cg=0,¢0=1 cg =0, =.01
1 13.27 13.05 13.19 6.60 6.48 6.47 3.72 2.46 2.45 1.80 0.89 0.89
2 14.57 13.61 14.20 7.53 7.61 7.69 3.79 3.56 3.48 2.10 0.59 0.60
3 25.27 27.86 26.88 19.07 20.74 20.80 2.52 1.51 1.52 1.19 0.77 0.77
4 11.83 11.70 11.74 5.29 5.61 5.59 1.83 1.08 1.09 0.93 0.58 0.58
5 10.57 11.72 11.68 6.80 7.10 7.11 0.92 0.90 0.91 0.42 0.40 0.40
6 7.12 7.45 7.52 3.85 3.95 3.97 1.94 1.22 1.22 0.93 0.64 0.64
7 11.78 13.91 14.23 7.39 8.01 8.05 1.22 1.13 1.14 0.86 0.64 0.64
8 11.48 12.56 12.46 6.70 7.15 7.14 1.29 0.93 0.94 0.76 0.67 0.68
9 7.43 7.92 7.99 3.61 3.74 3.75 3.47 2.99 2.96 3.13 2.97 2.96
10 15.32 17.43 17.16 11.20 11.81 11.80 0.93 0.94 0.95 0.52 0.52 0.53
g =2,¢=1 g =2,¢ =.01
1 3.34 2.18 2.15 1.66 0.79 0.78 2.99 1.48 1.44 1.47 0.08 0.08
2 4,14 3.94 3.82 2.14 1.07 1.06 0.54 3.37 3.27 1.86 0.14 0.13
3 2.44 1.67 1.65 1.17 0.71 0.70 1.81 0.45 0.44 0.87 0.07 0.07
4 2.05 1.70 1.69 0.98 0.70 0.70 1.32 0.36 0.35 0.66 0.07 0.07
5 1.08 1.17 1.16 0.50 0.51 0.51 0.27 0.13 0.13 0.11 0.05 0.05
6 1.74 1.14 1.14 0.78 0.52 0.52 1.29 0.13 0.13 0.55 0.05 0.05
7 1.90 1.57 1.56 0.91 0.72 0.72 1.22 0.31 0.31 0.56 0.07 0.07
8 1.48 1.38 1.38 0.70 0.60 0.60 0.81 0.18 0.18 0.38 0.06 0.06
9 1.41 1.30 1.29 0.67 0.59 0.58 0.69 0.14 0.14 0.30 0.06 0.06
10 1.22 1.38 1.38 0.56 0.59 0.59 0.26 0.15 0.15 0.10 0.06 0.06
cg=4,¢6 =1 ci = 4,¢ = .01
1 2.99 1.48 1.44 1.47 0.08 0.08 2.99 1.45 1.41 1.47 0.01 0.01
2 3.54 3.37 3.27 1.86 0.14 0.13 3.54 3.36 3.25 1.87 0.05 0.05
3 1.81 0.45 0.44 0.87 0.07 0.07 1.80 0.38 0.37 0.86 0.01 0.01
4 1.32 0.36 0.35 0.66 0.07 0.07 1.31 0.28 0.27 0.66 0.01 0.01
5 0.27 0.13 0.13 0.11 0.05 0.05 0.24 0.06 0.06 0.10 0.01 0.01
6 1.29 0.13 0.13 0.55 0.05 0.05 1.29 0.06 0.06 0.54 0.01 0.01
7 1.22 0.31 0.31 0.56 0.07 0.07 1.20 0.24 0.24 0.55 0.01 0.01
8 0.81 0.18 0.18 0.38 0.06 0.06 0.79 0.09 0.09 0.37 0.01 0.01
9 0.69 0.14 0.14 0.30 0.06 0.06 0.68 0.06 0.06 0.29 0.01 0.01
10 0.26 0.15 0.15 0.10 0.06 0.06 0.23 0.07 0.07 0.09 0.01 0.01
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Table 2
Absolute Relative Bias (%) of Different Estimators
1% Sample 5% Sample 1% Sample 5% Sample
Domain
SH WOl WOIM SH WOl WOIM SH WOl WOIM SH WOl WOIM

G = Oa € = 1 cp = 0, C = .01
1 4.34 2.40 2.51 1.87 0.26 0.27 2.66 1.58 1.54 1.22 0.03 0.03
2 8.88 3.46 4.39 2.18 0.30 0.23 3.15 3.40 3.31 1.38 0.04 0.04
3 3.13 3.47 2.74 0.51 1.12 1.15 1.44 0.31 0.32 0.68 0.01 0.01
4 1.57 0.51 0.53 0.50 0.21 0.22 1.11 0.29 0.30 0.53 0.03 0.03
5 0.13 0.33 0.35 0.20 0.16 0.18 0.10 0.03 0.02 0.05 0.01 0.01
6 1.09 0.14 0.04 0.02 0.39 0.42 1.09 0.03 0.03 0.43 0.02 0.01
7 1.20 1.09 1.59 0.54 0.28 0.30 0.99 0.22 0.23 0.43 0.01 0.01
8 0.40 0.04 0.12 0.20 0.53 0.54 0.55 0.00 0.01 0.28 0.03 0.03
9 1.03 0.47 0.36 0.24 0.04 0.01 1.01 0.35 0.37 0.45 0.14 0.14
10 1.05 2.27 2.03 0.04 0.30 0.29 0.08 0.02 0.01 0.06 0.01 0.01

L = 2, Cy = 1 ¢ = 2, C = .01
1 2.40 1.37 1.33 1.13 0.01 0.01 2.47 1.43 1.39 1.15 0.01 0.01
2 3.00 3.28 3.16 1.33 0.02 0.01 3.06 3.34 3.24 1.36 0.03 0.03
3 1.53 0.39 0.38 0.70 0.04 0.04 1.46 0.35 0.34 0.65 0.01 0.01
4 1.00 0.25 0.25 0.53 0.04 0.04 1.01 0.23 0.23 0.49 0.00 0.00
5 0.10 0.02 0.03 0.04 0.00 0.01 0.10 0.01 0.02 0.04 0.00 0.00
6 1.16 0.01 0.01 0.47 0.02 0.02 1.15 0.01 0.00 0.46 0.00 0.00
7 1.00 0.27 0.27 0.42 0.00 0.00 0.95 0.21 0.21 0.41 0.00 0.00
8 0.48 0.04 0.04 0.25 0.01 0.01 0.57 0.04 0.04 0.26 0.00 0.00
9 0.64 0.06 0.05 0.27 0.02 0.02 0.61 0.01 0.00 0.26 0.00 0.00
10 0.01 0.02 0.02 0.02 0.00 0.00 0.06 0.01 0.01 0.03 0.00 0.00

¢ = 4, Cy = 1 cp = 4, Cy = .01
1 2.47 1.43 1.39 1.15 0.01 0.01 2.48 1.43 1.39 1.15 0.00 0.00
2 3.06 3.34 3.24 1.36 0.03 0.03 3.07 3.35 3.24 1.36 0.04 0.04
3 1.46 0.35 0.34 0.65 0.01 0.01 1.45 0.34 0.34 0.64 0.00 0.00
4 1.01 0.23 0.23 0.49 0.00 0.00 1.01 0.24 0.24 0.49 0.00 0.00
5 0.10 0.01 0.02 0.04 0.00 0.00 0.11 0.01 0.02 0.04 0.00 0.00
6 1.15 0.01 0.00 0.46 0.00 0.00 1.15 0.01 0.00 0.46 0.00 0.00
7 0.95 0.21 0.21 0.41 0.00 0.00 0.94 0.20 0.20 0.41 0.00 0.00
8 0.57 0.04 0.04 0.26 0.00 0.00 0.58 0.04 0.05 0.26 0.00 0.00
9 0.61 0.01 0.00 0.26 0.00 0.00 0.60 0.00 0.00 0.25 0.00 0.00
10 0.06 0.01 0.01 0.03 0.00 0.00 0.06 0.01 0.01 0.03 0.00 0.00

3.2 Analysis of Results

The MARE values computed according to (3.3) and the
ARB values from (3.4) for the three estimators and for
different sample sizes are reported in Tables1 and 2,
respectively for a selection of pairs (¢, ¢;). The values
of ¢; are chosen to represent, large means (as in the
original population, ¢, = 0), moderate means (¢; = 2)
and small means (¢; = 4), whereas, the values chosen
for c, represent the original dispersion parameter
(c; = 1) and a further smaller value (¢, = .01). It may

be interesting to note that increasing ¢; by 1 while keeping
c, fixed reduces the coefficient of variation by a factor
of 10.

Some of the MARE and ARB values reported in
Tables 1 and 2 are also plotted for visual inspection in
Figures 1 and 2 for 1% samples, respectively.

When comparing the MARE and ARB values, reduc-
tions in biases as well as in relative errors are observed in
many cases for both 1% and 5% samples. It is found that,
the MARE and ARB values decrease with decreasing
values of mean and dispersion parameter o. Reductions
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Figure 1. Mean absolute relative errors for different estimators for 1% sample.

are substantial, especially in case of 5% sample and/or
when means are small. Note also that the reductions in bias
are generally larger than reductions in the errors. We may
note from Johnson and Kotz (1970, p. 141) that for fixed
value of the mean, the standardized inverse Gaussian
distribution tends to unit normal as the coefficient of
variation tends to zero. Since larger gains in MARE and
ARB values are noted for small values of the coefficient
of variation, we conclude that proper modeling of the
mean is important when the coefficient of variation is
small for model based estimation.

We further find that 70y and 740 have almost same
MARE and ARB which indicates that the modification

of the estimator in (2.10) is not necessary. It may be
remarked that the estimator 7;5_ g, in contrast, has been
demonstrated (see Hidiroglou and Sidrndal 1985) to be
substantial improvement over the corresponding un-
modified estimator due to Sarndal (1984).

Owing to the criticism of oy and Zywons as being
model dependent, we want to defend these on the following
grounds. The inverse Gaussian distribution offers a variety
of shapes and may be able to approximate lognormal,
gamma, Weibull and such other positively skewed shapes.
If we suspect that the principal characteristic is positively
skewed, then the methodology we discussed here is viable
and useful.
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b. ¢ = 0, c = 0.01
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Figure 2. Absolute relative biases for different estimators for 1% sample.

4. SUMMARY AND CONCLUSIONS

The generalization of analysis of variance methodology
for inverse Gaussian population for unbalanced design
was considered. The models without interactions of
factors were studied and applied to the problem of esti-
mation of small area parameters in finite populations.
Using Canadian survey data, synthetic populations were
generated in a Monte Carlo study. Through this we
demonstrated that the proposed estimators perform well
under a variety of conditions when the population can
be regarded as a random sample from some inverse

Gaussian distribution. This approach offers a competitive
choice for estimation of parameters in positively skewed
survey data.
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APPENDIX A
Values of the Parameters for Generation of the IG Population

p = 3.13241147 x 1075, ¢ = 2.5447984 x 10~°

Chaubey, Nebebe and Chen: Small Area Estimation Under an Inverse Gaussian Model

d 1 2 3 4 5
108 x ag 3.1902855 2.8235779 1.5676078 .8056079 —.95350458
d 6 7 8 9 10
108 x oy —4.0661125 49944356 .0061694263 —2.7414128 —1.1316622
g 1 2 3 4 5 6
10% x B, 1.0938451 .36781639 | —.012707035 [ —.11561414 | —.30936835 | -—1.023972
04, values:
d/g 1 2 3 4 5 6
1 22,000.82 26,183.11 29,080.48 29,977.59 31,826.13 41,195.19
2 22,179.76 26,436.94 29,393.94 30,310.79 32,201.96 41,827.05
3 22,815.33 27,344.90 30,520.70 31,510.37 33,559.25 44,146.20
4 23,219.00 27,926.81 31,247.41 32,285.58 34,439.96 45,682.95
5 24,207.76 29,369.63 33,064.91 34,229.61 36,661.02 49,674.90
6 26,180.44 32,324.63 36,858.30 38,311.45 41,383.33 58,760.34
7 23,385.24 28,167.65 31,549.24 32,607.90 34,806.97 46,330.96
8 23,658.15 28,564.53 32,047.98 33,140.96 35,415.03 47,414.57
9 25,302.90 30,997.31 35,142.43 36,461.01 39,232.58 54,516.76
10 24,312.62 29,524.12 33,260.85 34,439.64 36,902.04 50,118.45
APPENDIX B
Values of the Cell Sizes V4,

d/g 1 2 3 4 5 6 Total

1 627 360 277 84 215 110 1,673

2 285 212 198 72 68 83 918

3 597 483 616 148 204 231 2,279

4 729 397 568 151 239 219 2,303

5 1,372 761 1,216 202 473 511 4,535

6 1,177 888 1,795 517 707 800 5,884

7 639 432 673 165 236 222 2,367

8 850 512 888 264 349 297 3,160

9 700 699 1,350 385 696 572 4,401

10 456 540 1,083 342 393 407 3,221
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