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Multiple Sample Estimation of Population and Census Undercount
in the Presence of Matching Errors

YE DING and STEPHEN E. FIENBERG!

ABSTRACT

The multiple capture-recapture census is reconsidered by relaxing the traditional perfect matching assumption. We
propose matching error models to characterize error-prone matching mechanisms. The observed data take the form
of an incomplete 2k contingency table with one missing cell and follow a multinomial distribution. We develop a
procedure for the estimation of the population size. OQur approach applies to both standard log-linear models for
contingency tables and log-linear models for heterogeneity of catchability. We illustrate the method and estimation
using a 1988 dress rehearsal study for the 1990 census conducted by the U.S. Bureau of the Census.
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Multiple recapture census.

1. INTRODUCTION

The multiple recapture census technique has been used in
many fields to estimate the size of a closed population.
Cormack (1968) and Seber (1982) give excellent reviews of
many techniques used. Here we consider a sequence of
samples, s, . .., i, where the members of /-th sample are
uniquely labeled, for example, by tagging or marking, and then
returned to the population (Darroch 1958). Usual multiple
recapture census methods make the following assumptions.
(1) Perfect matching. Individuals in one list (information

source, sample) can be matched with those in another
list without error. In other words, there are no mis-
classification errors with respect to determining whether
a particular individual has been recorded by both
information sources or only one of them.

(2) Independence. The lists are independent of one another,
that is, the probability of an individual being included
in one list does not depend on whether the individual
was included in previous lists.

(3) Homogeneity (Equal Catchability). All individuals in
the population under study have equal probabilities of
being observed (captured) in any list (sample).

(4) Closure. The population in question is ‘‘closed’’, so
that there are no changes due to birth, death, emi-
gration, or immigration during the period when the
sampling takes place.

Darroch (1958) examined the multiple recapture census
under these four assumptions. Fienberg (1972) adopted a
log-linear model approach to allow for statistical dependence
of specific types among samples, thereby dropping the
independence assumption. Darroch, Fienberg, Glonek and
Junker (1993) developed an extended log-linear model

approach that allows for individual-level heterogeneity as
well as dependence, but it requires at least three samples,
i.e.,k = 3.Inthe context of the two-sample census approach
used by U.S. Bureau of Census for census coverage evalua-
tion, matching problems due to unavoidable mismatches
and erroneous nonmatches have been explored by several
authors. For example, Ding and Fienberg (1994) considered
modeling matching errors in the two-sample census and
developed systematic procedure for the estimation of popula-
tion totals. The inclusion of a third sample, e.g., drawn from
the administrative records, in modeling and estimation of
census coverage has been considered by the U.S. Bureau of
Census in the past and remains an option to augment and
evaluate the dual system approach. In this paper, we consider
matching error models for the multiple sample census
problem, allowing for both dependence and heterogeneity.

Here we view the observations from a multiple recapture
census data as falling into a 2¥ cross-classification, with
absence or presence on the i-th sample defining the category
for the i-th dimension. In this cross-classification, the cell
corresponding to absence for all k samples is missing. The
objective is to estimate the number of individuals in the
population who are not observed, which corresponds to
the missing cell in the 2* incomplete contingency table. In
Section 2, we investigate the effects of matching errors on
the observed 2% incomplete table. In Section 3, some
models for matching errors are proposed to characterize an
error-prone matching process. Based on these models and
assumptions (3) and (4), we develop a procedure using log-
linear model formulation for the estimation of the population
size. In Section 5, we use the proposed methods to analyze
data from 1988 Dress Rehearsal Census conducted by the
U.S. Bureau of Census.
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2. MATCHING ERRORS IN MULTIPLE
SAMPLE CENSUS

We begin by classifying matching errors into two broad
categories, mismatches and erroneous nonmatches. To
understand the nature of matching errors in multiple-
sample census, we review the case of a three-sample
census. Suppose that there are no missing data or errors
in recording the information for any individual in the
population and one takes three samples from the popula-
tion, s;, 5,, and s3. For instance, suppose that, in sample
sy, individuals 1, 3, 4 and 7 are seen, individuals 3, 4,and 8
are seen in s,, and individuals 4, 9, and 10 in s3. In vector
notation, we can represent this as s; = (1, 3, 4, 7),
s, = (3, 4, 8) and 53 = (4, 9, 10). Matching errors are
not present provided that there is complete and correct
information available. We thus have the following incom-
plete 23 table corresponding to these three samples:

Table 1
Original Table without Matching Errors

51
Present Absent
$2 52
53 Present Absent Present Absent
Present 1 0 0 2
Absent 1 2 1 -

Suppose further that, because of missing data or
incorrect information, we actually observe

si=(1,3,4,7), s=(3*4%8), s5=(409,10),

where 3* and 4* are individuals 3 and 4 but with incorrect
information leading to two erroneous nonmatches when
the samples are matched. Assuming no erroneous matches,
we then observe the incomplete 23 table:

Table 2
Observed Table with Matching Errors

S
Present Absent
52 52
S3 Present Absent Present Absent
Present 0 1 0 2
Absent 0 3 3 -

The effects of matching errors are obvious from a
comparison of Table 1 and 2:

(i) The number of observations may increase for some cells
while decreasing for the others, and as a consequence,
the marginal totals and especially the total number
of different individuals observed in the three samples
may change, subject to the constraint that the total
number of observations in each sample, x; 4 4+, X114,
and x, ,,, remain the same. Changes in the total
number of different individuals in all samples make
our problem distinct from the usual misclassification
problem in the analysis of categorical data, in which
the possibility of making mistakes in classifying indi-
viduals into respective categories is considered. (e.g.,
see Chen 1979).

(i) In parallel, there may be changes in some cell proba-
bilities subject to the constraint that the probability of
being captured in a sample, p; 4 +, D+1+> a0d D1y 4,
is unchanged.

Because of the complexity of matching errors in the
three-sample case, we need some special terminology
for descriptive convenience. We say that an individual is
at state 1 with respect to sample s, if the individual is
observed in s; and at state 0 if not. We use a triple (i,/, k),
0 < i,j, k =< 1, to denote an individual at state J, j, and
k with respect to sy, s, and s3, respectively. For instance,
(1,0,0) is an individual observed only in 5,, and (1,1,1)is
an individual captured in three samples. We define the
level of an individual (i,j,k) as i + j + k, i.e., the
number of samples in which the individual is included.
There are four different levels, 0, 1, 2 and 3. An individual
has level 0 if and only if he/she is not captured by any
sample, and has level 3 if he/she is in three samples. For
a (1,1,0) individual, if the correct match is not made
according to the matching rule, this individual decomposes
into ““two different’’ individuals, a (1,0,0) and a (0,1,0),
assuming no erroneous matches. On the other hand, a
(1,0,0) individual matched incorrectly with a (0,1,0) will
produce a single observed (1,1,0) individual. For conve-
nience, we call such a decomposition or combination a
transition. Then transitions can only go from level 3 or 2
to the same (if there is no matching error) or lower levels
in the absence of erroneous matches. More specifically, a
(1,1,1) person may make a transition into one of 5 possible
sets of individuals

{((1L,LD], {(0,1,0), (1,0,1)}

{©,0,1), (1,1,0)},

{(1,0,0), 0,1,1)},

{(1,0,0), (0,1,0), (0,0,1)}.

For level 2 individuals, (1,1,0) can decompose into
{(1,0,0),(0,1,0)} or stay at {(1,1,0)}, and similarly for
{(0,1,1)} and {(1,0,1)}. From above discussions, we
summarize the effect of matching errors by the following
diagram:
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Table 1| —> {Matching Process} —> | Table 2

where Table 1 is the original 2% incomplete table with no
matching errors and Table 2 is the observed 2k incomplete
table in the presence of matching errors. Henceforth, we
denote the cell probabilities and expected cell counts
associated with Table 1 by {r;;} and {/;;} and those of
Table 2 by (pix}, {myi}, for 1 < i,j,k < 2.

3. SOME MODELS FOR MATCHING
ERRORS

We now propose models to describe the matching
errors, each of which allows us to formulate the realloca-
tion of cell probabilities and expected cell counts associated
with Table 1.

Model (1). In addition to the homogeneity and closure
assumptions in §1, we assume that: (i) There are no
erroneous matches in the matching process; (ii) Any indi-
vidual will stay at his original state with probability ¢, and
transition to any of a possible set of individuals with
probability (1 — 6)/(m — 1), where m is the number of
all possible sets of individuals to which the individual may
transition. For example, for a (1,1,1) person discussed late
in last section, m = 5.

Under this model, for the three-sample census, we can
express the probabilities for the table with matching errors,
{Pijx}, in terms of probabilities of the table with no
matching errors, {7 }:

P = Oruy,

1-20
Pip = riy + 0ri,
D = ru + 0,
1 -8
Py = rui + 0ra,
1 -6
Din = 5 rn + (1 =0)rp + (1 —0)ry + i,
1 -0
Py = ri + (1 =0)ry + (1 = 0)rayy + o
1 -0

Py = ray + (1 =)y + (1 —0)ry + ;.

57

Let
- T
D = (P111> P112s P121> P211s P122s P212s P221) s
and
- T
F = (ri rizs Man P 122, 212, 1221) s
then

5=M1X?. (1)

Here M, is a 7 by 7 matrix determined by the above
seven equations derived under Model (1).It is straight-
forward to verify that the probability of catching any indi-
vidual in each sample is fixed, i.e., p1y + = F++ = P1s
Pii+ = Fe1+ = P2, Pii1 = Iy = p3. This must be
the case because the sample capture probabilities do not
depend on how the matching mechanism operates.

We can easily generalize this formulation to handle the
k-sample case; however, the algebra involved is quite
messy for large k. We can simplify this model by requiring
that the transitions can go downwards by at most one level,
thus yielding Model (2):

Model (2). In addition to the homogeneity and closure
assumptions in §1, we assume that: (i) there are no
erroneous matches in the matching process; (ii) a transi-
tions can only go downwards by at most one level; (iii) any
individual will stay at his original state with probability
8, and transition to any of a possible set of individuals with
probability (1 — 8)/(m’ — 1), wherem’ is the number
of sets of individuals to which transitions are possible and
allowed.

We first consider the three-sample case. A (1,1,1) indi-
vidual can decompose into three individuals, i.e., (1,1,1) +—
{(1,0,0), (0,1,0), (0,0,1)} (we use ““~ "’ to denote for
decomposition), if three presumed matches are not made.
Assumption (ii) of Model (2) assumes that this triple error
has negligible probability when compared with the tran-
sition in which only one of the matches is not made so that
a,1,1) ~ {(1,1,0,00,0,1)}, or (1,1,1) =~ {(1,0,1),(0,1,0)},
or (1,1,1) » {(1,1,0),(0,0,1)}.

For three sample case, the parametric model for
expressing {p;j} in terms of {ry;} is:

P = Oy,

1 -8

Dz = riy + 6y,
1-—-6

P21 = rian + 0,
1 -0

by = rin + 0,
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1 -6
Pin = rig + (=80 + (1 —8)riz + o,
-8
Pz = rimg + (1 =80)yryn + (1 = 8z + raa,
P = rip + (1 =0)yry + (1 — 8)ria + e
Then

P=M xr )]

where M, is a 7 by 7 matrix determined by the above seven
equations derived under Model (2). Again, the capture
probabilities are unchanged, i.e., py, 4, = 1+ 4+ = Dy,
Pii+ = Tv14 = P2 Pry1 = 'y y1 = D3

For the k-sample problem, let p7 be the probability of
being captured in all samples, i.e., pT = pi11...1, and let
D73 (n,ny) be the cell probability corresponding to absence
in the A,-th, and h,-th sample and presence in the others,
etc. Under Model (2), we have pt = éri. Fori < k — 2,
the probability of being missed by the A;-th, A,-th, ...,
and A;-th sample and captured by the others is

PL30 k) = O3,y
1-6
parart) DR (WA
j=1

For i = k — 1, the individual is included in only one
sample. For example, the probability of being captured
only by the first sample is

p3=r3+ (1 —06) E I,z +

h#1
(1-29)
3 Y rigemi t
hi,hp=2
k-1 (1 _ 0) ~
Y Y G+ 1) P b, ), 20

j=3 hl,hz,...,hjZZ

where 7y 1 (s, 1,...ny,3 1S the cell probability in the original
table which corresponds to presence in the first, 4;-th,
hy-th, ..., h;-th sample and absence in the others. By
symmetry, we can write down the expression for p; ) 3,
the probability of being observed in the A#-th sample only
and missed in all others.

We can refine Model (2) by assuming unequal matching
rates. For example, we consider two decompositions:
a,1,1n - {(1,1,0,(0,0,1)} and (1,1,0) - {(0,1,0),(1,0,0)}.

It is common for both cases that one presumed match is
not made. They differ in that one has two sources of infor-
mation for that match while the other has only one. It is
reasonable to assume different matching error probabilities
for the two cases instead of a common one as proposed
in Model (2). This leads to:

Model (3). In addition to (i) and (iii) in Model (2), we
assume

1,1,1) with probability o

{(1,1,0),(0,0,1)} with probability (1 —«ay)/3
{(0,1,1),(1,0,0)} with probability (1 —«y)/3
{(1,0,1),(0,1,0)} with probability (1 —c;)/3

1L+
with probability o,

(1,0,1) with probability o,

(1,1,0)
(1,1,0) =
’ {(0,1,0),(1,0,0)} with probability 1—a,
(1,0,1) » {

{(1,0,0),(0,0,1)} with probability 1 —o,

0,1,1) with probability o,

©,1,1) »
{(0,1,0),(0,0,1)} with probability 1 —c,

and (1,0,0), (0,1,0), (0,0,1) stay the same with probability
one.

Under this model, we can express the cell probability
{pijx} in Table 2 in terms of o, o, and the cell proba-
bilities of Table 1, {r;;]}. To do this, we need to consider
all possible transitions that produce an individual that falls
into the (i,/,k) cell in Table 2. For example, we consider
an observed (1,0,0) individual. This person falls into cell
(1,2,2) of Table 2. Let F be the event that an observed
individual has a (1,0,0) status. Let E;; be the event that
an individual falls into (i,/,k) cell in Table 1. Then

F = U (E,jknF).
{i.k}

According to Model (3), there are only four possible
transitions as follows that can make F happen:

(1,1,1) = {(1,0,0),(0,1,1)},
1,1,0) = {(1,0,0),(0,1,0)},
(1,0,1) = {(1,0,0),(0,0,1)},

1,0,0) = {(1,0,0)}.
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Therefore
F =
(ExnNFHU(E LNFHUELNFUERNF).

By the definitions of cell probabilities of the two tables,
p(F) = p1», and p(E;) = rj. By the assumptions
in Model 3), p(F | Eyy1) = (1 — oy)/3, p(F| Eqpp) =
P(F|E) = ey, and p(F| E1p) = 1.

Since E | |NF, E)p,NF, Ej;NF and E;y, NF are four
mutually exclusive possibilities that F can happen, thus

P = p(Ey N F) + p(E;pNF)

+ p(ExyNF) + p(EipNF)

= p(F|Eyy) - p(Ewy) + p(FlEyn) - p(Ep)

+ p(F| Epyy) - p(Exn) + p(F| En) - p(Ep)

- oy
=3 rip+ (1 —o)re + (1 — ap)rip + Fiz.

In the same manner, we can derive the expressions of
other cell probabilities of Table 2 to get

P11 = a1l

1 - 23]
Din = 3 i + ool
1 - (¢3]
D11 = 3 ri + ooarpg,
1 - O
Doy = 3 N + azhyg,
1 — o
Pin = rig+ (1 —op)r + (1 — ap)rip; + iz,
1 - [¢3]
Pz = i+ (1= ap)rip + (1 — ap)ragy + rap2,
- o
Py = riug + (L= a)r + (1 — ap)ripg + raop.
Then

P=M xT, 3

where M; is a 7 by 7 matrix determined by the above
seven equations derived under Model (3).
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For a; = ap = 0, we get the same formulation as
under Model (2). For the special case with o; = a5 = 1,
Pijk = rijk»> reducing to the traditional problem. Again,
the capture probabilities remain the same, i.e., py, . =
NitsPri+ = Tp145Pv 41 = g1

4. ESTIMATING THE SIZE OF THE
POPULATION

4.1 Log-linear Model Formulation

For purposes of exposition, we confine our attention
to the three-sample census case, although extensions to the
k-sample census for k£ > 3 are straightforward. As before,
let /;; and m;; be expected cell counts for Table 1 and
Table 2 respectively. The relationship between the cell
probabilities and the expected cell counts is [ = r;; N,
and My = pijkN. Let

- T
m = (my1,My12,M121, M1, M2, My, Myny)

and

I'= (luphizhaslaslizs b o)

Since for each of the models we have proposed in the
last section, there is a matrix M with entries depending on
the matching probability parameters in the chosen model
such that 7 = M x r, multiplying through by N gives

mo=MxI “)

For any log-linear model specified for Table 1, it is
straightforward to obtain the parameterization for m;j.
For example, for any of the models suggested in Fienberg
(1972), we can write the expected counts in terms of
functions of u-term parameters:

lijk =
ik (o uy (0), us(J), s (K),ur2 (i), uy3 (ik), up (jk)), (5)

and then obtain the parameterization of {my, ({jk) #
(222)} from (4).

4.2 Estimating the Size of the Population

We now consider the matching rates in our various
models as known. To obtain the estimate of the population
size, we proceed as follows. First, following Sanathanan
(1972), we compute the maximum likelihood estimates of
u-term parameters from /., the conditional likelihood
associated with Table 2 given n,

.. Y Xijk
lc = n H (qu) ,

Lo !
() =22y YUk
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where n = E((ijk)¢(222)}xijk, and Qijk = m,-jk/n. Sanathanan
(1972) shows that, under suitable regularity conditions, the
conditional maximum likelihood estimates and the uncon-
ditional ones are both consistent and have the same asymp-
totic normal distribution. If we remove redundant u-term
parameters using the constraints associated with the
specified log-linear model for Table 1, then the problem
is to find the maximum of /. subject to the following
single constraint:

E mijk = n.

{ (ijk) #(222))

Numerically, this is a nonlinearly constrained optimization
problem. Rao (1957) studied regularity conditions under
which there exist unique maximum likelihood estimates of
the parameters in a multinomial distribution. His condi-
tions are satisfied by the parameterization of {g;;}. Once
the conditional maximum likelihood estimates of the
u-term parameters are obtained, we use the loglinear
model specified for Table 1 to compute the conditional
maximum likelihood estimates of {/;;;}, the expected cell
counts of Table 1 including the expected count of the
missing cell. Then our estimate of N is

{ijk}
In the case of no matching errors, with ¢y = a5 = 1 in
Model (3), mijk = lijk' Thus

1\7=n+rf1222,

i.e., we get back to the estimation method for the tradi-
tional multiple recapture census problem developed by
Fienberg (1972) when the log-linear models in Fienberg
(1972) are considered.

As we have discussed earlier, a log-linear model is
specified for Table 1 and the observations are viewed
as falling into Table 2, whose parametric model of the
expected cell counts is specified by the log-linear model
and a chosen model for matching errors. To assess the
appropriateness of a log-linear model specified for Table 1,
we can apply the usual Pearson and likelihood ratio
goodness-of-fit tests, X 2 and G?, discussed in Fienberg
(1972), to Table 2. Each statistic has an asymptotic x2
distribution under the null hypothesis that the model fits,
with degrees of freedom equal to 2% — 1 — (number of
independent parameters in the model).

5. ANALYSIS OF 1988 ST. LOUIS DRESS
REHEARSAL CENSUS DATA

Dual System Estimation (DSE), based on the standard
two-sample census, has been employed by U.S. Bureau of
Census for census coverage evaluation since 1950. In 1988,

the Census Bureau conducted a Dress Rehearsal Census
for the 1990 decennial census at three sites: St. Louis,
Missouri; Columbia, Missouri; and western Washington
State. Zaslavsky and Wolfgang (1993) present data for a
population subgroup from the Post Enumeration Survey
(PES) in the dress rehearsal census in St. Louis which
focuses on urban Black male adults who are believed to
be underestimated by dual system methods. The resulting
data consists of three sources: the C-sample is the census
itself; the P-sample was compiled from the PES; a third
source of information was the Administrative List Supple-
ment (ALS), compiled from pre-census administrative
records of state and federal government agencies, encom-
passing Employment Security, driver’s license, Internal
Revenue Service, Selective Service, and Veteran’s Admin-
istrative records. The C-sample and P-sample provide data
for the implementation of the usual DSE or capture
recapture approach. The ALS data can be combined with
the Census and the P-sample for analysis from a three-
sample perspective, though it was originally intended to
improve the coverage of the P-sample. In Table 3, we
present three-sample data for PES sampling stratum 11
in St. Louis obtained by collapsing the original data in
Table 1 of Zaslavsky and Wolfgang (1993) over four
poststrata defined by owners/renters X age 20-29, 30-44.

Table 3
Three-Sample Data for Stratum 11, St. Louis

Census
Present Absent
ALS P-sample P-sample
Present Absent Present Absent
Present 300 51 53 180
Absent 187 166 76 -

Such triple-system data can be analyzed with the
matching error Model (2) and data from a separate
Matching Error Study (MES, or rematch study) associated
with the same sampling poststratum. The MES is one of
the operations conducted by the Census Bureau to evaluate
the PES, and typically operates for a sample of cases, using
more extensive procedures, highly qualified personnel and
reinterviews to obtain estimates of the bias associated with
the previous matching process. In the discussion of the
Matching Error Study done in a 1986 test census in Los
Angeles, Hogan and Wolter (1988) state that ‘“The rematch
was done independently of the original match, and the
discrepancies between the match and the rematch results
are adjudicated. Because of this intensive approach to the
rematch, we believe the rematch results represent true match
status, while differences between the match and rematch
results represent the bias in the original match results.””
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Table 4

St. Louis Rematch Study: P-sample
Source: Mulry, Dajani and Biemer (1989)

Rematch Classification

Original
Match
o s Not Un-

Classification Matched Matched resolved Total
Matched 2,667 7 8 2,682
Not matched 9 427 30 466
Unresolved 0 7 20 27
Total 2,676 441 58 3,175

The data from the MES thus provides a basis for esti-
mating error rates in the original matching process. Mulry,
Dajani and Biemer (1989) report the MES operation for
the 1988 Dress Rehearsal and rematch data for all three
test sites, and in Table 4, we reproduce those data relevant
for our purposes.

Let « be the matching rate between the C-sample and
the P-sample, andy = 1 — « be the nonmatch error rate.
We assume no errors in the rematch. Then from the data
in Table 4, we can estimate « by & = 2667/(2667 + 9) =
99.6637%, and yby ¥ = 1 — & = .3363%. The para-
meter 6 is a three-sample matching rate for the C-sample,
P-sample and the ALS. It takes two matches, say, one
between the C-sample and the P-sample, and the other one
between the P-sample and the ALS, in order to reach a
correct (1,1,1) three-sample classification. In the absence
of evaluation of the match between the census and the
ALS, we assume that these two matches are independent
of each other and that the matching rate for the P-sample
and ALS is the same for the C-sample and the P-sample.
Thus we can use § = o2, and § = &% = 99.3285%.
Based on other qualitative information, this seems to be
unreasonably high match rate, and the match error rate
for the census and the ALS is probably higher than the
match error rate between the census and the P-sample. In
the absence of better quantitative information, however,
we proceed to use it in the calculations that follow.

Table §
Estimates Under Various Models

MLE Using Matching

Log-linear Usual MLE Error Model (2)
Model — -

N@G.E) Fit@f) NGE) Fit(d.f)
[C]I[P][A] 1091.48 (11.24) 248.31 (3) 1083.58 (10.93) 244.56 (3)
[CP][A] 120414 23.31)  90.60 (2) 1194.73 (22.86)  87.30 2)
[PA][C] 1108.34 (13.77)  247.93(2) 1100.03 (13.40) 244.53(2)
[CA][P] 1068.87 (10.47)  230.66 (2) 1061.09 (10.10) 226.42 (2)
[CP1[CA] 1271.11 (52.55) 87.16 (1) 1256.77 (50.97) 84.37 (1)
[CP] [PA] 1598.88 (106.26)  17.55 (1) 1585.03 (104.93) 15.88 (1)
[CA][PA] 1080.47 (13.38) 230.43 (1) 1072.19 (12.88) 226.44 (1)
[CP][CA][PA] 2360.82 (363.25) —(0) 2309.55 (352.36) -
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Table 5 gives the estimates of the population size for
various log-linear models with estimates of standard errors
and goodness-of-fit statistics. Standard errors are computed
with the delta method as discussed in Fienberg (1972). The
assumption of independence between the census and the
P-sample has been questioned for the use of the DSE. The
dual system method has limited capacity to test this assump-
tion and to adjust for potential dependency, while both
can be handled through log-linear models for three or more
samples. There are four models listed in Table 5 that assume
independence between the census and the P-sample: the
independence model [C] [P][A], [PA][C], [CA][P],
and [CA] [PA]. All of them fit the data poorly. The three
models with the interaction term for the census and the
P-sample, [CP] [A], [CP][CA], and [CP] [PA] fit the
data much better. With the addition of an interaction term
linking the census and the ALS, model [CP] [CA] fits only
slightly better than [CP] [A], indicating that the census
and the P-sample are together nearly independent from
the ALS. The model [CP] [PA] fits the data the best,
suggesting that the usual independence assumption for the
DSE is invalid and that there is dependence between the
P-sample and the ALS. For all seven non-saturated log-
linear models, we obtain better fits under matching error
Model (2), though only slightly so, due to the high match
rate for the data from the 1988 U.S. Census Dress Rehearsal.
For the [CP] [PA] model, there is a .8738% difference
in the estimate of N associated with the nonmatch rate of
.3363%. If the nonmatch rate had been 10%, i.e., a 90%
match rate, and assuming that the difference in the estimate
of N is approximately linear in the nonmatch rate, there
would have been a 26% difference between the usual
maximum likelihood estimate of N and our estimate.

Table 6
Dual-System Data for Stratum 11, St. Louis

Census

P-sample
Present Absent Total

Present 487 129 616
Absent 217 -
Total 704

Table 6 presents the usual dual system data for stratum 11,
St. Louis. The number of people in both the census and
the P-sample is y;; = 300, the number of those in the
census only is y;, = 217, and number in the P-sample only
is y»; = 129. The total census countis y;, = y;; + Y2 =
704, the total P-sample countisy,; = y;; + ¥y = 616,
the dual system estimate is DSE = Yi+Y+1/yn = 893
(p. 232, Bishop, Fienberg and Hglland 1975), and the esti-
mated variance of DSE is Var(DSE) =y, .y .1 Y1221/ Y=
105.4 (p. 233, Bishop et al. 1975). The standard error is
SE(DSE) = 10.27.
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AThe censuwndercount for the population estimate
DSE is (DSE — y;,)/DSE x 100% = 21.17%.
For our best fitting model, the census undercount is
(N = y14)/N = 55.97% for the estimate N = 1599
assuming no matching error and 55.58% for N = 1585
from matching error Model (2). Thus thereis a 55.97% —
55.58% = 0.39% upward bias by ignoring matching
errors. This is quite close to the figure of 0.37% computed
in Ding and Fienberg (1994) for the 1986 Los Angeles test
census data using a two-sample match rate of 99.4734%,
as compared to 99.6637% here for the St. Louis data. Our
estimates show that the urban Black male adults targeted
in the St. Louis Dress Rehearsal were heavily undercounted
by the census, and that the undercount is severely under-
estimated by the usual dual-system or capture-recapture
estimator of the population size. A third and qualitatively
different sample might work well for this demographic
group.

The homogeneity of the capture probabilities is one of
the assumptions in the standard approach to the estimation
of the size of a closed population. Darroch et al. (1993)
developed a quasi-symmetry model and a partial quasi-
symmetry model to allow for varying catchability of
individuals. The quasi-symmetry model assumes that the
pattern of heterogeneity is the same for all three samples,
the partial quasi-symmetry model assumes that the pattern
of heterogeneity is the same for two samples but different
for the third sample. This is a sensible model given that
the third sample is qualitatively quite different from the
census and the PES and this model is equivalent to a
combination of dependence and heterogeneity. For the
multinomial cell probabilities including the missing cell,
R = (ry iz - - -» '), both are log-linear models of
the form log R = A with an appropriately chosen design
matrix A and a vector of parameters 3. The design matrices
for both models are given in Darroch et al. (1993).

Table 7
Heterogeneous Catchability Models

MLE from MLE Using Matching
Log-Linear Darroch et al. (1993) Error Model (2)
Model
N(S.E.) Fit (d.f.) N (S.E.) Fit (d.f.)
Full quasi-
symmetry 1923.63 (216.84) 133.54 (2)  1906.61 (213.47) 133.50 (2)

Partial quasi-

symmetry 2576.54 (413.28)  11.70 (1)  2557.08 (409.39)  11.72(1)

Our proposed method can readily incorporate heter-
ogeneous catchability to estimate the population size by
assuming a heterogeneity model for Table 1 and then
adopting the conditional likelihood estimation (Sanathanan
1972). Table 7 presents estimates from fitting the quasi-
symmetry model and the partial quasi-symmetry model for

the data from stratum 11. Again, the effect of the matching
errors in this analysis is not substantial due to the high
matching rate. The partial quasi-symmetry model fits
much better than the quasi-symmetry model, indicating
there seems to be plausible heterogeneity and the pattern
of heterogeneity seems different in the ALS. The lack of
fit of the independence model might also be explained in
part by the dependence among the samples (in particular
between the census and the P-sample) and in part by
heterogeneous catchability.

The partial quasi-symmetry model incorporates the
[CP] dependence and thus is an alternative to the model
[CP][PA] in Table 5. The two models yield similar fits
to the data, but they give dramatically different estimates
of N, with the model incorporating heterogeneity having
a much larger estimate accompanied by a much larger
estimated standard error. This suggests that there is a
considerable instability associated with heterogeneity
parameters and, although the two models are not nested
and thus not directly comparable, it seems reasonable to
opt for the smaller and more stable estimate which does
not incorporate heterogeneity.

Darroch et al. (1993) considered four substrata for
stratum 11 in their analysis. The two cross-classification
variables for the four substrata O2, R2, O3 and R3 are
whether residents owned or rented homes and whether
they were age 20-29 or 30-44. The data for the four sub-
strata are given in Table 8 where 1 corresponds to presence
in a sample and 0 is for absence. We have reanalyzed them
for comparison. Table 9 and Table 10 give estimates for
both heterogeneity models. As pointed out earlier, the high
match rate yields similar estimates and fits for models
incorporating matching errors. The partial quasi-symmetry
model shows significant improvement in fits over the full
quasi-symmetry model with the best fits obtained for R2
and R3. If we add the estimates of N across the four
substrata, the total for the matching error version of
partial quasi-symmetry is N = 2980.8, more than 16%
larger than the estimate from the collapsed model in
Table 7. Of course, the standard error of the estimate has
increased by a similar magnitude.

Table 8

Three-Sample Data for Four Substrata of Stratum 11
Source: Table 2, Darroch et al. (1993)

Sample Substratum
C P A 02 R2 03 R3
0 0 1 59 43 35 43
0 1 0 8 34 10 24
0 1 1 19 11 10 13
1 0 0 ] | 41 62 32
1 0 1 19 12 13 7
1 1 0 13 69 36 69
1 1 1 79 58 91 72
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Table 9
Estimates for Full Quasi-Symmetry

MLE from MLE Using Matching
Sub- Darroch et al. (1993) Error Model (2)
stratum -
N (S.E.) Fit (d.f.) NGS.E) Fit (d.f.)
02 780.83 (294.81) 11.70(2) 777.98(293.99) 11.69 (2)
R2 394.34 (56.45) 41.09 (2)  391.14(55.29) 41.02(2)

03 765.45 (254.57)  25.99 (2)
R3 361.83 (47.33) 59.31(2)

759.97 (252.44) 25.98(2)
358.71 (46.20) 59.22(2)

Table 10
Estimates for Partial Quasi-Symmetry

MLE from MLE Using Matching
Sub- Darroch et al. (1993) Error Model (2)
stratum — -
N (S.E.) Fit (d.f.) N (S.E.) Fit (d.f.)
02 605.66 (212.63)  7.51(1) 601.44(210.93) 7.52(1)
R2 652.34 (205.12)  0.04 (1)  646.59 (202.58)  0.04 (1)
03 1124.00 (473.26)  8.27 (1) 1126.90 (476.54) 8.22 (1)
R3 611.78 (200.82)  2.92(1) 605.91(198.26) 2.92(1)

6. SUMMARY

In this paper, we have presented models for matching
errors and models for the estimation of the population
total and census undercount in a multiple sample census.
We have illustrated our methods by reanalyzing census
coverage data from the 1988 St. Louis Dress Rehearsal
census. Two sources of information are considered in our
analysis, the data from a Matching Error Study (MES),
and triple-system data with every individual cross-classified
according to presence or absence in each of three samples:
the census, a post enumeration survey (P-sample) and an
administrative list supplement. We imbed the standard
log-linear model formulation of Fienberg (1972) into our
estimation procedure to account for statistical dependency
together with matching errors and to allow for formal
goodness-of-fit test of various models. Our method applies
to any model of a log-linear form and we have illustrated
how heterogeneity models can be incorporated into our
approach to allow for both matching errors and heter-
ogeneous catchability.

Our matching error models assume that false matches
are negligible. Sensitivity analysis in Ding (1990) shows
that when both the false nonmatch rate and the false match
rate are the same order of magnitude, the matching bias is
dominated by the false nonmatch rate (see also Fay, Passel,
Robinson and Cowan 1988, p. 53). This is because the
capture probabilities in the census and the post enumeration

63

survey are high, and thus a comparable change in both the
false nonmatch and false match rates has substantially
more impact on false nonmatches than false matches. For
the 1986 Los Angeles test census data, the estimates of
false nonmatch rate and false match rate computed in
Ding and Fienberg (1994) are about 0.5% and 0.8%,
respectively. Based on these empirical findings, we have
some reason to believe that, at least in the census applica-
tion described here, our models for false nonmatch errors
are reasonable approximations to reality.

We have analyzed the St. Louis triple-system data with
an estimate of the matching rate taken from the MES.
Matching rates may not be homogeneous over different
population strata, and we suggest that the MES data
associated with the same sampling stratum be used. We
have developed formulation in §3 for the k-sample census,
and our approach can be readily applied to a k-sample
census with £k = 4.
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