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A Moving Stratification Algorithm

YVES TILLE!

ABSTRACT

A general algorithm with equal probabilities is presented. The author provides the second order inclusion probabilities
that correspond to the algorithm, which generalizes the selection-rejection method, so that a sample may be drawn
using simple random sampling without replacement. Another particular case of the algorithm, called moving
stratification algorithm, is discussed. A smooth stratification effect can be obtained by using, as a stratification
variable, the serial number of the observation units. The author provides approximations of first and second order
inclusion probabilities. These approximations lead to a population mean estimator and to an estimator of the variance
of this mean estimator. The algorithm is then compared to a classical stratified plan with proportional allocation.

KEY WORDS: Selection algorithm; Equal probability sampling; Strata.

1. INTRODUCTION

When a file is ordered according to an auxiliary variable
that is close to the variable of interest, how can a sample
be selected using such information? One solution to the
problem consists of making a stratified selection. However,
making such a selection requires that a delicate problem
be resolved, namely subdividing the population into strata.
Another simple solution that is both quick and efficient
consists of making a systematic selection. The algorithm
can be written in a few lines. Moreover, the way in which
the file is ordered can be put to good use. However, a
systematic selection has one major flaw, namely that
estimating the variance of total or mean estimators requires
one or several hypotheses concerning the population.
It will be shown that there is another simple selection
algorithm with which a sample can be drawn in one pass
using the file ordering system. For this algorithm, an
estimator of the variance of a total or mean estimator is
provided, requiring no modelling of the population.

A general selection algorithm providing equal first
order inclusion probabilities is presented in section 2. First
and second order inclusion probabilities are provided. In
section 3, the proposed algorithm is shown to generalize
the selection-rejection method so that a simple random
sample can be drawn without replacement along with the
stratified plan with proportional allocation. Finally, in
section 4, the moving stratum method is defined and, in
section 5, conclusions are drawn.

2. PRESENTATION OF THE GENERAL ALGORITHM

2.1 The Algorithm

Let us consider a finite population U = {1, ...,i, ...,
N}; we write y, ..., ¥i, ..., YN, the N values assumed

by variable y for N observation units of U. The mean of
the values assumed by variable y for the population is
written as

=1
VEN

Yi-
ieU

A random sample s of fixed size n is drawn from this
population. The random variables indicating the presence
of observation units in s are written as I;, i € U. The first
order inclusion probability is written as 7; = Pr(i€s) =
E(I)), i € Uand the second order inclusion probability as
7 = E(I; 1), i # k € U. The algorithm is very short.
It resembles the algorithms of Fan, Fuller and Rezucha
(1962), Bebbington (1975), McLeod and Bellhouse (1983)
and Sunter (1977, 1986). Only N, n and the b;, i = 0,

.., N — 1 need to be known. The other variables are
working variables.

General Algorithm
J <= 0;
i <= 0;
Repeatfori =0, ..., N — 1
u < = arandom number with a uniform distribution [0,1];

b+ iyn/N —j
b; J<=Jj+15
otherwise, pass the record i + 1;
i<=1i+1.

select record i + 1;

At each step, j represents the number of records already
selected and / the number of records passed (selected or
not). For each iteration, a decision is made about selec-
ting therecord i + 1. If the record is selected, it becomes
the (j + 1)-thin the sample. The coefficients b;, i = 0,

.., N — 1, are strictly positive real numbers. These
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quantities must meet certain conditions discussed below
if the plan is to be of fixed size or if the units are to be
selected with equal probability. The choice of different
values for b;,i = 0, ..., N — 1, will make it possible to
generate several special cases of the general algorithm.
If b, are strictly positive reals such that b, < N — i,
then the sample size is equal to or smaller than ». In fact,
assuming we have already drawn # units from the popula-
tion at step / and that b; < N — i, then
(bi+n/N—n n EN_—i<n n N—i_

= <- - 0.
b; N b N N N—-i N

It becomes impossible to draw a further unit. It will be
assumed in everything that follows that b; < N — i.
Moreover,ifb; < N — i,i=1,...,N — n — landif
bj=N—i,i=N—mn,...,N — 1, the sample is of
fixed size n. Note that these conditions for obtaining a
sample of fixed size are sufficient but not necessary.
Three particular cases of the algorithm are examined
below. These three cases are defined by three choices of
coefficient b;, i = 0, ..., N — 1. Before examining these
particular choices, we will determine the first and second
order inclusion probabilities without loss of generality.

2.2 First Order Inclusion Probabilities

We write n;, the number of units selected after passing
i records. We see immediately that ny, ..., n;, ..., nn
is a Markov chain. In fact, we directly derive from the
algorithm that

Prin;=j | ny, ...,m_q] = Prln; =j| ni_y].

The random variables

o = (b + i)yn/N — n;
[ b,’

,i=0,...,N—1,

can sometimes assume values greater than 1 or less than
0. Since max(0,n — N + i) < n; < min(i,n), then
Pr(0 = ¢ < 1] = 1if

N —
min(i " N - i) if n < N/J2
b = ,

min(i " ,N—i) if n> N2
N —n

i=0,...,.N—1. (1)
Again conditions (1) are sufficient but not necessary. We
can therefore construct b; which do not meet these con-
ditions but which provide ¢;in [0,1]. The case dealt with
in section 3.2 (stratification) represents one example.
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The following example also provides c¢; in [0,1]
without meeting condition (1): let us consider N = 12,
n = 4 and b0=b1=b3=b4=b6=6, b2=b5:7,
bj=N-—ii=12—14,i=1,...,11. Wehave¢, = 1/3,
c;= (7-3n)/18, ca= (3 —m)/7,c3= (3 —n3)/6,
¢y = (10 — 3ny) /18, cs = (4 — ns)/7, ¢ = (4 — ng) /6,
7= (4 —ny)/5, ¢ = (4 —ng)/4,cog = (4 — ny)/3,
cio = (4 — nyp)/2, ¢;p = (4 — nyp). We note, that
n<1,n, <2, n;<3. If n3 =3 then ¢; = 0 and
therefore ny, < 3. We then have n; < 4 and if ns = 4
then ¢; = 0 and therefore ng < 4. This last co.nment is
true for all ¢; that follow. We therefore note that all ¢; are
in [0,1] whereas by = 6 does not meet condition (1).

In order to simplify the demonstrations which follow,
it will be assumed that

Prl0=s¢=1]=1,i=0,...,N— 1.

We will return to the problem of ¢; values greater than

1 or smaller than 0 later on. If

Prif0<s¢g=<1]1=1,i=0,...,N—1,
we have
E[Li | nyy ..ol = ElL4, | n;] =

(b; + )n/N — n;
b; )

It can be shown easily by recursion that if Pr[0<¢; < 1] =
1,i=0, ..., N—1,E[n]]=in/N,i=0, ..., N.
Therefore,

x = E[I] = E[n) — Eln;_,] = % @)

2.3 Second Order Inclusion Probabilities

Four results provided by lemmas 1, 2 and 3 are needed
in order to determine second order inclusion probabilities.

Lemmal IfPr(0<c¢=<1]=1,i=0,...,.N—1,
then

E[ni | nil

. n . n
=(l+k)ﬁ+(ni—lﬁ>n be’

=i

i=1,..,.N—-1,k=1,...,N — i
This lemma can be demonstrated by recursion if it is
assumed to be true for k — 1. Using lemma 1, the
following lemma is readily obtained by subtraction:
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Lemma2 IfPr[0<¢=<1]=1,i=0,...,N—1,
then
E[lix | nil
1 itk=2p
() I
N N/ bisvk—1 42 b
i=1, N-1,k=1,...,N — i

It is assumed by convention that an empty product has a
value of 1.

Lemma3 IfPr[0=<¢=<1]=1,i=0,...,N—1,
then
nN—n i i—1
Var{n;] = — N. 3
[n) = o= E 1] €))

The demonstration is provided in the appendix.

Finally, the second order inclusion probability is pro-
vided by the following proposition:
Proposition1 IfPr[0<¢;<1] =1, i=0, ..
then

LN-—1,

VAV NS Y

=1 p,—2 iJﬁzbg—-l
b,

f=i+1
N-2k=2 ..., N—i (4

The demonstration is provided in the appendix.

Corollary 1 If Pr(0<¢;<1] =1, i=0, ...,
then

- n* nN-n -
v ;

N-1,

T
[

N
N’

2.4 The Horvitz-Thompson Estimator and its Variance

The Horvitz-Thompson estimator is the simple sample
mean since the first order inclusion probabilities are all equal

<
E

1
=; E)’i~

i€s
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If the design is of fixed size, we can use the Yates and
Grundy variance formula (1953)

2
varlj.| = — Yy (— - &> (mm — 7). (5)

™
iU kelU k
k#i

Since w; = n/N, i = 1, ..., N and assuming that

N?
Yie = 1 — mpe —-,
n

we can write

Var[y N E Y 0 = v v (6)

ieU keU
k#i

The variance estimator is provided by

MEL(-2ms o

7r.
ies kes ik
k#i

Var ]—

This can be written here as

Yik
Var(5, | E Y i =t e
ies  kes ik
k#i

3. APPLICATION 1: SIMPLE AND STRATIFIED
RANDOM SELECTIONS

3.1 Simple Design

The simplest selection algorithm, the selection-rejection
method described in Fan, Fuller and Rezucha (1962,
method 1), Beddington (1975) and Deville and Grosbras
(1987, p. 210), is of course a particular case of the general
algorithm. We need only take

b=N-1i, i=0,..., N—1.

We always have 0 < ¢; < 1. The first order inclusion
probabilities always have a value of n/N. Calculations for
second order inclusion probabilities follow from proposi-
tion 1. Assuming & > i, on the basis of corollary 1, we can
find the second order inclusion probabilities of the simple
design:

n(n — 1)
NN - 1)’

Tik =

We also recall some classical results concerning the simple
design that we will be using later on. The estimator for y
is therefore the mean of the sample
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. 1
Vsrs = ; Eyi- ®

i€s
The variance of this estimator is provided by

2

. o, N —n
Var[Ju| = 25— ©
where
1
=Y u-» (10)
N ¢
ieU
An unbiased estimate of this variance is
Var[j,,] = — TN (1)
where
1 R
S)% = E (yi _ysrs)z- (12)

n—1 4
i€s

3.2 Stratified design

The stratified design can also be defined using the general
algorithm. The stratification variable in this case is the serial
number of the individual. Let us consider the particular
case of a stratified design of H strata with proportional
allocation where all the strata are of the same size. The
strata are such that the individuals of a given stratum are
adjacent in the data file. It is also assumed that N/H is an
integer. This stratified design is obtained by simply taking

N
b; = {(N—i——l)modﬁ} +1,i=0,...,N—1

4. APPLICATION 2: MOVING STRATIFICATION

4.1 The Problem

The file is assumed to be ordered according to an aux-
iliary variable that is close to the variable of interest. The
problem is as follows: how can we draw a random selection
that yields a small variance for the Horvitz-Thompson
estimator of a mean? Looking at the formulation of the
Yates-Grundy variance (5), we see that there are two
distinct answers to this question.

The first solution consists of selecting with unequal
probabilities using first order inclusion probabilities that
are proportional to the variable of interest. If such a selec-
tion could be made, all quantities

Yi _ Ye\?
T T,

would be zero and therefore the variance would be zero.
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The second solution consists of using second order
inclusion probabilities. A good selection could be one
where 7 are close to m;m; if y; is very different from yj.
On the other hand, if y; is very close to y;, we can select
second order inclusion probabilities =;, that are clearly
smaller than =; 7. Thus, where quantities

o)

i Tk,

would be large (respectively small), quantities ;7 — 7y
would be small (respectively large). We would thus have
a small variance.

The second solution we have just described is in fact often
used. It is the basic idea for stratification. Our objective
is to apply this idea to the construction of a sequential selec-
tion algorithm that is easy to implement. Such an algorithm
could be applied to any file without the need to know
anything save the size of the population. It would therefore
apply to very large files. We could thus benefit from the
information provided by this auxiliary variable like for strati-
fication, without the need to actually subdivide into strata.

4.2 The Method

We first define M the length of the moving stratum
within the population. M represents, in a way, the size
of the stratum within the population and is such that
N/n < M < N. Thealgorithm of the moving stratum is
defined by

b; = min(M,N — i),i=0,...,N~ 1.

There is, however, one problem. Quantities ¢; defined
by

(M + i)yn/N — n;
M

if isN-M

n—n )
———  otherwise,
N — i

are not always in [0,1].

In fact, let us assume that, before the (N — M)-thstep of
the algorithm, ¢; is positive and very close to zero and that
through some bad luck the unit i is nevertheless chosen. In
such a case, ¢;,; would have a value of ¢; — (N—n)/(NM).
c;+1 can therefore have a negative value but this negative
value is always greater than — (N—n)/(NM). In fact, if
one of the ¢; is already negative, the unit i is not selected
and therefore c;,, has a value greater than c;.

Let us now assume that before the (N — M)-th step
of the algorithm, one ¢; is very slightly smaller than 1 and
that nevertheless unit i is not selected. In such a case, ¢; 1,
would have a value of ¢; + n/(NM). c¢;, can therefore
take on a value greater than 1 but this value greater than 1
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is nevertheless always smaller than 1 + n/(NM). In fact,
if one of the ¢; is already greater than 1, the unit / is always
selected and therefore c;,, has a value smaller than c;.

We obtain

N-—n n .
Prl-——<¢<l+—|=1i=0,..., N- M.
NM NM
(13)

The design is however of fixed size, a result that follows
the following proposition:

Proposition 2 If b; = min(M, N — i), (N/n < M < N),
0 =1, ..., N~ 1, then the design is of fixed size.

The demonstration is provided in the appendix.

Since the ¢; are not always within the interval [0,1],
we carried out 50 simulations of the moving stratum
algorithm for various sample and population sizes. The
selected N population sizes were 100, 500, 2500, 12500,
62500, 312500. The reciprocals of sampling rates (N/n)
were 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096. We
carried out several simulations by varying the size of the
moving stratum as follows: M = N/n, 2N/n,3N/n, ....
The simulations seem to indicate that the greater the value
for M, the smaller the probability that a ¢; will fall outside
of [0,1]. Assoonas M = 10N/n, for all the simulations
that we carried out, the problem was no longer raised.
This first result does not imply that the probability that
at least one of the ¢; will fall outside of [0,1] is zero when
M = 10N/n. However, it may be said that such a prob-
ability would then be very small.

4.3 Estimating the Mean and Bias

In examining the results yielded by expression (2) and
proposition 1, we get, as a first approximation, a value of
about m; = n/N for first order inclusion probabilities.
This approximation of inclusion probabilities makes it
possible to construct an estimator.

ﬁsm =% Eyi-

i€s

This estimator is slightly biased since the ¢; are not all
exactly within the interval [0,1]. This bias is

. 1
B[ysm] = ;/. E ;)i
3%

where o; = m; N/n — 1. Since the design is of fixed size,
Y cva; = 0. We can therefore write the bias in the form
of a covariance: B[ ﬁsm] = 0,, wWhere

1
O = o )5 @il = 7). (14)
ieU
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Since the absolute value of a covariance is always equal
to or smaller than the product of the two standard devia-
tions, we obtain an upper bound for the absolute value of
the bias

I B[.ﬁsm] I = 0,0,

where o, is defined by (10) and

The variance of the estimator is of a magnitude that is
comparable (for N and fixed n) to the variance of the
estimator of the mean in the simple design without replace-
ment. We can therefore write

| B[Jom] | = CuiVar[Jg]

where Var [J,] is defined by (9) and

N -1
C. =o, / nN-1)

(N = n)
We will assume that the bias is negligible when the upper
bound of the bias of the estimator J,, is negligible with
respect to Var[ﬁm] % j.e., when C, is small.

Recursively we can calculate the exact value of the
Pr{n; = j] since we have

Pril,=1|nl =¢i=1..,N-M

where ¢ has a value of 0if ¢; < 0, ¢;if 0 = ¢; = 1 and
1if ¢; > 1. From this result we can derive the exact value
of first order inclusion probabilities.

We have calculated (Appendix, Table 1) the values of
C,, for various sample and population (100 - 312500)
sizes. The values of C, are provided for sizes of moving
strata M equal to N/n, 2N/n, 3N/n, 4N/n and SN/n. It
can be seen that as soon as the value of the moving stratum
is 2N/n, C, never exceeds 0.07. When M = 3N/n, the
coefficient C,, is expressed in thousandths. According to
Cochran (1977, pp. 13-14), the bias is then negligible. The
table therefore shows that if M = 3N/n, the bias of the
estimator will be negligible at least for the specified sample
and population sizes.

However, these results do not imply that the bias of the
estimator is large when M is very small (for example
M = N/n). The C, are bias upper bounds. From expres-
sion (14), we see that the bias will be all the greater as the
variable of interest correlates with the exact inclusion
probabilities. We have shown (Figure 1) the exact inclusion
probabilities (¥ axis) for N individuals (x axis) obtained
by using the moving stratification algorithm with the
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0.219 *

0.218 . e

0.217f . .

Figure 1. Inclusion probabilities.

parameters N = 51, n = 11, M = N/n. This case is
obviously very unfavourable. The result is interesting. In
this case, n/N = 0.215686. The inclusion probabilities are
distributed on both sides of n/N with no marked tendency
associated with the ordering of the file. In practical terms,
the probability can be considered very small that there will
be a variable of interest that strongly correlates with the
exact inclusion probabilities; as a result, the bias will most
often be clearly smaller than the given upper bound.

We could, of course, use the exact inclusion probabilities
to establish an estimate. We feel that this is not worthwhile,
for two reasons:

o first, because calculating the exact inclusion probabilities
requires a significant amount of time,

¢ second, because the exact first order inclusion proba-
bilities are such that

Var[ ) i] # 0.

N Ty
ies !

In this case, we have a random Horvitz-Thompson esti-
mator of a constant variable (y, = C). To overcome this
problem, an estimate of the mean is usually carried out
using Hdjek’s (1971) ratio. This estimator is also biased.

4.4 Estimating the Variance of the Estimator

Assuming that Pr(0 < ¢; < 1) = 1, we can also build
an approximation of second order inclusion probabilities
using corollary 1. Given that b; has a value of M if
i < N — MandN — | otherwise, we obtain the following
approximation:

n2

ik = (1 — 6y)

where
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N —n 1

M — 2\min(i—1,N—M)
1+
2n M -1 M

M — 1 max(0,min(N—-M—i+1,k—i))

k> i

Assuming that the first order inclusion probabilities have
a value of n/N, an approximation of the variance of J,
can be obtained:

. 1
Varapp[ysm] = N2 E E i — ¥) %04 (15)
ieU keU
k=i
From (15), an estimator of the variance of the estimator
of the mean can be obtained:

o~ - 1 0,‘
Vata[im] = 52 1 1 0 = 0 —"0;. (16)

- 1 —
i€s kes,
k#i

Again, this estimator is biased. In order to assess the
magnitude of the bias, we carried out a series of simula-
tions. The results are given in Table 2 in the appendix.
We generated populations of size N = 400. The values
assumed by the two variables x and y were generated by
means of pseudo-random numbers having a bivariate
normal distribution with a fixed coefficient of correlation
p. The populations were then sorted in terms of the
variable x. The objective was to estimate y.

In these populations, samples of size 64 were selected
using the moving stratum method (sm), a stratified design
with proportional allocation in which the sizes of the strata
were all equal (strat), as well as a simple design without
replacement (srs). These three methods are particular
cases of the general algorithm and they were implemented
using the same random numbers. Simulations were carried
out for different values of the moving stratum M (case: sm)
and for different numbers of strata H (case: strat). An
explanation is provided below for the choices of M and
H. For each simulation, 200,000 samples were selected.

For each of the simulations, three results are given:

® The means for the simulations of the estimators of the
variance of the estimator of the mean, which are ex-
pressed as Es,-,,,V'a?r(ﬁ). These variance estimators are
given by expressions (11) (srs) and (16) (sm).

¢ The mean-square errors for the simulations of the esti-
mators of the mean. These quantities are expressed as
EQMsim (ﬁ) = Egm (.ﬁ - }_’)2

e The variances of the estimators of the mean. These
variances are given by expressions (9) (srs) and (15)
(sm). In the case of the moving stratification, this is of
course the proposed approximation.
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A careful reading of the results seems to indicate that
the variance estimator proposed for the moving stratum
algorithm is not affected by a systematic bias no matter
what the value for the coefficient of correlation between
xand y. The results also seem to indicate that the approx-
imate expression given for the variance of the estimator
of the mean for the moving stratification is a valid
approximation.

4.5 Interest of the Algorithm

Within the class of algorithms defined by the general
algorithm, we call the mean horizon of an algorithm the
quantity

N-=1

5 1%;

For the simple design, we get b, = (N + 1)/2. For the
algorithm of the moving stratum, we have

N-M-1 N-—1
{ E M + 2 (N — i)}
i=N-M

M —
M, M-1)
N 2

Let us now assume that, as described in section 3.2, we
select a sample using a design with proportional allocation
in which all the strata are of the same size and in which
the sizes of H strata are all equal. In such a design, the
mean horizon has a value of

_ 1 /N
bra =-|=+1}
strat 2<H )

A change in the mean horizon does not fundamentally
affect the first order inclusion probabilities. The second
order inclusion probabilities, on the other hand, are
strongly affected by a change of horizon. In fact, it can
easily be seen that the smaller the mean horizon, the
smaller the probability of selecting two close individuals.
(Two individuals are said to be close if the absolute value
of the difference of their serial numbers in the data file is
small.) Intuitively, we can expect the moving stratum
algorithm to have a stratification effect similar to that of
astratified design with proportional allocation having the
same mean horizon, i.e., when
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bsrat = Dsms

or in other words, when

(17)
When N is large in relation to M, we have approximately

2N
M= —.
H

For each series of simulations presented in the Appendix
(Table 2), the sizes of the moving strata (case: sm) were
fixed in terms of the number of strata (case: strat) in such
a way that the mean horizons of the two designs were
identical in terms of expression (17). It is observed that,
in such a case, the increased precision (compared to that
of the simple design) derived from the moving stratum
algorithm is of the same order of magnitude as that derived
by means of stratification.

5. COMMENTS

The simulations that were carried out clearly show that
the moving stratification algorithm yields a stratification
effect of the same type as classical stratification with
proportional allocation. This algorithm makes it possible
to study the delicate problem of subdividing a continuous
variable into strata. The estimators of the mean that
are proposed are slightly biased. However, as long as
M = 10N/n, simulations show that it is extremely rare for
at least one of the ¢; to fall outside of [0,1]. Moreover,
we have shown that even when that probability is not zero,
the bias of the estimator that we propose is negligible as
long as M = 3N/n.
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APPENDIX 1

Demonstration of the Lemmas and Propositions
Demonstration of Lemma 3
Var“ﬁ+d

= Var[n;] + Var[[i4 (]

can(e{(n-12)e[ne -3 10]})

Since

o {2 (-5 1]
- (n ) (=]

-2
— Var[n,],
i

we obtain

b,-—2+ﬁN—n
b; N N

Var([n;,;]1 = Var[n;]

3

i=1,...,N—1.  (18)

We then show that (3) verifies the recursion equation (18)
and the initial condition given by

N -—n

Var(n;) = N;

ZIs

Demonstration of Proposition 1
Case 1: i = 0. From lemma 2 we immediately get:

E[L.L] = E[E[I | m]n]

Tillé: A Moving Stratification Algorithm

Case 2: i > 0. Using lemma 2, we obtain:
Ellii iy | ni=t]

=E[Liyx|nisy =t +1E; 4| n;=1]

i+k—2
~1
={5—((t+1)—(i+1)5> ! [1 be }
N N) b 2 b

Which means that

E[E[Li i livy | ml]

| k=2 g
—EY? (tm+1) -+ 2 II b
N N/ bivk-1 oy be

SRGE

_nr 1 nN—n _Var[n] "““I’iizb,—l
N* by (N N b; by

{=i+1

Lemma 3 thus gives us Var[#;] . We immediately obtain

OF

Demonstration of Proposition 2

Using (13), we have

n
Priln — M- - < ny_py<
[ N N-M

N-—-n ]
+n| = 1.
N

Pri0 <n —ny_p<M] = 1.

Therefore,

Beginning with step N — M, the algorithm is a selection-
rejection algorithm of the type described in section 3.1. This
algorithm yields a sample of exactly n — ny_js observa-
tion units during the final M steps. Since n — ny_pr < M,
this operation raises no difficulty and the algorithm is
therefore of fixed size n.
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APPENDIX 2
Tables, Bias Upper Bounds and Simulations

Table 1
Value of the Bias Upper Bounds C,

Value of the Coefficient C,

N 2N IN aN SN
M=~ M=" M=— M=— M=—
n n n n n
100 50 0.000000 0.000000 0.000000  0.000000  0.000000
25  0.057326 0.002610 0.000185 0.000015 0.000001
12 0.041716 0.002604  0.000235  0.000023  0.000002
6 0.032227 0.002029 0.000134  0.000005  0.000000
3 0.023515 0.000645 0.000000
500 250 0.000000 0.000000 0.000000  0.000000  0.000000
125 0.129091  0.006002  0.000437  0.000038  0.000004
62  0.090863 0.005664 0.000534 0.000059 0.000007
31 0.066891  0.004666 0.000484  0.000059  0.000008
15 0.048544 0.003586 0.000384 0.000046 0.000006
7 0.035508 0.002552  0.000215  0.000015  0.000001
3 0.024046  0.000699  0.000000
2,500 1,250 0.000000 0.000000  0.000000  0.000000  0.000000
625 0.289060  0.013495  0.000987  0.000086  0.000008
312 0.202458  0.012607  0.001190  0.000133  0.000016
156 0.147113 0.010234 0.001064 0.000130 0.000017
78 0.105662  0.007742  0.000841  0.000107  0.000015
39 0.075975  0.005719  0.000634  0.000082  0.000012
19 0.054525  0.004174  0.000466  0.000060  0.000008
9 0.039560 0.003014  0.000301  0.000029  0.000002
4 0.028388 0.001451 0.000034 0.000000
12,500 3,125 0.646539  0.030208  0.002211  0.000193  0.000018
1,562 0.452450  0.028177  0.002661  0.000297  0.000036
781  0.327879  0.022798  0.002371  0.000290  0.000039
3% 0.234114 0.017131  0.001863  0.000238  0.000033
195 0.166626  0.012500  0.001388  0.000181  0.000026
97  0.118357  0.008995  0.001009  0.000133  0.000019
48 0.084217  0.006452  0.000727  0.000096  0.000014
24 0.060797  0.004689  0.000529  0.000069  0.000010
12 0.044677 0.003461  0.000377  0.000044  0.000005
6 0.033727 0.002356  0.000173  0.000008  0.000000
3 0.024172 0.000712 0.000000
62,500 3906 0.732684  0.050942  0.005299  0.000649  0.000087
1,53 0.522918  0.038250  0.004159  0.000531  0.000074
976 0.371301  0.027833  0.003092  0.000403  0.000057
488 0.263300  0.019979  0.002243  0.000295  0.000042
244 0.186736  0.014259  0.001609  0.000213  0.000031
122 0.132653  0.010168  0.001150  0.000152  0.000022
61  0.094601  0.007273  0.000823  0.000109  0.000016
30 0.067467  0.005207  0.000590  0.000078  0.000011
15 0.049227 0.003820  0.000427  0.000054  0.000007
0.035847  0.002637  0.000227  0.000016  0.000001
3 0.024176 0.000713 0.000000
312,500 4,882 0.820762 0.062191  0.006909  0.000901  0.000128
2,441 0587909  0.044596  0.005006  0.000659  0.000095
1,220 0.416165 0.031758 0.003583 0.000474 0.000068
610 0.294647  0.022555  0.002551  0.000339  0.000049
305 0.208743  0.016008 0.001813  0.000241  0.000035
152 0.147877 0.011356  0.001287  0.000171  0.000025
76 0.105272  0.008098  0.000918  0.000122  0.000018
38 0.075422  0.005817  0.000659  0.000087  0.000013
19 0.054695 0.004238  0.000479  0.000062  0.000009
9 0.039644  0.003038  0.000305  0.000030  0.000002
4 0.028427 0.001457  0.000034  0.000000
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Results of the Simulations, Simple Design, Stratification
and Moving Stratification

p2 Plan Parameters Esim\ﬁ;r ¥ Vary EQMg;py, ¥
0.0 sm M = 18.83N/n 0.01318 0.01317 0.01301
srs 0.01317 0.01316 0.01296
strat H=2 0.01319 0.01319 0.01318
0.2 sm M = 18.83N/n 0.01210 0.01210 0.01187
srs 0.01316 0.01316 0.01287
strat H=2 0.01172 0.01188 0.01164
0.4 sm M = 18.83N/n 0.01073 0.01073 0.01080
s7S 0.01316 0.01316 0.01320
strat H=2 0.00943 0.00929 0.00946
0.6 sm M = 18.83N/n 0.00957 0.00957 0.00954
STS 0.01315 0.01316 0.01301
strat H=2 0.00783 0.00778 0.00774
0.8 sm M = 18.83N/n 0.00839 0.00839 0.00839
srs 0.01315 0.01316 0.01322
strat H=2 0.00630 0.00624 0.00622
1.0 sm M = 18.83N/n 0.00757 0.00757 0.00760
STS 0.01314 0.01316 0.01319
strat H=2 0.00514 0.00508 0.00513
0.0 sm M = 8.65N/n 0.01319 0.01319 0.01317
srs 0.01317 0.01316 0.01296
strat H=4 0.01320 0.01318 0.01316
0.2 sm M = 8.65N/n 0.01107 0.01107 0.01084
srs 0.01316 0.01316 0.01287
strat H=14 0.01080 0.01076 0.01054
0.4 sm M = 8.65N/n 0.00876 0.00876 0.00882
Srs 0.01316 0.01316 0.01320
strat H=14 0.00811 0.00793 0.00796
0.6 sm M = 8.65N/n 0.00695 0.006%94 0.00688
srs 0.01315 0.01316 0.01301
strat H=4 0.00637 0.00639 0.00632
0.8 sm M = 8.65N/n 0.00484 0.00484 0.00485
Srs 0.01315 0.01316 0.01322
strat H=14 0.00402 0.00391 0.00390
1.0 sm M = 8.65N/n 0.00312 0.00312 0.00313
srs 0.01314 0.01316 0.01319
strat H=4 0.00206 0.00197 0.00197
0.0 sm M = 4.21N/n 0.01317 0.01317 0.01316
srs 0.01317 0.01316 0.01296
strat H=238 0.01321 0.01324 0.01325
0.2 sm M = 4.2IN/n 0.01067 0.01067 0.01046
srs 0.01316 0.01316 0.01287
strat H=28 0.01055 0.01047 0.01025
0.4 sm M = 4.21N/n 0.00810 0.00809 0.00808
Srs 0.01316 0.01316 0.01320
strat H=28 0.00794 0.00789 0.00789
0.6 sm M = 4.21N/n 0.00592 0.00592 0.00588
srs 0.01315 0.01316 0.01301
strat H=28 0.00575 0.00564 0.00561
0.8 sm M = 4.21N/n 0.00344 0.00344 0.00345
sTS 0.01315 0.01316 0.01322
strat H=28 0.00315 0.00311 0.00308
1.0 sm M = 421N/n 0.00124 0.00124 0.00125
srs 0.01314 0.01316 0.01319
strat H=28 0.00085 0.00079 0.00080
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Table 2

Results of the Simulations, Simple Design, Stratification
and Moving Stratification - end

P

p Plan Parameters EgimVary Vary EQMjpy, »
0.0 sm M = 2.11N/n 0.01319 0.01319 0.01328
srs 0.01315 0.01316 0.01332
strat H =16 0.01315 0.01308 0.01331
0.2 sm M = 2.11N/n 0.01038 0.01036 0.01021
srs 0.01317 0.01316 0.01334
strat H=16 0.01034 0.01034 0.01025
0.4 sm M = 2.11N/n 0.00796 0.00796 0.00792
STS 0.01316 0.01316 0.01323
strat H=16 0.00790 0.00801 0.00794
0.6 sm M = 2.11N/n 0.00572 0.00573 0.00561
srs 0.01315 0.01316 0.01299
strat H=16 0.00568 0.00572 0.00563
0.8  sm M = 2.11N/n 0.00295 0.00294 0.00290
srs 0.01317 0.01316 0.01325
strat H=16 0.00287 0.00288 0.00285
1.0 sm M = 2.11N/n 0.00048 0.00048 0.00048
srs 0.01317 0.01316 0.01335
strat H=16 0.00037 0.00034 0.00034
0.0 sm M = 1.09N/n 0.01325 0.01316 0.01310
srs 0.01313 0.01316 0.01317
strat H=32 0.0120t 0.01239 0.01302
0.2 sm M = 1.09N/n 0.01070 0.01062 0.01064
srs 0.01313 0.01316 0.01316
strat H =32 0.00972 0.01018 0.01083
0.4 sm M = 1.09N/n 0.00807 0.00803 0.00811
srs 0.01315 0.01316 0.01309
strat H =32 0.00732 0.00751 0.00803
0.6 sm M = 1.09N/n 0.00538 0.00534 0.00536
srs 0.01315 0.01316 0.01310
strat H =32 0.00484 0.00484 0.00543
0.8 sm M = 1.09N/n 0.00283 0.00281 0.00276
srs 0.01317 0.01316 0.01283
strat H =32 0.00255 0.00276 0.00280
1.0 sm M = 1.09N/n 0.00016 0.00016 0.00017
srs 0.01317 0.01316 0.01304
strat H =232 0.00012 0.00007 0.00011

Tillé: A Moving Stratification Algorithm
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