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Alternative Adjustments Where There Are Several Levels
of Auxiliary Information

F. DUPONT!

ABSTRACT

Regression estimation and its generalization, calibration estimation, introduced by Deville and Sidrndal in 1993,
serves to reduce a posteriori the variance of the estimators through the use of auxiliary information. In sample surveys,
there is often useable supplementary information that is distributed according to a complex schema, especially where
the sampling is realized in several phases. An adaptation of regression estimation was proposed along with its variants
in the framework of two-phase sampling by Sdrndal and Swensson in 1987. This article seeks to examine alternative
estimation strategies according to two alternative configurations for auxiliary information. It will do so by linking
the two possible approaches to the problem: use of a regression model and calibration estimation.
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1. INTRODUCTION

Using the regression estimator studied by Fuller (1975),
Cassel, Sirndal and Wretman (1976), Sirndal (1980),
Gourieroux (1981), Isaki and Fuller (1982), and Wright
(1983), it is possible to improve a posteriori - that is, after
the sampling has been completed - the estimate of a total
of a variable of interest on the basis of auxiliary variables
X1, - - ., X for which additional information is available.
The variance in relation to the Horwitz-Thompson esti-
mator is reduced by using the regression estimator, provided
that one knows the true value of the target population
totals of the auxiliary variables, which will constitute the
additional information referred to as auxiliary informa-
tion. Deville and Sdrndal in 1992 proposed a class of esti-
mators derived from a reweighting approach that addresses
the same issue of variance reduction: calibration esti-
mators. By calibrating sampling weights it is possible to
incorporate @ posteriori auxiliary information of the type
totals X, ..., X, of k variables x;, ..., x; into the esti-
mate made on the basis of the new weightings and thus to
improve the estimate. This approach generalizes regression
estimation, which is one of the elements of the class.

However, in surveys based on sampling, there is often
usable additional information that is distributed according
to a more complex schema than what has been described
above, especially when the sampling is carried out in
several phases. This article looks at different strategies for
using this complex auxiliary information in the framework
of two-phase sampling, with the possibility of generalizing
to more than two phases.

When the sampling plan entails two phases, the aux-
iliary information consists of information known for the
entire population, but also of information known for the

sample resulting from the first sampling phase. These two
bodies of information may concern different variables.

In their 1987 article, Sirndal and Swensson propose an
estimator that uses all the auxiliary information available
for a two-phase sampling, with different auxiliary infor-
mation for the total population and the population obtained
from the first-phase sampling. This is an estimator adapting
the principle of the regression estimator when the infor-
mation known for the individuals obtained from the first-
phase sampling is considered to be substitutable for the
aggregated information and to be of better quality than
the information available for the target population as a
whole, for purposes of estimating the variable of interest.
However, in practice it often happens that these two bodies
of information are complementary rather than
substitutable. We have thus sought in this study to develop
the regression estimate in a context in which the bodies of
auxiliary information are complementary.

Furthermore, insofar as calibration estimation gener-
alizes regression estimation when the auxiliary information
is at only one level, we have sought to adapt calibration
estimation to this context. We review the various cali-
bration strategies in order to propose the most suitable
ones, seeking to relate them to generalizations of regression
estimation that are possible in this context.

We show (Section 2) that the joint use of two different
bodies of auxiliary information leads to two regression
models and three associated decompositions of the variable
of interest. The regression model assisted approach (RMAA)

thus enables us to derive 3 alternative estimators.
In turn, the calibration approach (CA) (Section 3)

enables us to derive 4 estimators. Each of these estimators
may be related to (associated with) the three estimators
derived from the regression model approach.
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Thus (Section 4), the two approaches may be linked
together and result in three classes of estimators, each
associated with a decomposition of the variable of interest.
The estimators of a given class have the same asymptotic
variance.

When strategies are evaluated on the basis of the
sampling plan alone, our choice is directed toward the
third class of estimators, which is superior to the other two
from the standpoint of variance.

When strategies are evaluated on the basis of a modelling
of the variable of interest, the preferable class of esti-
mators is the one associated with the modelling adopted.

In a situation in which we wish to adjust a survey, and
in which we wish simultaneously to correct the biases that
would result from the use of gross weightings and to
reduce the variance, the findings must be adapted: the
changes introduced in the weightings to correct the biases
are greater than the corrections for variance reduction.
Hence the variables will be incorporated into the calibration
once it appears that they are affecting the probability of
selection and thus participating in the creation of the bias.

When the auxiliary variables are qualitative, the choice
between a priori and a posterioriuse of the auxiliary infor-
mation - that is, between its use at the sampling stage and
at the adjustment stage - still rests on the distinction
between the two modellings of the variable of interest.

These findings may be extended to samplings of more
than two phases.

2. NOTATIONS

The framework is that of a two-phase sampling. Assume
that auxiliary information is available at two different
levels: the target population and the population obtained
from the first-phase sampling. The situation may be
diagrammed as follows:

Size Vector of available auxiliary
variables
N X1
n, / X1 X2
Ya

n @ Xp X3

where U represents the target population for which the
values of the vector of variable x, are known or, failing
that, the total X; = ¥ ;.yXj. S, represents an interme-
diate level of sampling for which the values of the vectors
of k, variables x, and k, variables x, are known for all
individuals. We denote as m;, the probability of selection

from the sample associated with the first phase of the
sampling. s represents the final sample for which are
available the values of the variable y, the total of which
we are trying to estimate, as well as the values of the
vectors of the auxiliary variables x; and x,. This is denoted
asw; = P(i|s,).

We hope to make optimum use of all this auxiliary
information in order to improve the estimates that will be
made on the basis of the data gathered from the sample
that results from the second sampling phase s.

An obvious first idea is to try to generalize the regression
estimator in this context.

3. REGRESSION ESTIMATION APPROACH

3.1 The Information Contained in x; is Considered to
be Substitutable for the Information Contained in
x, for Estimating y and to be of Lesser Quality

In their work, Sirndal, Swensson and Wretman propose
the following regression estimator for estimating the total
of y:

lezﬁ_‘_'_(zx/zl"z _Exi%bz) +

T T T Mg
ies 4@ i€sy g ies A
N xi b
’ il 1
( 2 : Xy by — 2 ; -
T
€U i€s, a

where the second term is the correction for poor estimation
on s, and the third is the correction for poor estimation
on s.

The estimation can also be written:

. N xi by — xb by)
YIZExillb]+E(lll 122+
ieU i€s, Tai
Z i — x2 b))
ies TiTai
where the second term is the correction for poor approx-
imation of y; by x;; b, and the third is the correction for
poor approximation of y; by x5 b,;

with by = ( ) xnxfa) —1< y M)

. Ly . TiT,i
i€sy a ies 1A

and b, =( E _x,-zx,-’z) _1< E ﬁ;&)

y T g N T
ies ifai jes ilai
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The underlying idea is that we have two concurrent
models for y, namely:

(1) y; = x} by + u; with E(uy) =0 and V(u;) = o}

and

(2) y; = xhby + u; with E(up) =0 and V(u,) = o2
the second of which we believe is a priori better for pre-
dicting the value of y;. Thus in this model-based perspec-
tive, x; functions as a proxy of x,. A situation of this type
corresponds, for example, to a case in which x, represents
the update - that is, the update to the date of the survey -
of the variable retrieved from the x; sampling frame. In
other words, if x, were available at the level of the entire
population, the estimator used would be

E X,zbl + 2 (yl 12b2)

Xy
3% i€s i%ai

Let us now imagine the case of a two-phase sampling
survey of households. Assume that the sampling frame is
made up of dwellings for which we have information
consisting of dwelling size, denoted as x;, which is therefore
known for all individuals in the target population. If all
the individuals obtained from the first sampling phase are
questioned on the composition of the household, denoted
as x,, in particular on the number of children in the
household, the two bodies of information appear to be
complementary rather than substitutable for purposes of
studying the household budget. This is further reinforced
if instead of household composition, the information
collected is the age or occupation of the head of household.

In a model-based perspective, the alternative situation,
in which the information contained in X, is considered
complementary to that contained in x, for estimating y,
thus naturally suggests itself.

3.2 The Information Contained in x, is Considered
to be Complementary to the Information
Contained in x, for Estimating y

3.2.1 Decomposition y; = xja; + xha, + u;
The underlying model is then:

Yi=xha, + xha, + u; with E(u;) = 0 and V(u;) = o?.

The estimator to be used is then:

202 (i — x1d — xhdy)
SHETREE LU

ieU i€s, ies L

with:
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7 '
E Xi1 X1 E XXz \ —1 Xi i
Ty T Ty T Ty T
dl iGS at ™ty iES ar i iGS at i
= ’ ’
a, E XizXi1 E Xi2Xi2 Xi2Yi
Tai T Tgi T Tai i

i€s i€s

The variable here is broken down into three components
¥i = x4, + x4, + 4;. The total of y is thus broken
down into three components, each of which is estimated
at the highest level, that is, with the greatest precision
possible:

- Ufor x; 4y,
- s, for x55d,, and
- s for 4.

3.2.2 Decomposition y; = xjc; + My (xi2) '¢; + 4;

If we wish to make maximum use of the information
contained in x; available on U, it is natural to introduce
another formulation of the same model y; = xja, +
Xj»a, + u; which isolates everything which in y can be
taken into account through x;. It is written as follows:

Yi = xjer + My (x;2) ¢, + u; with
E(y;)) =0 and V(y) =
where M, represents the orthogonal projection, in the
metric associated with the weights 1/7,;, on the orthogonal

of the vector space generated in s, (similar to ") by the
group of variables x;.

M, (x;2) is defined by:
’ XX xpxh\ 7!
M, (x2) = xp — ( ) ;> < ) —’—l‘) Xi1 -
ies, Tai ies Mai
a a
The associated natural estimator is then:

(Mxl X,2C2)

Y; = E X ¢ + E

ieU i€sy

s s A
X6 — My xj6))

o -
Y, ,

T Wi
i€s tha

where ¢ = (C‘) is the regression coefficient y = x’¢; +
(M, x2) ¢, + u estimated over s with weights 1/mym;
(whlch differs slightly from ( ))

3.3 The Three Estimators Derived from the Model-
based Approach

The modelling approach has enabled us to construct
3 estimators that can be rewritten synthetically by introducing
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new notations. Throughout what follows, for a vector of
a given variable z, the following notation will be used:

Z= —z
ies NaiTi

. 1

zZ = — Z.

i€sg
With these notations, the three estimators are rewritten
as follows:
¥ = [X{b) + [X3hy — X{ b)) + [¥ - X;by]
associated with the models:

(1) yi=xib + uy
and
Q) yi = xi2by + up

Y, = [X{d] + [X38,] + [Y — X{d; — X34,]

associated with the model

Yi = Xja + xpay + u;
Vs = [X{&] + [M, X361 + [Y — X{é — M, X;6)]

associated with the model

yi = xher + My (xp)'c + u;.

In the same manner as the regression estimator is gener-
alized by calibration estimators, the problem of the use of
auxiliary information at several levels may be dealt with
through calibration theory, be attempting to construct
calibration strategies adapted to the auxiliary information
configuration examined in this article.

4. CALIBRATION APPROACH

4.1 Different Strategies Possible

When we try to generalize the calibration estimate
proposed in a context in which auxiliary information is
present at a single level - that of the entire population -
several strategies naturally suggest themselves:

Strategy 1

a) calibrate the structure of the 1st-phase sample s, on
that of the total population U in terms of variable x;,
then,

b) calibrate the structure of the 2nd-phase sample s on
that of the 1st phase sample s, in terms of variable x; .

Note: For the latter operation, it is better to take account
of the preceding calibration in terms of x| in order
to determine the reference value in the calibration
in terms of x, on s,,. If the preceding calibration is
not taken into account, only the estimates made at
the level of s, will benefit from the improvement
made by stage a. A good way to convince oneself
of this is to consider the specific extreme case where
X = X3.

This strategy corresponds to the following calibration
equations:
Stage a:
F(xi8)
E —Xx;y = Exil = X
i€sg a €U
which determines 3;, then

Stage b:

F(x! F(x/ ~
E (XIIBI) 1_—;(.)61'/2(_32))(.’.2 — E M'xﬂ = X;

Tai T ,
i€s ar™! i€sy a

which determines 3,,

where F designates, as throughout this article, the function
which is used in the calibration and which may be linear,
exponential, truncated linear or logit (see Deville, Sdrndal
1993).

Strategy 2

Calibrate the structure of the 2nd-phase sample s simul-
taneously in terms of variables x; and x,, that is,

- on the structure of the total population U as regards x;
- on the structure of s, for x,.

This second strategy leads us to the following calibration
equations:

F(x; + X;
E (xnon 202) Xy = E Xy = X, and

Ty T
i€s atti el

F(xja; + xHo X; ;
¥ (X0 '22)x,-2=E—~'£=X2,

. Ty T
1€5 art

which determines «; and «,.

The first strategy offers the advantage of correcting the
1st phase weightings, that is, of incorporating the auxiliary
information at the highest level. The second strategy, for
its part, makes it possible to correct the weightings that
will actually be used in the estimation, and in particular
to obtain a perfect estimate of the total of x; .
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A third strategy may be proposed; it combines the
advantages of the above two strategies and would there-
fore seem preferable to them:

Strategy 3

a) calibrate the structure of the 1st phase sample s, on that
of the total population U in terms of variable x,, then

b) calibrate the structure of the 2nd phase sample s simul-
taneously in terms of variables x; and x;,, that is,

- on the structure of the total population U as
regards Xx;

- on the structure of s, modified by taking account of
the preceding calibration for x,.

This strategy leads to the following calibration equations:

Stage a:

y FEB) oy

i€sg at iU
which determines 3;, then

Stage b:

F(x)v + xi;
E ( i1Y1 1272) X = E Xp = Xl, and

Ty T
ies aiti ieU

Fx'~ + xt F(x} 5
E (x1171 XIZ’YZ) Xp = E Mxil = X;,

i€s arti i€s, a

which determines v; and =y, .

Lastly, a fourth strategy may be proposed; it may be
seen as a variant of the preceding strategy:

Strategy 4

a) calibrate the structure of the Ist phase sample s, on that
of the total population U in terms of variable x|, then

b) calibrate the structure of the 2nd phase sample s simul-
taneously in terms of variables x; and x,, on the basis
of the weights modified by the preceding calibration,
that is,

- on the structure of the total population U as regards
X1

- on the structure of s, modified taking account of the
preceding calibration for x,.

This strategy leads to the following calibration equations:

Stage a:

E F(xillﬂl) Xy = E Xt

: T aj :
i€sy a €U
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which determines 3;, then

Stage b:

and

F(x}B)F(x}8; + xird
E (xllﬁl) (xll 1 + Xi2 2) Xy = E X =Xls

. T T N
i€s arti €U

F(x)\B)F(x)d; + x26,) _
Xip =

)y

Ty T
ies ar i

F(x1B1) >
y FeiB) g
i€sg Tai

which determines 6, and §,.

When the calibration function is exponential, it is clear
that strategies 3 and 4 coincide.

In this calibration-based approach, the viewpoint
adopted is that of reduction of variance based on the
characteristics of the sampling plan, without consideration
of the model. Two questions then naturally arise:

- Can each of these four strategies be linked to a model-
based approach?

- Can these four strategies be compared in terms of
variance?

We will first examine the link between the three strategies
defined by a calibration approach and the strategies
defined by a model-based or regression approach, after
which we will focus on calculating the variances of the
estimators associated with each of the strategies.

4.2 Link Between the Different Possible Strategies
and the Regression Approach

When Fis linear, each of the estimators associated with
the four strategies may be rewritten simply.

Notations

Throughout the rest of this article we will use the
following notations for a vector of any variable z:

Zx — E F(xi81) < 7+ = E F(x161) <

i = ;e
Tai i

Tai

ies i€sy

We will also omit the 7/ indexes in order to lighten the
presentation when there is no ambiguity.

Strategy 1
The weightings are of the form
F(x6y) ,
wi = == F(x582),

Tai T
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the associated estimator Y, may be rewritten by translating
the effect of the second calibration on x;:

Y, = ¥* + (X3 — X31’B,  with

’ -1 14
éz (E F(x{By) x2x2’> (E F(x{B)) x2y>,

Ty T - T, T

il

then by translating the effect of the first calibration on x; :

Yo=Y+ [X; — X1’ B, + (X3 — X§]' B,

o il

or:

Y, = [X{B] + (X3’ B, — X{B)] + [?—Xflézl,

. 5o X%\ ! X1y
win = (L 25) (225)
N

Sa

Now, Y is rewritten:
P, = [X{ bl + [X3' by — X{ bl + [Y —X3'b,].

We thus obtain an estimator similar to the estimator
Y, that is obtained from the model-based approach in
cases where the information contained in x, is considered
to be substitutable for the information contained in x; for
estimating y and also to be of lesser quality. The differ-
ences between Y; and Y, concern the following points:

1. B,is estimated by incorporating the changes from the
calibration on x,, unlike b,.

N1
2. The estimate B, = <E M) (E x,_y) of By,
Ta
Sa s

T

is made in part on s,, unlike ;.

3. Lastly, we use the adjusted weights F(x,8;) /7,7 in
the sums in x; on s and on S, in ¥, in unlike what was
done for Y,: the estimation on X, is improved by the
knowledge of x;.

Thus the underlying modelling here is indeed: (1) y; =
x4 b, + uy and 2) y; = xhby + ujp, the second of which
we think is a priori better for predicting the value of y;.

Strategy 2
We obtain weights
s _ Flxaa + X00)

i 3
T T;

the associated estimator is rewritten as follows:

A

Ys = [X{d] + [X38,) + [Y — X{d), — X38,].

We thus obtain exactly the estimator ¥, proposed in
the regression model approach in the case in which the
information contained in x; is considered complementary
to the information contained in x, for estimating y. The
underlying model here is indeed y; = x4y + xpa; + u;.

Strategy 3
We obtain weights
6 _ Flavi + xivs)

i s
Tai

the associated estimator is rewritten as:
Yo=Y+ [X| - X1 4 + [X5 - X' &
thus:

Yo = [X{di] + [X3 &) + [Y — X4 — X;4,].

Now,
. Xy xle' -1 Xlxl,
=Y 2+(p=2t v
Ta < Tq ) ( Ty )
Sa Sa Sa
X
x-y=
[ Wa]
Sa

From this it can be deduced by replacing in ¥ that:
Yo=[X{Ci] + (M Xid] + [¥ - X{d, — X3 4,1,

with

A R xixi\ 7! x1%3\
G=a+( V28 $1%2 ) 4,.
l 1 (E 7ra) (SE 7ra> 2

Sa a

We thus obtain an estimator that is close to the esti-
mator Y; proposed in the regression model approach in
the case in which the information contained in x; is con-
sidered complementary to the information contained in
x, for estimating y. The underlying model here is y; =
xhicy + My (x;) "¢, + u;. The differences between Y3
and ¥, concern the estimated coefficients: (§}) differs
slightly from (§!) and [¥ —X{ 4, —X3 4] differs slightly
from [Y —X|¢& — M, X3 é]. On the other hand, these
quantities are asymptotically equivalent.

Strategy 4
We obtain weights

7 _ F(xjB)F(x16, + x/6,)
’ Tai T ’
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the associated estimator is rewritten as follows:

Y, = P+ (X, — Xt1'ar + (X3 — X317 65

By changing the initial weights in d; = F(x;8,)/x7;
we obtain in the same manner:

2 2 2

Y= [X{af] + [X3'a3] + [Y* — Xt ar — X3 a3].

By replacing X3 by its expression found above, we
obtain:

Vo= [X{ Gl + (M, X363] + (¥ —X{*at — X3' a3],

with

. . xyx{\ ! x1%\ .
C1=ai*+<E~‘——') (Ei)af-
s, Ta
a

Sg Ta
Finally, Y, and Y are asymptotically equivalent.

Say that w = y — x{df — x345. Then ¥, = ¥5 +

[W* — W]. Now, asymptotically [W* — W] is an
infinitely small negligible before Y:

=il = (o 20) (£ F) lx - &)

Ty T
y
T, T

Ultimately we obtain ¥; = Y.

tends toward [y _ $]_ o 1
zero and ! ! )

In conclusion, when the calibration function is expo-
nential, the estimator Y coincides exactly with the pre-
ceding. When Fis linear, Y5 is close to the preceding and
thus still corresponds to the regression model approach in
the case in which the information contained in x; is con-
sidered complementary to the information contained
in x, for estimating y and in which the decomposition
yi = xpc + M, (xi)’ ¢y + u; is used.

Conclusion: The Three Classes of Estimators

We have just seen that the four strategies derived from
a calibration approach could be associated with regression
modelling. We thus obtain three classes of estimators:

Y, = Y, associated with the models

M v

xiby + uy,
and
2 yi=xhby + up

131

Y; = Y, associated with the model

Yi = xhay + xhar + y;

Y, = Y;and Y; = Y; associated with the model

yi=xjc + My (xp) ¢ + uy.

The approximation =, which indicates that the esti-
mators are attached to the same regression model, takes
on its full meaning when we are interested in calculating
the variance of these different estimators, since the esti-
mators that are attached to the same regression model have
the same asymptotic variance.

5. ESTIMATION OF VARIANCES

Let us consider the variances of the different estimators
Y|, ..., Y, defined above. AV designates the asymptotic
variance of an estimator that is obtained when N, n and
m tend toward infinity in a constant relationship.

5.1 Estimator ¥; and ¥,: model
Vi = xj1by + upand Q) y; = xpby + up.

e Estimator ¥,

The variance of this estimator and its estimate are given
in the work of Sarndal, Swensson and Wretman (1991).
The variance breaks down into two terms that measure the
amounts of variance due respectively to the first and the
second phase of the sampling.

G\ 1 uliulj uz.uz.
AV(YI)—< E Ajj 7rﬂrj) +<Esa E Y e

i,jeu ijesy TiTaiTjMyj

S 2 _
with: AU = Wy T WT;,
ij aij aiflagj»
—_— ’
uy =y — X,

Uy = Y; — Xpby,

-1
by = ( E xilxi/1> ( Z xilyi) )
€U e

-1
b, = ( E xizxi'z) ( E Xi2)’i>~
iU iU

Thus the variance estimator also breaks down into two
terms that estimate the amounts of variance relating to
each of the sampling phases. We find that by construction



132 Dupont: Alternative Adjustments Where There Are Several Levels of Auxiliary Information

of ¥y, x, serves to reduce the variance brought about by
the first phase and x, serves to reduce the variance brought
about by the second phase.

I7(Y1) =
(EE—AL M) +(Z Af ity )
ies jes TijTaij TiT;j i jes Waij WiTgi M Wgj ’
st phase 2nd phase
with: dy; = y; — xi by,

iy = yi — X2 bs.

Such a decomposition is based on the expression
V(Y)) = V(ELY; | s,]) + E(V[Y] | s,]), which will
apply for all the other estimators.

e Estimator ¥,

The terms of the development to the first order in
1 /\/171 of ¥, and Y, coincide exactly. We can therefore give
a more precise meaning to the expression ¥, = Y;. We
deduce from this that AV(Y,) = AV(Y,). Thus:

V(Yy) =
AL a4 A2 {00
L Lo ) s (p )
?
ijes jes 7rij7raij 7('17!']' ijes 7raij 7r,-7ra,~7rj1raj
with: Uy = yi — Xq By,

Iy = yi — XhB,.
5.2 Estimators ¥, = Y5: model
Vi = Xha + Xpay + u;

It is easy to show (see Dupont 1994) that:

AV(Y,) = AV(Ys) =
V;V; s

(E A}j'_f) + (Esa Y ay )

i i ij€s, Wi Tai WjTaj
with: v, =y — X4y,

— Vs
up =y — Xjay — Xy

Y xaxi Y xuxh Y xuyi
AN ieU ieU iU
a s ’
XipXil X2 X2 Z XinYi

ieU ey ieU

From this we deduce that:

1 P 2 "
( E AU V,‘Vj) 4 ( E AU U;i; >
b
i j TijTaij TiTj ijes Taij T Tai T Tgj

~ ~

with: Vi =Y — x,'/l a,
d; =y — xjd — X4y,

In this formulation we find that by construction of
¥, — ¥s, x; reduces the variance brought about by the

first phase and x, and x, are used simultaneously to reduce
the variance brought about by the second phase.

5.3 Estimators Y3, Y5 and Y;: model
yi = xjiep + My (xp)'cr + u;

We show that AV (Yy) = AV(Y;) = AV(Y3). Thus,
AV(Y;) = AV(Y,) = AV(Yy) =
(E AIIJM) + (Esa Z Ai U;u; )’
i,jeUu i Ljes T Mo W Mqj
uy = Y — Xjc =yi — Xhby,
u, =Yy

— xhcp — My xhey = yi — xhay — Xpay.

From this we deduce the three variance estimators,
which differ owing to different estimated coefficients:

1 PR 2 P
< A’J uliulj) + ( AU uiuj )
! ; E : ’
WijTaij TiT; es Taij WiTaiTjTgj
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We find that by construction of Y3, Y; and Y7, x; is
used to achieve maximum reduction of the variance
brought about by the first phase and x, serves to reduce
the variance brought about by the second phase.

6. CHOICE OF ESTIMATORS WHERE THERE
IS SELECTION BIAS

In practice, when a survey is adjusted, it is not unusual
to want not only to improve the estimation, but also and
more especially to correct the biases introduced by un-
controlled selections of individuals, such as nonresponse.

We shall examine the case of a two-phase sampling
in which the second phase is equivalent to total non-
_ response. The weights =; of the second-phase sampling
are thus unknown. The calibration of s will enable us to
estimate these probabilities, while reducing the variance
(cf. Deville and Dupont 1993). However, asymptotically,
the corrections of bias to be made to the weights are greater
than the changes to be made in order to improve the
estimators. It is therefore the implicit response model that
will guide the choice between the different estimators:

The implicit response model for the first class of estimators
is p; = 1/F(x2B5).

The implicit response model for the second and third
classes of estimators is p; = 1/F(xA, + x)Ay).

¢ Whatever the response model, an evaluation of the three
classes of estimators on the basis of the sampling plan
alone still indicates that the third is preferable, since it
is appropriate for all the response models.

o If the strategies are evaluated on the basis of regression
modelling, we will use the first class of estimators only
if the response mechanism is well explained by x,, that is,
pi = 1/F(x/,B;). Now, we have seen that the modelling
associated with the first class of estimators takes on its
meaning when the variables x; and x; are highly corre-
lated. It is therefore fairly probable that in this context,
the variable x, will be sufficient to explain the response
mechanism. Should this not be the case, it will be neces-
sary to turn to the third class of estimators.
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The comparison between the three strategies may thus
be adapted in a context in which we wish to correct the
biases introduced by uncontrolled selections. The conclu-
sions remain largely the same.

According to the same principle, it is of course possible
to make comparisons between alternative adjustment
strategies in the context of samplings that entail more than
two phases and one or more uncontrolled selections.

7. A PRIORI AND A POSTERIORI USE OF
AUXILIARY INFORMATION

The calibration estimator enables us to improve the
estimate a posteriori, by reducing the variance and cor-
recting the bias, as noted above. However, we may want
to incorporate the auxiliary information a priori, at the
sampling stage rather than a posteriori at the estimation
stage. We then encounter, in a more complex context, the
classical opposition between stratification and
poststratification, well known in the case of single-phase
sampling, when all the auxiliary variables are qualitative.

It is possible to transpose the terms of the choice
between using the information a priori and a posteriori,
in the sampling and auxiliary information configuration
studied, when the auxiliary variables are qualitative. When
the auxiliary variables are qualitative, a calibration corre-
sponds exactly to poststratification.

We saw earlier that in order to determine the proper
adjustment procedure, it was necessary to distinguish two
possible modellings of the variable of interest, depending
on whether the information in x; and the information in
x, were considered substitutable or complementary. Each
of these two modellings then led to one or more different
adjustment procedures. Similarly, these two modellings
arise when it is a matter of identifying the best sampling
strategy for incorporating the auxiliary information:

¢ When the information in x; and the information in x,
are substitutable, the modelling of the variable of interest
is as follows:

(M) yi = xpby + u;; and

(2) y; = xppby + u;» where the second model is better
for predicting the value of y;.

We have seen that the use of the auxiliary information
a posteriori leads to calibration strategy No. 1, that is,
to the first class of estimators. If we wish to take account
of the auxiliary information at the sampling stage, it is
natural to propose a sampling stratified on x, for the
first phase and a sampling stratified on x, for the
second phase.

However, the parallel between the adjustment procedure
and the sampling procedure is not complete: in a cali-
bration, only the marginal information in x; can be used.
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This results in incomplete poststratification (Sdrndal and
Deville 1992). On the other hand, in the sampling proce-
dure proposed as an a priori alternative, we are obliged
to use all the cross-tabulations of the x; variables. The
a priori equivalent of a calibration would accordingly
be a sampling balanced on the margins of the vector of
variables x;.

e When the information contained in x, and the informa-
tion contained in x, are complementary, the modelling
of the variable of interestis yis y; = x;; b, + xib; + u;.
We have seen that in this case the use of a posteriori
auxiliary information led to calibration strategies 2, 3
and 4 in estimator classes 2 and 3. If we wish to take
account of the auxiliary information at the sampling
stage, it is natural to propose a sampling stratified on
x1 for the first phase and a sampling stratified on x;
and x, for the second phase.

As before, there is no exact parallel between the a priori
and a posteriori procedures, since the use of the infor-
mation a priori mobilizes all the cross-tabulations
between the variables x| and x;.

Thus it is possible to make a choice between incor-
porating the information either a priori or a posteriori,
and indeed to optimize the sampling plan, when the aux-
iliary variables are qualitative. The terms of the choice are
the same as in a single-phase sampling with a single level
of information. An additional consideration is the multi-
plicity of strata created by the cross-tabulations of x; and
X, in the case in which the modelling used is y; = x; b, +
X by + u;, which reinforces the advantages of using the
information a posteriori.

When the auxiliary variables are quantitative, the choice
depends on their conversion into qualitative variables, it
not being possible to generalize correctly except by using
the parallel between calibration and balanced sampling
(¢f. Deville 1992).

8. CONCLUSION

In a two-phase sampling, when two different sets of
information are available for the total population on the
one hand and the sample resulting from the first phase on
the other hand, several strategies are possible when one
wishes to use the auxiliary information to improve the
estimation of totals.

Two different natural approaches have been used to
derive estimators: a regression model assisted approach,
which seeks to adapt the idea of the regression estimator;
and a calibration approach, which attempts to adapt the
idea of calibration. The estimators obtained by the two
approaches may be linked together. We generated three
alternative underlying modellings to which the various
estimators obtained may be attached. Thus we obtained

three classes of estimators. Several conceivable calibration
strategies were eliminated at the outset as irrelevant.

We have shown that the estimators of a given class, that
is, the estimators attached to a given model, are asymp-
totically equivalent; we gave the form of the variances
derived in the case of a linear calibration function, but with
asymptotic equivalences, these results remain valid for any
calibration function.

For purposes of evaluating strategies, the form of the
variances indicates, as intuition would suggest, that one
of the classes of estimators (estimators 3, 6 and 7 (calibra-
tion strategies 3 and 4)) is preferable to the other from the
standpoint of variance when the evaluation is based on the
sampling plan alone. When it is based on a modelling of
the variable of interest, it suggests that the preferable class
of estimators is the one associated with the modelling
adopted.

In a situation in which the goal is to adjust a survey and
to simultaneously correct the biases that would arise from
the use of gross weightings and reduce the variance, the
conclusions must be adapted. The changes introduced in
the weighting to correct the biases are greater than the
corrections to reduce variance. Hence the variables will be
incorporated into the calibration once it appears that they
affect the probability of selection and thus participate in
the creation of bias.

When the auxiliary variables are qualitative, the choice
between a priori and a posteriori use of auxiliary infor-
mation, that is, between using it at the sampling stage or at
the adjustment stage, still rests on the distinction between
the two modellings of the variable of interest.

These results may easily be generalized to the case of
sampling involving more than two phases.
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