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Applying the Lavallée and Hidiroglou Method to
Obtain Stratification Boundaries for the Census Bureau’s
Annual Capital Expenditures Survey

JOHN G. SLANTA and THOMAS R. KRENZKE!

ABSTRACT

The Lavallée-Hidiroglou (L-H) method of finding stratification boundaries has been used in the Census Bureau’s
Annual Capital Expenditures Survey (ACES) to stratify part of its universe in the pilot study and the subsequent
preliminary survey. This iterative method minimizes the sample size while fixing the desired reliability level by
constructing appropriate boundary points. However, we encountered two problems in our application. One problem
was that different starting boundaries resulted in different ending boundaries. The other problem was that the
convergence to locally-optimal boundaries was slow, i.e., the number of iterations was large and convergence was
not guaranteed. This paper addresses our difficulties with the L-H method and shows how they were resolved so
that this procedure would work well for the ACES. In particular, we describe how contour plots were constructed
and used to help illustrate how insignificant these problems were once the L-H method was applied. This paper
describes revisions made to the L-H method; revisions that made it a practical method of finding stratification

boundaries for ACES.
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1. INTRODUCTION

The primary objectives of the sample design of the Census
Bureau’s Annual Capital Expenditures Survey (ACES)
are to meet desired reliability levels using operationally-
feasible methodology and to stay within budget limita-
tions. To achieve these goals, we implemented a stratified
simple random sample design using a modified version of
Lavallée and Hidiroglou’s (L-H) (1988) approach of
finding stratum bounds. This stratification method for
skewed populations obtains optimal boundary points by
minimizing the total sample size given a desired coefficient
of variation (c.v.). Survey managers associated with a
single-purpose survey having access to a single stratifier
can benefit from its operational ease and cost reductions.

We considered several papers that documented other
methods for finding size stratum boundaries. Hess, Sethi,
and Balakrishnan (1966) compared several stratifying
techniques. The popular Dalenius and Hodges method
(Cochran 1977, p. 129) was considered easy to implement
in our case but was initially ruled out because it was not
designed with certainty strata in mind. Sethi’s method
(1963) of using standard distributions was not used because
we thought it would be cumbersome to identify the distri-
bution and sub-optimal to use standard distributions for
each of the 80 ACES industries. Eckman’s rule (1959) of
equalizing the product of stratum weights and stratum
range seemed to require rather ominous calculations.

The L-H method was the most appealing to our appli-
cation. Designed specifically for skewed populations,
which is often the case for economic surveys, it creates a
boundary that defines the take-all stratum, and the optimal
boundary point(s) for the take-some strata. It sometimes
will create additional take-all strata if through Neyman
Allocation, the stratum sample size is greater than or equal
to the stratum size.

The L-H method goes through an iterative algorithm
beginning with computing or arbitrarily setting the initial
stratum boundaries. Then, stratum statistics are computed
such as, the stratum size, mean, and the variance. These
parameters are entered into boundary formulas that were
derived from minimizing the sample size subject to a desired
cv. If the new boundaries do not converge then the stratum
statistics are calculated for the newly defined size strata.
The cycle continues until the boundaries converge.

Schneeberger (1979) discussed the problem of finding
optimal stratification boundaries. Schneeberger shows in
the paper that when expressing this problem as a non-linear
program, when solved by a gradient method, the solution
may be relative or global minima, maxima, or saddle
points of the variance of the sample mean. Detlefsen and
Veum (1991) document this as a shortcoming of the L-H
method when testing its application for the Census Bureau’s
Monthly Retail Trade Survey. In the L-H method, they
found that many times the resulting boundaries differed
substantially from where the initial boundaries were set,
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so the minimum sample size attained was a local minimum.
Geometrically, the sample size as a function of two strata
boundaries, appears like a landscape with one or more
bowl-shaped valleys. The L-H method begins in a region
and descends until it reaches the lowest point. If more than
one minimum exists, it will not continue to search for the
global minimum. Therefore, one objective is to have initial
boundaries that are in the neighborhood of the global
minimum. Using starting boundaries resulting from a
technique such as the Dalenius and Hodges method may
help satisfy this desire.

Detlefsen and Veum (1991) also noted instances of
slow or non-convergence. However, they also noted that
convergence occurred faster when the number of strata
was reduced and when starting boundaries were the same
as the previous survey’s sample selection boundaries. In
order to defend ourselves against infinite loops in the
computer program or a large number of iterations, we
decided on doing two things. First, we implemented a
sample design in which the L-H method would create sets
of only three size strata. Second, we decided to implement
stopping rules so that when the convergence rate appeared
to slow down, the program stopped processing.

In this work, we give background information on the
ACES and briefly describe the way the L-H method was
applied. We show how contour plots and three-dimensional
plots gave us justification for using the L-H method to get
the final boundaries. We show how the contour plots
address the convergence problem by showing how con-
straints can be setup to be met after each iteration. This
would protect us against slow or non-convergence under
the assumption that the marginal gain achieved is not
worth the extra effort.

2. ACES BACKGROUND

The 1992 ACES was designed by the Census Bureau to
be a large-scale operational test of the sampling, processing,
programming, data entry, editing, and estimation procedures
which extended beyond a 1991 pilot study, to prepare for
the 1993 full-scale survey. Capital expenditure estimates
for domestic activities were published at conglomerated
industry levels from the 1992 survey. In addition, the 1991
and 1992 preliminary surveys provided valuable capital
expenditure data that will be used in future sample design
enhancements.

The sampling unit for the ACES was the company
which may be comprised of several establishments. The
sampled population included all active companies with five
or more employees from all major industry sectors except
Government. These sectors include mining, construction,
manufacturing, transportation, wholesale and retail trade,
finance, services, and a portion of the agriculture sector
that includes agricultural services, forestry, fishing,

hunting, and trapping. Only companies with domestic
activity were included in the sampling frame. The Research
and Methodology Staff of the Census Bureau’s Industry
Division constructed the sampling frame, selected the
sample, and generated estimates.

The ACES sampling frame was constructed from the
Census Bureau’s Standard Statistical Establishment List
(SSEL) in November 1992 using final 1991 data for single
unit (SU) establishments and 1990 data for establishments
associated with multiunit (MU) firms. Major exclusions
from the frame were public administration, U.S. Postal
Service, international establishments, establishments in
Puerto Rico, Guam, Virgin Islands, and the Mariana
Islands. EI Submasters which are SU records on the SSEL
that are associated with MU establishments, establishments
associated with agricultural production, and private house-
holds were also excluded from the frame.

The establishment-based file was consolidated into a
company-based file. In addition, the 4-digit Standard
Industrial Classification (SIC) codes for each company
were recoded into ACES categories. The 80 ACES cate-
gories consisted of either 3-digit SICs or combinations of
3-digit SICs. The ACES sampling frame included approx-
imately two million companies.

3. THE L-H METHOD APPLIED TO THE ACES

The universe of companies was classified into two
major strata. Stratum I was an arbitrarily defined take-all
stratum that consisted of large companies with more than
500 employees and over $100 million in assets. Stratum I
companies were not classified into one ACES industry. For
the estimated industry level payroll totals used in the calcu-
lation of the industry-level sample sizes, stratum I companies
could contribute to more than one ACES industry depending
on the number of different ACES industries the companies
have payroll in, identified in the SSEL.

Stratum II contained companies that had five or more
employees and had less than 500 employees. Stratum 11
companies were classified into one industry, even if engaged
in more than one activity. Each company had frame infor-
mation available for each of the ACES industries the
company had activity in. However, the company’s payroll
contributed only to estimated total payroll for the industry
that the company was classified in. Subsequently, within
stratum II, for each ACES industry category, three size
strata were created based on total company annual payroll
using the L-H method.

A concern with the sample design is the result of
companies being misclassified due to the measure of size
being used. We classified each stratum II company into
its highest payroll industry; however, companies self-report
their capital expenditures into ACES industries on the
ACES questionnaire. Companies may report in multiple
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industries. If too many companies self-report into indus-
tries other than where they were classified, then control
on the reliability of the estimates is lost.

A similar concern is that the variation in payroll is not
the same as the variation in expenditures. Since sample size
is directly related to the variance, sample sizes may be
different than what is really required. Therefore, since the
correlation between payroll and expenditures is not high,
the chances that reliability constraints will be met will
diminish.

The application of the L-H method to the ACES 1992
preliminary survey sample design involved splitting
stratum II into one take-all size stratum and two take-
some size strata for each ACES industry. The boundaries
were derived for each industry by taking the partial deri-
vative of the sample size with respect to a boundary while
fixing the other boundary. However, in practice, we allowed
both boundaries to move simultaneously. This results in
an iterative process of minimizing the sample size for each
industry subject to c.v. constraints. Within stratum II for
each ACES industry and assuming Neyman Allocation
(Detlefsen and Veum 1991), the sample size equation that

is minimized is,
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where, nr4 is the number of companies in the take-all size
stratum within stratum II defined by the L-H method, N
is the number of stratum I companies in the ACES industry
of interest, W, = N;/N is the stratum proportion, N; is
the number of stratum II companies for size stratum j, cv
is the desired coefficient of variation for the ACES industry
of interest, Y is the total payroll for stratum I and II for
the ACES industry of interest defined by,

Ny 3 ]Vj
Y= E Vi + E Yiis
k=1 j=1 i=1

Ny is the number companies in stratum I, and S; is the
standard deviation of payroll from the SSEL for size
stratum J in stratum II defined by,

where, y;;is the payroll value of company i of size stratum
J for the ACES industry of interest, and Y, is the mean
of payroll for size stratum ;.
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The reliability level for each industry was an expected
c.v. of 5% on payroll. It was not known, however, what
standard errors would result for capital expenditures, as
no capital expenditures data exist for the frame records.
Companies responding in ACES industries different from
the ones they contributed to in the sample design also
caused the c.v.’s to fluctuate. The total number of com-
panies selected for the ACES 1992 preliminary survey was
11,194, consisting of 1,500 stratum I companies and 9,694
stratum II companies.

4. CONVERGENCE INTO NEIGHBORHOODS

One of the problems with the L-H method is that it
sometimes takes a large number of iterations before the
boundaries converge; sometimes they never converge.
Generally after just a few iterations, a large proportion of
the improvement in the sample size has already occurred.
Our goal was to be able to implement stopping rules so that
when an area around a local minimum is reached, we can
stop processing. This prompted our use of contour plots
in analyzing the effect the boundaries have on the resulting
sample size. It also allowed us to get a graphical view of
the neighborhoods around the local minima. We will use
two distributions to illustrate the benefits of reviewing con-
tour plots.

4.1 Non-Skewed Distribution

The first example is a non-skewed distribution from
Schneeberger’s paper. This distribution is symmetric at
x = 1 as shown in Figure 1.

0 x=<0

2x 0<x=<05

2(1 —x) 0.5 <x=1
JOO =5x-1) for 1<x=<15

2(2—x) 1L.S5<x=<2

0 2 < x

Schneeberger’s objective was to find boundaries for
three take-some strata using a gradient method. Using the
objective function of z = (¥ Wj0;)?, the results attained
are listed in Table 1.

Table 1
Optimum Boundaries for Non-Skewed Distribution

by by Optimum Point
(2a) .50241 1.03985 Minimum
(2b) .70910 1.29090 Saddle Point
(2¢) .96015 1.49759 Minimum

Source: Schneeberger (1979).
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Table 2
L-H Boundaries for Three Take-Some Strata for Non-Skewed Distribution

1st Iteration
N Starting Method

Iteration Within 5%

of Sample Size Final Iteration

by by n by b, n iter.# by by n iter.#
50 N =Ny =N, .59 1.41 10.89 .66 1.34 9.98 2 .70 1.31 9.77 4
100 N =N = N3 .59 1.41 12.60 .66 1.34 10.91 2 .70 1.30 10.55 5
200 Ny =Ny, =N; .59 1.41 13.42 .66 1.34 11.43 2 N 1.29 10.99 6
1000 Ny =N = N; .59 1.41 13.85 .66 1.34 11.75 2 1 1.29 11.37 7
5000 Ny =N, =Ny .59 1.41 14.12 .66 1.34 11.84 2 71 1.29 11.45 9
50 Dalenius-Hodges .70 1.40 10.09 .70 1.40 10.09 1 17 1.37 9.63 4
100 Dalenius-Hodges .70 1.40 10.90 .84 1.40 10.14 7 .93 1.47 9.65 13
200  Dalenius-Hodges .70 1.40 11.42 .83 1.40 10.44 7 95 1.49 9.96 17
1000 Dalenius-Hodges .70 1.40 11.86 .86 1.42 10.67 8 .96 1.50 10.27 23
5000 Dalenius-Hodges .70 1.40 11.95 .86 1.42 10.74 8 .96 1.50 10.34 28
50 Off Line .50 1.30 10.87 .57 1.20 9.43 3 .55 1.11 9.11 6
100 Off Line .50 1.30 11.95 .57 1.18 10.04 3 53 1.07 9.65 8
200  Off Line .50 1.30 12.64 .56 1.14 10.28 4 .51 1.05 9.96 12
1000 Off Line .50 1.30 13.24 .56 1.14 10.59 4 .50 1.04 10.27 18
5000 Off Line .50 1.30 13.37 .56 1.14 10.67 4 .50 1.04 10.34 24

We generated five datasets of different sizes (e.g.,
N = 50, 100, 200, 1000, and 5000) using the formula,
F(x) = (j — 1/2)/N.For this example, we adapted the
L-H method to construct three take-some strata and no
take-all stratum in order to compare our results with the
results in the Schneeberger paper. With our application
of estimating totals, when minimizing the sample size
subject toac.v. = 0.05, the L-H method ran for each of
the five population sizes using three different starting
techniques. The results are given in Table 2.

There are three main points from the information in
Table 2. First, the algorithms convergence depends on the
population size. The underlying theory of the L-H method
is based on continuous distributions. Our examples and
any survey application has discrete data from finite popula-
tions. It is also apparent that as N gets larger, the resulting
boundaries get closer to where the minimum is under an
infinite population size. Figure 2 shows the roughness of
the sample size surface when N is small (i.e., N = 50).
The resulting surface illustrates the saddle in three dimen-
sions in Figure 2. In this graph, the axes are the lower and
upper boundaries and the surface is the resulting sample
sizes. This graph shows the saddle-point, the two local
minima, and it also gives a picture of the magnitude of the
sample size reductions as a result of shifting the boundaries.
In contrast, Figure 3 shows the smoothness of the surface
when Nis large (i.e., N = 5000). From this, it seems that
the roughness of the sample size surface and consequently
the population size has an effect on where the boundaries
converge.

The second point of this example reemphasizes that
the ending boundaries are dependent on the starting

boundaries. For this example, Schneeberger describes that
with a starting point symmetrictox = 1, whereb; =1 — A
and b, = 1 + AN(0 < N < 1) which defines the line
b, = 2 — b, the gradient method moves the gradient
along the line b, = 2 — b, into the saddle-point. When
we set the starting boundaries on this line, which occurred
when we started with the condition N; = N, = Nj, the
L-H method also converged to the saddle point (see
Table 1). With starting boundaries from the Dalenius-
Hodges method, which are not on the line in the case where
b, > 2 — b;, the L-H method converged to a minimum
(2¢c). The Dalenius-Hodges method works well in this
example because of the three take-some strata. With
starting boundaries which are not on the line in the case
where b, < 2 — b, (specifically, b; = .5 and b, = 1.3), the
L-H method converges to a different minimum (2a). This
problem is not unique to the L-H method, as Schneeberger
points out that the gradient method’s resulting boundaries
are also dependent of the starting boundaries.

The third point of this example is that there seems to
be relatively large reductions in sample size in the first few
iterations and then there are several iterations where there
are small reductions in sample size. Results are shown in
Table 2 from the iteration in which the algorithm produced
a sample size within 5% of the final sample size. This
implies that the L-H algorithm quickly goes to a neigh-
borhood around an optimal boundary. While close to an
optimal sample size, there seems to be a wide range of
boundary points resulting in a small range of sample sizes.
The point is that stopping rules can save computing time
while not relinquishing any real reduction in sample size,
since sample size is in integer values.
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Figure 1. Graph of non-skewed distribution.

Two Local Minima and Saddle Point

19.790

17.500

15.210

Figure 2. Sample size surface for non-skewed distribution (N = 50).
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Two Local Minima and Saddle Point

38.547 -

32.904 A

27.261 -

Figure 3. Sample size surface for non-skewed distribution (N = 5000).
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Figure 4. Contour plot for non-skewed distribution (N = 5000).
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A contour plot of the surface shown in Figure 3 is given
in Figure 4. Again, the axes are the lower and upper
boundaries and the surface is defined by the resulting
sample size. The lines in the plot represent a sample size
value. The space between the lines gives an area that
contains a range of sample size values. For example, a solid
line represents a sample size of 11 and a series of short dash
marks represents a sample size of 13. The area in between
the solid line and the line of short dash marks contains
sample sizes in the range of 11 to 13. This contour plot
shows a marginal improvement in the sample size by
illustrating that when an area around the bottom of the
surface is reached, moving on is unnecessary. At this
point, most of the improvement on the sample size from
iteration to iteration is less than a value of one. It becomes
apparent that after the first few iterations, the improvement
of the sample size from iteration to iteration reduces
quickly. For instance, in Table 2, where N = 5000 and
where the Dalenius-Hodges method was used for the
starting boundaries, the first eight iterations accounted for
74% of the total reduction in the sample size from itera-
tion 1 to the 28th and final iteration.

4.2 A Skewed Distribution

Economic data are usually highly skewed and therefore
it is more appealing to have a take-all stratum. The next
example comes from the Pareto distribution, which is a
very typical distribution of economic universes, where
there are a large number of small companies and a small
number of large companies.
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The Pareto distribution function is defined as F(x) =
1 —1/(1 + x)%, 0 = x < . From this we again
generated five datasets of different sizes using the formula
F(x) = (j — 1/2)/N. We let the values of b change as
the population size changed. This was done so as to keep
the upper tail of the finite discrete distribution roughly the
same proportion to the entire population for each popula-
tion size. To do so, the parameter b was chosen in such
a way that about 90% of the total sum could be accounted
for in the top 20% of all possible sampling units. Since the
datasets contain a finite number of discrete values there
was no problem deriving variances of different strata when
values of b were less than 2.

Table 3 gives the L-H results for different population
sizes and starting points. The first group uses starting values
which yield equal stratum populations (N, = N, = Nj).
The second group uses the Dalenius-Hodges method to
obtain all initial boundaries. The third group obtains
starting boundaries by first using a method for deter-
mining the take-all boundary as presented by Hidiroglou
(1986) and uses the Dalenius-Hodges method for the other
boundary. Again it can be observed that the sample size
surface given strata boundaries is much more choppier for
smaller population sizes (se¢ Figure 5). For example, when
N = 50 and b, is fixed, there was only one sample size
when b, varied between 11.8 and 14.7. This is because
there were no values within this range in the population.
As the population size increases, the data values are closer
together, and the sample surface becomes very smooth
(see Figure 6).

Table 3
L-H Boundaries for Skewed Distribution (one take-all stratum, two take-some strata)

1st Iteration
N Starting Method

Iteration Within 5%

of Sample Size Final Iteration

b by by nrq n by by ATY n iter.# b b by nrq n iter.#
50 NI =Ny =Ny .80 .63 2.81 17 17.2 1.66 10.20 7 9.6 5 .80 2.44 11.81 7 9.4 9
100 Ny =Ny =N; 90 .56 2.33 34 343 1.61 1029 11 15.8 5 90 2.58 1244 10 15.1 12
200 Ny =Ny =N3 90 .56  2.36 67 67.2 235 17.04 15 21.8 6 90 3.61 2046 13 20.9 13
1000 Ny =Ny =N; 1.00 .50 2.00 333 334.2 3.35 30.58 32 53.0 7 1.00 4.93 36.32 27 51.3 18
5000 Ny =N, =Nj3 1.05 .47 1.85 1665 1667.2 4.67 64.33 62 113.5 7 1.05 7.39 79.38 50 108.8 22
50 Dalenius-Hodges .80 1.25 8.04 9 10.5 1.76 10.37 7 9.5 3 .80 2.44 11.81 7 9.4 6
100  Dalenius-Hodges 90 1.39 8.98 13 16.6 1.62 10.16 11 15.8 2 90 2.58 1244 10 15.1 9
200  Dalenius-Hodges 90 1.82 11.66 20 243 245 17.29 15 21.7 3 90 3.61 2046 13 20.9 10
1000 Dalenius-Hodges 1.00 2.37 17.28 55 65.6 3.15 29.70 33 53.5 3 1.00 493 36.32 27 51.3 15
5000 Dalenius-Hodges 1.05 3.09 26.27 155 175.0 4.98 66.28 60 112.3 4 1.05 7.39 79.383 50 108.8 19
50 Hidiroglou 1986 80 .94 6.50 10 11.3 1.58 10.02 7 9.6 3 .80 2.44 11.81 7 9.4 7
100 Hidiroglou 1986 90 .74 6.17 17 19.6 1.66 10.38 11 15.8 4 90 2.58 1244 10 15.1 11
200  Hidiroglou 1986 90 1.39  9.55 24 27.2 250 17.58 14 21.5 4 90 3.61 2046 13 20.9 10
1000 Hidiroglou 1986 1.00 2.02 15.13 62 71.3 3.34 30.54 32 53.0 4 1.00 493 36.32 27 51.3 15
5000 Hidiroglou 1986 1.05 3.24 28.72 142 164.1 5.11 67.05 59 112.0 4 1.05 7.39 79.38 50 108.8 19
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Figure 5. Sample size surface for skewed distribution (N = 50).
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Figure 6. Sample size surface for skewed distribution (N = 5000).
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Figure 7. Contour plot of skewed distribution (N = 50).
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Figure 8. Contour plot of skewed distribution (N = 5000).
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The contour plot for N = 50 (Figure 7) has erratic
shapes defined by straight lines for contour markings. The
contour plot for N = 5000 (Figure 8) has almost smooth
concentric ellipses for contour markings. It would appear
to be a desirable quality for the contour markings to be
the same shape and concentric. This would imply that the
global minimum is the only local minimum.

The contour plot for N = 50 demonstrated the case
where the L-H method didn’t converge to optimal bound-
aries. Since, for this example, we let the L-H program run
until it converged the question may arise as to why the L-H
method didn’t converge to the optimal boundaries. The
easiest way to explain this is by viewing Figure 5. We can
see that when the population size is small then the sample
size surface is not as smooth as in Figure 6. We see several
major ridges in Figure 5 that are caused by wide gaps
in the skewed discrete data (x4; = 9.71, x44 = 11.81,
X45 = 14.79, x46 = 19.29). This means that for a given
by, any value of b, between 11.81 and 14.79 would yield
the same sample size. When we ran the L-H program for
different starting boundaries other than the three listed in
Table 3 we came up with the final boundaries as in Table 3
along with other boundaries and their corresponding
sample sizes. It appears that the L-H method converges
to a low region on one of the major ridges, provided that
the region is in the neighborhood of the optimal bound-
aries. The minimum sample size is 9.22 and the L-H
method in Table 3 yielded a sample size of 9.36. The
smallest whole integer sample size for each result that
meets or exceeds the constraint is 10. Here again we see
that the L-H method performs exceptionally well even with
discrete distributions that have small population sizes as
we see that the boundaries converge within the neigh-
borhood containing the optimal solution.

Another observation to be pointed out is that there is
a broad range of values that the boundaries can take on
while keeping the integer value of the sample size the same.
As the size of the neighborhood expands, the range of
boundary values extends as well. It should also be pointed
out that even though the range of b, values for a given
neighborhood is smaller than the range of values for b,,
there are far more sampling units in the range of b, than
b, because of the skewed distribution.

5. SUMMARY

The graphs presented here have shown that a wide range
of boundary values result in a small range of sample sizes
when in a neighborhood around an optimal value (the
bowl shape bottom of the graphs). Any extraordinary
improvement on the sample size, i.e., a small marginal
gain, might not be worth the extra effort to obtain. This
marginal gain may or may not even improve the sample
size since the sample size is really an integer and the

marginal gain might only be a small fraction. The L-H
method proved very effective in obtaining boundary
values in a desired neighborhood around an optimal value,
and did it relatively fast.

By measuring the rate of convergence using the sample
size instead of boundary values we were better able to
determine when a desired neighborhood around an optimal
value was reached. This is because boundary values vary
greatly in such a neighborhood while sample size (which
is of main interest) varies slightly. When the improvement
in sample size from iteration to iteration was marginal or
nonexistent we immediately terminated the program under
the assumption that we reached the desired neighborhood.
The following stopping rules are recommended. Stop
processing when:

1) the difference between the new upper boundary and the
previous iteration’s upper boundary is less than one.
The whole number, one, is used in our case since payroll
values are only available to us in whole number values
and any shifting of boundaries of a value less than one
does not affect any companies;

2) the difference between the new lower boundary and the
previous iteration’s lower boundary is less than one;

3) the difference between the new sample size and the
previous iteration’s sample size is less than a small
arbitrary value. We recommend a number less than one
since sample sizes are usually rounded up and any
fractional improvement on the sample size is negligible.
One should be careful when choosing this value since
it is possible that the sample size reduction rate may
increase from iteration to iteration because the slope of
the surface changes;

4) the program goes into the 30th iteration. Of course, this
is an arbitrary value and may depend on the number of
times (industries) one has to apply the L-H method.

Another note is that small population sizes may cause
convergence of the boundaries to a point suboptimal, as
shown in the examples. Graphs of the sample size surface
show a rough surface for small populations and a smooth
surface for large populations. It is this rough surface due
to the discrete nature of the small population that contrib-
ute, in part, to where the L-H method converges.

Another point in conclusion, in our application, the
Dalenius-Hodges method assumes that all resulting strata
will be sampled. The L-H method is written to construct an
analytical take-all substratum. Therefore, the top stratum
developed by the Dalenius-Hodges method, when creating
the initial boundaries for ACES industries, will be top-
heavy since it will not be sampled. Improvements in the
sample size were noticed from the Dalenius-Hodges method
to the first iteration of the L-H method in this situation.
The error that occurs is that the starting boundaries may
lead to a local minimum that is not the best solution.
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