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On Searls’ Winsorized Mean for Skewed Populations

LOUIS-PAUL RIVEST and DANIEL HURTUBISE!

ABSTRACT

This paper considers the winsorized mean as an estimator of the mean of a positive skewed population. A winsorized
mean is obtained by replacing all the observations larger than some cut-off value R by R before averaging. The
optimal cut-off value, as defined by Searls (1966), minimizes the mean square error of the winsorized estimator.
Techniques are proposed for the evaluation of this optimal cut-off in several sampling designs including simple
random sampling, stratified sampling and sampling with probability proportional to size. For most skewed distribu-
tions, the optimal winsorization strategy is shown, on average, to modify the value of about one data point in the
sample. Closed form approximations to the efficiency of Searls’ winsorized mean are derived using the theory of
extreme order statistics. Various estimators reducing the impact of large data values are compared in a Monte Carlo

experiment.

KEY WORDS: Outliers; Max domain of attraction; Mean square error; Simple random sampling; Stratified

sampling.

1. INTRODUCTION

Samples drawn from positively skewed populations
often contain outliers with values that are much larger than
most sampled values. One usually tries to accomodate
these large values when designing the survey (Glasser 1962;
Hidiroglou 1987). However, given the multipurpose nature
of most surveys, statisticians are often faced with outliers
at the estimation stage. These data points make classical
survey estimators, such as the sample mean, unstable. It
is therefore of interest to study alternative estimators that
lower the impact of large data values. Winsorization
(Searls 1966) consists in replacing the data values larger
than a cut-off value R by R before averaging. Searls
suggested to select the value of R which minimizes the
mean square error of the winsorized mean. One can also
take R equal to the second largest data value in the sample
(Rivest 1994). Searls’ estimator was best among all the
methods to adjust large data values studied by Ernst
(1980). Hicks and Fetter (1993) implement Searls’ winsor-
ization strategy in an agriculture survey. Other strategies
have been proposed for dealing with large observations in
survey sampling. Chambers and Kokic (1993) review esti-
mators derived from the theory of ‘‘Robust Statistics”’
(Huber 1981). Fuller (1991, 1993) proposes a preliminary
test to detect the presence of extreme values in the sample;
the impact of these values is lowered only in samples for
which this test is significant. Lee (1994) provides a good
review of this expanding literature.

The key to the implementation of Searls’ winsorization
method is the selection of the cut-off R. A simple algorithm
for calculating the optimal cut-off for a known population

in simple random sampling and in pps sample is proposed
in Section 2. Repeated calculations of the optimal cut-off
for several populations and several sample sizes reveal
that, in most cases, the optimal scheme winsorizes one data
point on average, regardless of the sample size. Section 3
extends the result of Section 2 to stratified sampling. A
simple algorithm for the calculation of cut-off values in
each stratum is proposed. The rule of winsorizing an
average of one data point per sample regardiess of sample
size is shown to hold also in stratified samples. The effi-
ciencies, with respect to the sample mean, of various
winsorized estimators are calculated in Sections 4 and 5.
Section 4 derives analytic large sample approximations to
the efficiency of Searls’ estimator using the theory of
extreme order statistics while Section 5 compares, in a
Monte Carlo study, estimators for reducing the impact of
large data values.

2. SAMPLING PROPERTIES OF THE
WINSORIZED MEAN

This section studies winsorized means for data drawn
from either a continuous or a discrete distribution. Several
families of continuous distributions are available to model
positive skewed data. One has the Weibull family, F, (x) =
1 — exp(— (x/B8) %) for x > 0, the log-normal family,
FE(x) = ®(og(x/B)/v) for x > 0, and the Pareto family,
E(x) =1—- (1 + x/8) 7" for x > 0, where 8 is a
positive scale parameter and «, v, and vy are positive shape
parameters. Discrete skewed distributions arise in survey
samping. Let {y,, ..., ¥n} represent the values of the
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variable of interest for the N units of a population to be
sampled. If a simple random sample with replacement is
drawn, then one can take F(x) = Y I(y; = x)/Nasthe
underlying distribution where /( - ) represents the indicator
function. In pps sampling, i.e., sampling with replacement
and with probabilities given by {p;, i = 1, ..., N}, one
would take F(x) = Y pd(y;/ (Np;)) = x). The standard
estimator of ¥ under pps sampling,

o1 Vi
I = Xs: v

can then be regarded as the mean of a random sample of
size n drawn from distribution F. Fuller (1991) provides
examples of survey data having skewed distributions.
Let X;, X5, . . ., X, denote a sample drawn from F(x).
In pps sampling, one would have X; = y;/(Np;) where p;
and y; are the selection probability and the value of the
y-variable for the i-th unit selected in the sample. The
population mean g is to be estimated by a winsorized mean,

I T o 1¢
Xp =~ Y min(X;,R) = X —~ ; max (X; — R,0),
1 i=1 Q2.0

where X is the mean of the X;’s. The expectation of Xz
is equal to

2] 2 X
E(/\_/R)=H_S (X—R)dF(x)=u—S S dydF(x).
R RJR

Changing the order of integration in the above integral
proves that E(Xz) = p + B(Xg) where

[>2]

B(XR) = —g [1 — F(x)ldx 2.2)
R

is the bias of the winsorized mean.
By (2.1), an expression for the variance of Xp is
nVar(Xg) = o> — 2cov[X,,max(X; — R,0)]
+ Var[max(X; — R,0)]
where X is the first random variable in the sample and

o2 is the variance of F(x). Manipulations similar to those
yielding (2.2) show that

o]

E[max(X; — R,O)z] = ZS (x — R)[1 — F(x)]dx,
R

and

E[max(X; — R,0)X;] =

2Sm(x — R)[1 — F(x)ldx — RB(XQR).
R

Thus

! {oz - 2S°°(x — w)[1 — F(x)ldx — BZ(XR>},

and

[\

_ 2
MSE (Xz) = & — =
n

" S (x —=p)[1 — F(x)ldx
+ o ez 23
n

Searls (1966) showed that the mean square error of Xg
has a unique minimum which can be obtained by equating
the derivative, with respect to R, of MSE (Xg) to 0. This
yields the following equation for the optimal winsorization
constant R(F,n),

R —ypu S“’
- [1 — F(x)]dx = 0. (2.4)
n-1 R

This is equivalent to equation (14) in Searls (1966). In the
remainder of this work, X% denotes the optimal winsorized
mean obtained with the winsorization constant R (F,n)
which solves (2.4). Observe that the optimal cut-off point
R (F,n) is location and scale equivariant, i.e.,if G(x) =
F[(x — b)/a], then R(G,n) = aR(F,n) + b.

A general algorithm for solving (2.4) is easily con-
structed. First observe that as a function of R, the left hand
side of equation (2.4) is increasing and concave in R since
its derivative, 1/(n — 1) + 1 — F(R), is positive and
decreasing. Therefore, the Newton-Raphson algorithm
(Thisted 1988, 164-167) given by

(o]

(Rj—p) — (n— I)S 1= F(x)]dx
Rjy1 =R; — a

1+ (n—1)[1 - F(R)]
(2.5)

with R, = 2u as starting value converges smoothly to the
solution of (2.4). For discrete distributions the computa-
tions are easily implemented by noting that

Sm[l — F(x)]dx = E[max(X — R,0)].
R
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Exact calculations of the optimal cut-off points R (F, n)
were carried out for the Weibull, the log-normal, and the
Pareto families for samples of size s ranging between 5 and
200. Three distributions, corresponding to coefficients of
variation (CV) of 1, 2, and 4, were considered in each
family except for the Pareto family where only coefficients
of variation of 2 and 4 were considered. The CV measures
the skewness of a distribution, with large CVs corresponding
to heavy skewness. The corresponding parameter values
are given in Table 1.

Table 1

Parameter values of the distributions for which optimal
cut-off values R (F,n) were evaluated

Cv Weibull(«) Log-normal(») Pareto(vy)
1 1 0.83 -
2 1.84 1.27 2.67
4 2.87 1.68 2.13

For each distribution and each sample size, the optimal
cut-off point was calculated using algorithm (2.5). Figure 1
presents the expected number of winsorized observations,
m(F,n) = n{l — F[R(F,n)1} as a function of n while
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the corresponding efficiencies are reported in Figure 2. The
efficiency of Xy is defined as Var (X)/MSE (Xg).

In Figure 1 the expected number of winsorized data values
under the optimal scheme is, for most skewed distributions,
close to 1 even for large sample sizes. Approximating this
number by a Poisson distribution with parameter m (F, n)
shows there is a non-negligible probability that, under the
optimal winsorization scheme, none of the data points is
winsorized. This probability increases with the skewness
of the distribution since m (F,n) decreases with the CV.
Thus, in samples from a highly skewed distribution, it is
not always appropriate to winsorize the largest values.
Such values should be winsorized only when they are large.
As expected, in Figure 2, the largest gains in efficiency are
obtained when the skewness is heavy. Therefore moni-
toring the two or three largest data values in a sample and
curtailing their impact when these values are large is the
key to a good winsorization strategy.

Figure 1 shows that the expected number of winsorized
data values m (F, n) decreases with the skewness of the dis-
tribution. This observation can be turned into a rigorous
mathematical result. To this end, random variable Y'is said
to be more skewed than random variable X if Y has the
same distribution as ¥ (X) where ¢ (x) is a convex function
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Figure 1. Expected number of winsorized observations for simple and stratified random sampling.
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Figure 2. Efficiency of Searls winsorized mean.
of x. Under this definition X? is, as should be expected, stratum 4. The optimal values of R, R, ..., R;, where

more skewed than X. This notion of skewness corresponds
to the convex partial ordering of van Zwet (Barlow and
Proschan 1981). With this definition of skewness, one has
the following proposition which is proved in the Appendix
together with Propositions 2 and 3.

Proposition 1 If Y is more skewed than X then m(Fy,n) >
m (Fy,n) where Fy and Fy are the distributions of X and
Y respectively.

The results of this section also apply to simple random
sampling without replacement. For this design the mean
square error of Xy is given by formula (2.3) with n
replaced by n/(1 — f) where fis the sampling fraction.
Algorithm (2.5), with n divided by (1 — f), can be used
for calculating optimal cut-off values for without replace-
ment simple random sampling.

3. WINSORIZATION IN STRATIFIED
SAMPLING

There are many ways to generalize Searls’ winsorization
strategy to stratified sampling. In this section each stratum
has its own cut-off value. Let R}, be the cut-off value in

L is the number of strata, are the ones that minimize the
mean square error of Xz = ¥ W, Xgp, where Xz, =
Y min(Xy;,Ry) /0y, Wy = Nu/N and N, is the size of
stratum # and N = ¥ N,. An algorithm for determining
these optimal cut-off values is proposed in this section.

Let F,(x), for h = 1, ..., L be the distribution of X
in stratum A, and p, and o} be the mean and the variance
of F,. The derivation of the mean square error of Xg,
under with replacement stratified random sampling,
follows that presented in Section 2, it gives

L
wi

ny

MSE (Xz) =

h=1

)

(x — ) [1 — Fp(x))dx — BZ(XR,,)>

Rp
2
+ ( ) 3.1

where B(Xgy) is the bias of Xz, as an estimator of py

L
Y WiB(Xzi)
h=1
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o

B(Xgp) = — S [l — F,(x)]dx.

Rpy

Taking the partial derivatives with respectto R, h = 1,
..., L yields the following equations for the optimal values:

W, _ - -
(R = = B(Xpn)] = = ) WiB(Xp), (3:2)
h h=1

forh=1,...,L.

There is no simple way to solve (3.2). An approximate
solution can be obtained by noting that B(Xg,) /n, is, for
all values of A, usually small as compared to the other
terms. Dropping these terms leads to

114 L
L (Ry—m) = = Y, WaB(Xrp), (3.3)
h=1

ny

for h = 1, ..., L. The solutions to (3.3) overestimate
slightly the optimal values satisfying (3.2) since at these
solutions the partial derivatives of (3.1) are all positive and
since these partial derivatives are increasing functions of
R,,forh = 1, ..., L. Thus by solving (3.3) to estimate
the cut-off values one does not run the risk of winsorizing
too many data values. Equations (3.3) imply that R, =
wy + ny R/ (nW,) where R is some positive constant. A
simple equation for R is obtained by changing variable
y = nW,(x — u,)/n, in the integrals for B(Xgz,),
h=1,...,Lwheren = ¥ ny,. This gives

L
S R
~ ¥ WhB(Xey) = =
h=1

S [1 — F(y)ldy = — B(Xgp), (3.4
R

where F(y) = Y n,Fylu, + npy/(nW,)]/n. Equation
(3.4) is easily solved using algorithm (2.5) proposed in
Section 2 for the single sample case. Therefore simple
approximations for Searls’ optimal cut-off values in
stratified sampling are easily calculated.

Since the distribution F defined above has a zero expec-
tation, the mean square error of the stratified winsorized
mean obtained by solving (3.3) is equal to:

_ 1
MSE (Xy) = -
n

(0%— ZS Y1 - F(y)ldy _B(XR)2> + B(Xg)?
R

L 2R ¥
+ (13()‘(R>2 -y BB R (XR”)) (3.5)
n

h=1 Th
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where o7 is the variance of F. The last term of (3.5)
is easily shown to be negative or null; it is null when
B(XR) = nW,B(Xgy,)/n,for h =1, ..., L. The variance
of the stratified mean, X = ¥ W, X, is equal to o2/n.
Thus a conservative approximation to the efficiency of
Xr with respect to X in stratified sampling is equal to the
corresponding efficiency for a random sample of size n
drawn from F. Note also that n[1 — F(R)] represents
the expectation of the total number of winsorized data
points in the L strata.

The optimal winsorization scheme obtained by solving
(3.3) has a simple form for many allocation rules. Under
proportional allocation, i.e., n, = nW,forh =1, ...,
L, one gets R, = u; + R. Under Neyman optimal alloca-
tion, with n, = nW,0, /(Y Wj,0,) where g, is stratum #’s
standard deviation, one gets R, = u;, + ,R/ (X Wyoay,).
If in addition, the distributions of X within the strata are
equal up to a change in location and scale, i.e., F), = F,
[(x — py)/0,] for some distribution Fy, then F(x) =
Fy[x/ (Y Wyo0,,)]. In this case the characteristics of optimal
winsorized means in stratified sampling and in simple
random sampling are the same. Thus Figure 1 presents
the expected total number of winsorized data points in
the L strata as a function of the total sample size n,
under Neyman allocation, when Fj is one of the distri-
butions of Table 1. Figure 2 gives the corresponding
efficiencies.

The results of this section are easily generalized to
without replacement stratified sampling by replacing #,
by n, /(1 — f}) throughout the calculations. The deriva-
tion of optimal cut-off values for stratified pps sampling
is easily carried out by taking F,(x) = Y pu,I(yy/
(Nypri) < x) where p,; denotes the selection probability
for unit the i-th unit of stratum A.

4. LARGE SAMPLE APPROXIMATIONS TO
THE EFFICIENCY OF THE
WINSORIZED MEAN

For most distributions, equation (2.3) defining the
optimal cut-off does not have an explicit solution. This
section derives closed form approximations to this solution
using the theory of extreme order statistics. This will permit
the derivation of explicit approximations to the efficiency
of the optimal winsorized mean. Searls’ optimal winsor-
ization strategy will then be compared to a simple non
parametric winsorization scheme where the largest order
statistic is replaced by the second largest (Rivest 1994).

The form of the approximation to R (F,n) depends on
the limiting distribution, as the sample size n goes to
infinity, of the largest order statistic suitably normalized.
For distributions whose support is the positive axis, there
are only two possible limiting distributions which are given
by Galambos (1987, p. 53-54)
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H ,(x) = exp(—x"%) for x>0 and >0
and
H;o(x) = exp[—exp(—x)] for x in R.

For many distributions used for the statistical analysis of
positive random variables, for example the Weibull and
the log-normal families, the sample maximum suitably
normalized converges to Hj(x). Distributions whose
sample maxima converge to H, ,(x) for some o > 0
have heavy tails. For such distributions 1 — F(x) goesto
0 at a rate of O(x~%). The Pareto and the F distributions
are in this class.

Distributions whose sample maxima converge to
Hs o(x) are considered first.The following characterization
is due to von Mises (1964): the sample maximum of a twice
differentiable distribution F(x) converges to Hj o(x) if,
as x goes to oo,

g (x) _ 0

lim =
*g2(x)

4.1

where f(x) is the density of F, g(x) = f(x)/[1 — F(x)]
is the failure rate of F, and g’ is the derivative of g. An
approximation to winsorization constant R (F,n) for this
class of distributions is presented next.

Proposition 2 If F(x) is such that (4.1) holds and if,
for large values of x, it satisfies:

1) xg(x) increases;
ii) xg’ (x)/g(x) is less than some positive constant ¢;

then the optimal winsorization constant R (F,n) satisfies

R(F,n) =

3

F_1<1 _glFT'(1 - 1/n)]F~Y(1=1/n)[1 +o(l)])
n

and m(F,n) = g(F~'(1 — 1/n))F~'(1 — 1/n)
[1 + o(1)]. Furthermore, the mean squared error of
Searls’ winsorized mean is approximately equal to

2 2

_ R(F,

MSE(Xz) =~ = — (—2")—
n n

In the Weibull family, F;'(1 — £) = [ —log(H)19,
g(x) =x"*~1a. The hypotheses of Proposition 2 are met
and m(F,,n), the expected number of winsorized obser-
vations in a large Weibull sample, islog(n) [1 + o(1) ]/«
which goes to o as n increases. Figure 1 suggests that the
convergence is very slow, especially for large coefficients
of variation.

Now consider distributions whose sample maxima con-
verge to H; ,(x). This class of distributions has been
characterized by Gnedenko (1962): the sample maximum
of F converges to H; ,(x) if one can write

1 — F(x) = L(x)/x* 4.2)

where as x goes to o, L(x)/L(kx) converges to 1, for
any constant k. Note that for F to have a finite second
moment, one needs o > 2 in (4.2). The Pareto distribu-
tion satisfies (4.2) with a = 7.

Proposition 3 If F satisfies (4.2) with parameter o
where « > 2, then as n goes to infinity, R(F,n) =
F~ 1 =(a—1)/n][l +o(1)],ie,m(F,n) =a-—1.
Furthermore,

_ 2 R(F,n)?
MSE(Xp) =~ = — 2R
n n(a — 2)

For distributions satisfying (4.2) a finite number of data
points are on average winsorized as the sample size goes
to o. To some extent, this can be seen in Figure 1 where
the curves of m(F,,n) for the Pareto distribution have
m(Fys3,n) = 1.33, and m (F, 67,n) = 1.67 as asymptotes.

Propositions 2 and 3 shed some light on the estimation
of the optimal cut-off value. When F is unknown, a
possible estimator for R (F, n) is the value that minimizes
an estimator of the mean square error of X. This leads to

R-X _

N |-

h

p— ; max(X; — R,0) 4.3)
as an estimating function for R. This procedure is ques-
tionable when the underlying distribution is highly skewed,
i.e., when Fsatisfies the assumption of Proposition 3. On
average, there will only be @ — 1 non-null terms in the
right hand side of equation (3). Thus R will, on average
be determined by the o — 1 largest data values and the
sample maximum will have the largest influence on R. This
will make R highly unstable and, considering the findings
of Figure 1, the second largest sample order statistic should
be a better estimator of R (F, n) than the solution of (3.3).
This is exemplified in the Monte Carlo simulations of
Section 5.

Table 2 compares approximations to the bias and to the
mean square error of Searls’ winsorized mean Xy to those
of the once winsorized mean X, obtained by taking the
cut-off value R equal to the second largest observation.
Rivest (1994) shows this choice of cut-off value yields the
optimal non-parametric winsorized mean. He also derives
the large sample approximations for the bias and the mean
square error of X, appearing in Table 2. The corresponding
expressions for Xy are taken in Propositions 2 and 3.
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Table 2

Approximations to the bias and to the mean square error of the once winsorized mean X,
and of Searls’ optimal winsorized mean, Xp, for the Weibull and for the
Pareto distribution (I'(-) stands for the gamma function)

WEIBULL PARETO
2 200 2
_ log n
X,  MSE o <_52>_ o LN
n n n (y = 2)(y — D122
. (log m)“ 1
bias - — D PV B P
n (v —1)'"n v
_ o> 2a(a — 1)(logn)2*~? o? 2T (1 = 2/%)
X MSE — - 2 T T Taa
n n n Yy — Dn v
. a(log n)®~! T(1 — 1/y)
bias - - T 1T
n yn ¥

In Table 2 the mean square error of Xy is much smaller
than that of X,. Indeed, for the Weibull distribution the
large sample efficiency of X with respect to X; is equal
to that of Xy with respect to X. Thus non-parametric
winsorization reduces the mean square error of estimators
of the mean of a skewed population however further
reductions in mean square error can be obtained if infor-
mation concerning the underlying distribution is available.
This is illustrated in the Monte Carlo comparisons presented
in the next section.

The results of this section apply to stratified sampling.
For this design, the large sample solution to equation
(3.4) is determined by the stratum with the most skewed
distribution. If F; is the most skewed distribution then
nW,R (Fy,n,)/n, is an approximate solution to (3.4) where
an approximation to R (Fi, n;) is found in Proposition 2
or in Proposition 3 depending on the tail of F|. In this
case only data points in stratum 1 are winsorized in large
stratified samples. Searls’ winsorized mean is then equal
to W, times the optimal winsorized mean for stratum one
plus a weighted sum of the sample means in the other strata.

5. MONTE CARLO COMPARISONS
OF ESTIMATORS OF THE
MEAN OF A SKEWED DISTRIBUTION

This section presents Monte Carlo comparisons of the
mean square error and of the biases of five estimators of
the mean of population CHICKEN of Fuller (1991). This
population has 2000 units; its coefficient of variation is

4.46. Further numerical comparisons of the five estimators
considered in this section for other distributions, either
finite or infinite, are presented in Rivest (1993a and b).

The five estimators under consideration are:

o Searls’ winsorized estimator, Xz, calculated as if the
the underlying distribution was known;

e A winsorized estimator where the cut-off value is set
equal to the second largest data value of an auxiliary
sample of size 2n; this is an instance where limited
auxiliary information concerning the underlying distri-
bution F is available (in the Monte Carlo simulations
each simulated sample had its own auxiliary sample);

¢ The once winsorized mean, X, introduced in Section 4;

® A winsorized estimator where R is estimated from the
sample by solving equation (4.3);

e Fuller preliminary test estimator with j = 3 (i.e., the
numerator of the preliminary test involves the three
largest observations), 7 (the total number of data points
involved in the preliminary test) equal to [4n” — 10]
and Kj;, the cut-off value equal to 3.5. A detailed
description of this estimator appears in Fuller (1991) and
in Rivest (1993a and b). This estimator curtails the
largest data values only when a test statistic for detecting
extreme data values is significant.

The biases and the efficiencies of Xy were calculated
exactly. For the other estimators, the biases and the effi-
ciencies presented in Figures 1 and 2 were obtained in
Monte Carlo simulations based on 100,000 repetitions.
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Figure 3. Relative bias of five estimators for the mean of CHICKEN.

Figure 3 indicates that the biases of winsorized esti-
mators are important, even in large samples. Several
interesting conclusions can be drawn from Figure 4. First,
as expected from Table 2 Searls’ estimator is much more
efficient than the once winsorized mean. Estimating the
optimal cut-off value using limited auxiliary information
is highly efficient. This holds true as long as the study
variable can be modeled by a superpopulation distribution
having a finite variance, see Rivest (1993a) for further
discussions. In a sampling context, the auxiliary samples
could be data from previous surveys standardized to
account for possible changes over time in the distribution
of the variable under study.

Among the three estimators of Figure 4 that do not rely
on auxiliary information, Fuller estimator is the best. This
is in agreement with the simulation results of Fuller (1991).
Estimating the cut-off value by minimizing an estimate of
the mean square error does poorly especially in small
samples. Thus, as shown in Section 4, the resulting esti-
mator is highly sensitive to the wild data values that
sometimes appear in small samples. This estimator is not
recommended.

6. CONCLUSIONS

Many strategies can be used to accomodate the large
values that sometimes arise in surveys. If auxiliary infor-
mation, such as census data, is available then one can use
Searls’ estimator in either simple random sampling,
stratified sampling, or pps sampling. Since the cut-off
values are fixed constant mean square error estimators can
be derived from formulae (2.3) and (3.1).

When extra information is not available, the once
winsorized mean and Fuller preliminary test estimator can
be used. Research is now under way to generalize these
estimators to stratified designs. An estimator for the mean
square error of the once winsorized mean is proposed in
Rivest (1994),

= 1 1 -
V(X)) = -n-52 2 (Xn + Xpo1 — 2X))
(Xn - 3Xn—1 + 2Xn—2)

where S? denotes the variance of the X-sample and X,, >
X,_; > X,_, denote the three largest data values in
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Figure 4. Efficiency of five estimators for the mean of CHICKEN.

that sample. This estimator has a small bias in infinite
populations. However the coverage of the standard con-
fidence interval X| + z;_,/,2Jv(X]) is often well below
the nominal 100(1 — «)% level especially when the under-
lying distribution is skewed. Further research is needed to
obtain reliable confidence intervals for estimators of the
mean of skewed populations.
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APPENDIX 1

Proof of Proposition 1 The assumption that Y is more
skewed than X implies that there exists a convex function
¥ such that ¢ (X) and Y have the same distribution. Let
R denote R(Fy,n). To prove the result, it suffices to
show that Y(R) < R(FYy,n). This is equivalent to

VR) — E(Y) S (1 - Fy(x)lds.  (A.D)
n—1 ¥(R)

By Jensen’s inequality, E(Y) = E[¢(X)] > ¢[E(X)].
Thus using (2.3), the left hand side of (A.1)is less than or
equal to

R — E(X) y(R) —Y[E(X R-EX
(X)) YR) —YIEX)] ( )1//’(R)=
n—1 R — E(X) n—1

S [1 = Fx(»)]dy - ' (R)

R

where y’ is the derivative of . Since ¥’ is increasing, the
left hand side of the above inequality is less than or equal to:

g v ()1 — Fx(y)]dy = S [1 — Fy(x)ldx.

R ¥(R)

This shows that (A.1) holds.
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Proof of Proposition2 The following result obtained by
applying Theorems 2.7.5 and 2.7.11 of Galambos (1987)
to the distribution F(z”*!) is used extensively. If the
sample maxima of distribution F(x) converges to
H; o(x), then all the moments of F exist and

Y1 - F)ldy ~ —————— (A.2)

S“ [1 — F(x)]xP
x g{(x)

where g(x) ~ h(x) means that g(x)/h(x) converges to
1 as x goes to infinity. Using (A.2), R(F,n) is obtained
by solving

R-—p 1-F(R)
n—1  g(R)

(1 + o(1)).

Let R = F~'(1 — a/n), then, up to (1 + o(1)), the
above equation becomes

S R EH S GES

Leta, = g[F~'(1 — 1/n)]1F~'(1 — 1/n)anda; = g
[F~'(1 — ao/n)1F~'(1 — ay/n). Since for large values
of x,xg(x) is increasing, @y > @, and the solution to
(A.3) belongs to the interval (a,,aq). In order to prove
the result, one has to show that a, /a, converges to 1 as
n goes to oo,

Since g(x) = f(x)/[1 — F(x)], one can write

F=l(1=1/n)
ap = CXDI:S g(t)dt] =

F~ (1 —ag/n)

F=l(1-1/n)
exp [ao —a — S tg’(t)dt],

F~ Y1 —agy/n)

where the second expression is obtained by integrating
by parts. Since tg’ (1) /g(t) is less then c, one has aq >
exp(ay — a;)ay . If a;/a, does not converge to 1, say
a;/ay < 1 — € < 1 for an infinite sequence of sample
sizes, the previous inequality implies that ad t¢ > exp (a,€).
This is a contradiction since a tends to o as n becomes
large. The approximation for MSE (Xy) is obtained by

using (A.2) with p = 2.

Proof of Proposition 3 If the sample maxima of distri-
bution F(x) converges to H; ,(x) then F satisfies the
following properties (Feller 1971, p. 281):

yP[1 — F(y)ldy ~ (A.4)
X a—-p-—1

Sm [1 — F(x)]xP*!

for any psuchthata — p — 1 = 0: By (A.4), R(F,n)
is obtained by solving F(R) =1 — [a — 1 + 0(1)]/n.
This leads to the approximation for R (F,n). To derive the
approximation for MSE (Xg), one applies (A.4) with p = 1.
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