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Estimating Some Measures of Income Inequality from Survey Data:
An Application of the Estimating Equations Approach

DAVID A. BINDER and MILORAD S. KOVACEVIC!

ABSTRACT

We summarize some salient aspects of the theory of estimation functions for finite populations. In particular, we
discuss the problem of estimation of means and totals and extend this theory to estimating functions. We then apply
this estimating functions framework to the problem of estimating measures of income inequality. The resulting
statistics are nonlinear functions of the observations. Some of them depend on the order of observations or quantiles.
Consequently, the mean squared errors of these estimates are inexpressible by simple formulae and cannot be
estimated by conventional variance estimation methods. We show that within the estimating function framework
this problem can be resolved using the Taylor linearization method. Finally, we illustrate the proposed methodology
using income data from Canadian Survey of Consumer Finance and comparing it to the ‘delete-one-cluster’

jackknifing method.

KEY WORDS: Complex survey design; Gini family coefficient; Lorenz curve ordinate; Low income measure;

Quantile share.

1. INTRODUCTION

The measurement and analysis of economic inequality
are well covered in econometrics literature from both,
theoretical and applied aspects, although the theoretical
issues prevail. Estimation of inequality measures and the
impact of the design of sample surveys have gotten less
attention. Variance estimation, unavoidable in statistical
inference based on these measures, is seldom an issue in
the relevant econometric literature. It is usually addressed
under very strong assumptions and under unsustainable
simplifications of the design or the formulae for the
approximate variance. In this paper we present a method
that can handle with ease both the estimation of the
measures of income inequality and the variance estimation
of the resulting non-linear statistics. This method is appli-
cable under a variety of sampling designs.

In general, a population distribution can be described by
its cumulative distribution function, F(y) = Pr{Y < y},
where Y is the random variable corresponding to selecting
one population unit at random. Throughout this paper,
we assume that Yis non-negative. If Y represents income
then we are interested in the properties of an income
distribution, such as income concentration, income shares
for different population shares, low income proportions,
etc. We are also interested in the quantile function
E(p) = F ' (p) = inf{y | F(») = p}.

The Lorenz curve, for example, depicts the cumulative
income against the population share. The formal defini-
tion of the ordinate of the Lorenz curve corresponding to
the 100 p-th percentile of the population is

£
"ydF(y)
0
L(p) = ————i, (1.D
Hy
where

Ep ®©
g dF(y) = p, and S YAF(y) = py.
0 1]

The finite population form of the expression (1.1),
more familiar to survey statisticians, is given by

L(p) = ), YilY; = s,,}/ Y v,
U U

where U represents a finite population and 7{.} is an
indicator function.

The income (quantile) share is defined as the percentage
of total income shared by the population allocated to the
certain income quantile interval [£,, £,,1, p) < pa. It is
equal to the difference of Lorenz curve ordinates

Q(p1,p2) = L(p) — L(py).

In Figure 1 we give a graph of the Lorenz curve for the
Weibull distribution with shape parameter o« = 1.6, along
with the 45° axis. For example, one can read from the
graph that not more than 25% of the total income is
allocated to the poor half of population, or that the richest
10% of the population earn 20% of the total available
income.
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Figure 1. Lorenz Curve for the Weibull Distribution with Shape
Parameter o = 1.6.

The Gini coefficient measures the degree of the ine-
quality in income distribution. One definition of the Gini
coefficient is a linear function of the area between the
Lorenz curve and the 45° axis, normalized to lie between
0 and 1. The Gini coefficient in Figure 1is 0.35. The formal
definition of the Gini coefficient (Nygard and Sandstrom
1981) is

i 1 [
G=1- 2S L(p)dp = - S [2F(y) — 1]ydF(y).
0 K oJo

A more general family of Gini coefficients, given in
Nygard and Sandstréom (1981) is

G, = s S JF(y)1ydF(y), (1.2)
ry Jo

where J is a bounded and continuous function. For the

usual Gini coefficient, J(p) = 2p — 1.

Another measure of income inequality used by some
economists is the Low Income Measure. This is defined
as the proportion of the population units whose income
is less than half the median income for the population.
Formally, this is

M2
0 = S dF(y), (1.3a)
0
where M is the median defined by
M 1
S dF() =+ (1.3b)
0 2

For all these measures, we can express the parameter
of interest, O, as the solution to the equation

Su(y,e)dF(y) =0,

where u (y,0) is the kernel of the estimating equation. This
estimating equation formulation will be discussed in
Section 2. In Sections 3, 4, and 5 we give the estimating
equations for the above measures along with the approx-
imation of their mean squared error estimates. In Section 6
we present estimators of these measures based on the
complex sample design. Section 7 contains an illustration
based on the Canadian Survey of Consumer Finance data.

2. USE OF ESTIMATING EQUATIONS FOR
FINITE POPULATIONS

The theory for estimating means and totals from finite
populations is now well established in the statistical litera-
ture. A formulation which encompasses most estimators
used in practice is given in Sdrndal, Swensson, and
Wretman (1992). In this section, we briefly review this
theory and show how it can be applied to more complex
statistics through the use of estimating equations, as
described by Binder (1991) and Binder and Patak (1994).

We begin the exposition of the main idea by reviewing
the estimation of the population total Ty and the finite
population distribution function F(y). The estimation of
the population total is the core of the estimation equations
approach of Binder (1991) and Binder and Patak (1994).
Let the population total of the variable Y, be defined as

Ty = Ngde(y).

Note here that F(y) is a step function corresponding to
the distribution function for the finite population. We
consider estimators of the form:

N
Ty = E wi(s)y; = E wi(s)Y;, 2.1

i€s i=1

where w;(s) is zero whenever the i-th unit is not in the
sample. Expression (2.1) gives, for example, the Horvitz-
Thompson (HT) unbiased estimator if

/7, i€s,
wi(s) ={ /m, 168
0, i¢s,

or the generalized regression estimator if

[1 + (Tx — Tx)x;/Tx2]/m;, ic€s,
wi(s) =
0, igs,
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where Ty is the population total of X, and Ty and T2
are the HT estimates of the totals of X and X? variables,
respectively.

Similarly, an estimator for the distribution function is
given by

NF(y) = Y, wi()I{y; <y},
i€s
where
1 if y; =y,

I{yi5y1={ )
0 if y,> .

We note that F(y) is uniformly and asymptotically design
consistent for F'(y), but it is not necessarily a true distri-
bution function, unless

2 wi(s) = N.
i€s

In general, and under certain regularity conditions for
complex designs (Francisco and Fuller 1991),

F(y) — F(y) —,0, forany y.

That is, the finite population distribution function, F(y),
allows a consistent estimator, F (). This property of the
F(y) will be used later in proving the consistency of the
linearized variance estimators for different income statistics.
Now, we review the application of the estimating equa-
tions theory to the estimation of any finite population
parameter O, that can be expressed as the solution to

Su(y’eo)dF(y) = 0.

We define the estimating equation estimate for 6, as that
value of © for which

gﬁ(y,é)dﬁ(y) = 0, (2.2)

where #(y,0) is an estimate of u(y,0).

We can rewrite (2.2) as

0= Sﬁ(y,é)dﬁ(y)
2.3)

= S [4(»,0) —u(y,0,) 1dF(y) + Su(y,eo)dﬁ(yH R,

where
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R =S[ﬁ(y,é) — u(»,8,)1[dF(y) — dF(»)].

The decomposition in (2.3) is the basic starting point
for all the derivations of variance in the paper. For each
parameter considered we will prove that the remainder
term, R, is asymptotically negligible.

Binder (1983) considered the case where @ (y,0) =
u(y,0) and where, for large samples,

S [u(y,0) —u(,0,) 1dF(»)

dE{u(y,0)}

=(6-0
( T30 loco,

+ 0,(16 — 6,]).

Note that the remainder term R from the decomposition
(2.3) should be of order o,( |6 — 6,]) to be considered
as asymptotically negligible.

For most applications # (y,0) does not need to be esti-
mated by #(y,0). However, for some applications such
as the Gini coefficient, the function u(»,0) is estimated
so that formula (2.2) allows for these cases in general.

Using these approximations, we have

-1

6-0,~ - dE{u(y,0)]
a6 0=0,
X Su(y,eg)dﬁ(y) =Su*(y)dﬁ(y), 2.4
where
—1
. _ | 9E{u(,8)}
u*(y) = 20 oc, u(y,0,).

Once we have obtained the expression for u*(y), the
derivation of the variance of © becomes straightforward.
Since we have approximated 6 — O, as an estimator of
a population total of u*(y;)’s, we can use the mean
squared error calculations for the estimate of total to
obtain the variance estimate of 6.

For example, for O, equal to the ratio, Ty/ Ty, we have

u=y — 6yx,

1
u* = — (¥ — 9¢x).
rx
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The remainder term in this case is
R = S[y — 6x — (y — Opx)][dF(y) — dF(»)].

Therefore,

- = [F(y) — FO»)]x —,0,

for any y and any finite x.

Similarly, for population quantiles, we have

u Ity = 64} — p,

2.5)

where f(8g) is the value of the density function at O,.
The second expression in (2.5) is an extension of the
Bahadur representation for sample quantiles, as described
by Francisco and Fuller (1991). Result (2.5) will be used
for the ordinates of the Lorenz curve and for the Low
Income Measure, which are discussed in Sections 4 and 5.

The remainder term R in this case reduces to R =
F(0) — F(B,) — F(6) + F(8,). In the case of the
simple random sample design, Randles (1982) showed that
R = o,(n~ ). For the complex design situation, under
some regularity conditions, Shao and Rao (1994) estab-
lished a similar asymptotic result: first they showed that
6 — 0, = 0,(n™"), then that R = 0,(n~ "), and
therefore R = 0,(| 6 — 6, |).

3. GINI FAMILY COEFFICIENT

For the Gini family coefficient, given by (1.2), we
can use

u(y,Gy) =JIFW 1y — Gyy.

Binder’s (1983) approach cannot handle the variance
estimation of the Gini coefficient. For the Gini coefficient,
rather than deriving the variances by breaking the problem
into two parts - one for the ratio estimator and the other
for the variance of the numerator - we use the estimating
equations approach to solve the problem in one step.

Ignoring the remainder term in (2.3), we have the
following approximation:

0= S{J[F‘(y)]y — G, y}dE(y)

=~ S{J[F(y)] — JIF() 1)ydF ()

- (G, -Gy gde(y) + S (JIF(») 1y — Gy}dF(y).
Letting
S{J[F(y)] — JIF(») 1} ydF(y)

~ S[F(y) — FO1J'[F(»)1ydF(y),

and
Sﬁ(y)J’ [F(y)ydF(y)

y A
_ SS 7' [F () 1ydE (x)dF (»)
0

- S [ SmJ' [F(x) ]xa’F(X)] dF (),

y

we have that

Gy -G, = Su*(y)dﬁ(y),

1 1
ur = — [S J' (p)F~'(p)dp
By F(y)

+ JIFW) 1y — G,y — E(F(»)J’ [F(y)]y}]- 3.

For the case of independent and identically distributed
observations, this yields the same variance result as de-
scribed by Glasser (1962) and Sendler (1979). To estimate
the variance, it is necessary to use estimates for uy, F(y),
and G, in the expression for u*.

We investigate the asymptotic behaviour of the re-
mainder term R for the usual Gini coefficient G. The
remainder is

R =S{2y[ﬁ(y) - F(»)1 — (G — G)}
x [dF(y) — dF(y)].

Denoting the difference F(y) — F(y) by D(»), the
remainder can be expressed as a sum of two integrals
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R = SZylj(y)dD(y) - S(G — G)ydD(y).

The first integral is reduced to zero by the integration
by parts, so that the remainder is approximated by

R

U

— (G = G)(py — ny)

— (G = Go,(n™ "%, 0<s< Y.

Therefore, we can say that R = 0,(| G — G |).

4. LORENZ CURVE ORDINATE AND
QUANTILE SHARE

The ordinate of the Lorenz curve was defined in (1.1).
In terms of estimating equations, the following two equa-
tions are required:

u(y,L(p)) = Ity < &}y — L(p)y,
u(y) = Iy = £,} — p.

The second equation defines the 100 p-th percentile of the
distribution; whereas the first equation defines the ordinate
of the Lorenz curve in terms of the 100p-th percentile.
Ignoring the remainder term in (2.3), we have the following
approximation:

0 =S[1{y < £,) — L(p)lydF(y)

£ .
=~ S "ydF(y) — [L(p) — L(p)] Sde(y)

£p

+S[1{y < &) — L(p)1ydF(y).

The first term of this expression can be further approx-
imated as

&
S YAF(y) = (& = E)épS(5p),

Ep

and from (2.5) we see that

- S L
/(&)

so that
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Therefore, to estimate the variance of the ordinate of
the Lorenz curve, the appropriate linearization is given
by using

1
u*(y) = ;— [ — )ty = §,) + pE, —yL(p)].
Y

This yields the same result as described by Beach and
Davidson (1983) for variances and covariances of ordinates
of the Lorenz curve in the case of independent and identi-
cally distributed random variables. To estimate the variance
it is necessary to use §p and L (p) in the expression for
u*(y).

To estimate the quantile share Q(p;, p,) we need three
equations

u (¥,Q(p1,p2)) = ItE, <y = &,,1y — Q(p1.p2)y,

u(y) =y < &, — p1,
u3(y) = Iy < £} — pae

Using the same arguments as before, we arrive at
. 1
w(y) =—1[( - Epz)l[y = Epz}
by

- (y - gpl)l{y = Epl}

+ Pty — P&y —YQ(P1LP) ]

5. LOW INCOME MEASURE

The Low Income Measure was defined in (1.3). In terms
of estimating equations, the following two equations are
required:

M
u; (y,0) =I{ys —} - 0,

w(y) = Iy = M} -

where M denotes the median of the distribution defined
by the second equation, whereas the first equation defines
the Low Income Measure in terms of the median. Ignoring
the remainder term in (2.3), we have the following approx-
imation:
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BCEHEO

1 - M R
zE(M—M)f(E) -6 -9

+ S (I{y < f‘g} - e)dﬁ(y).

Using result (4.1) to substitute for M — M, and solving
for & — O, we obtain

~

6-0= Su*(y)dﬁ(y),

where

)

2f(M)

u* = —

1
(I{y < M} - 5)
+ I{y < %/I} —0. .1

The problem with applying this result to estimate the
variance of the estimated Low Income Measure is that it
is necessary to estimate f(M) and f(M/2). To accomplish
this, we could use

(o)A

f) = ,
h

for some suitably small 4. Alternatively, we could perform
the following calculations, as suggested by Francisco and
Fuller (1991) for another problem. For a given value of
£, we estimate the corresponding percentile, 100p. We
then construct the Woodruff interval for that percentile.
This is determined by first solving for #; and 4, in

S[I{yS £—h} — pldF(»)

inf = = Zi—an2)s

hy A 7
[mse{g [y =&} —p]dF()’)}]

S[I{y < £+ hy} — pldF(»)

inf =Zi—an >

hz ~ "
[mse{g (I{y<§) —p]dF(y)}]

where 7, _,» is the 100(1 — «/2)-th percentile from the
standard normal distribution. Then we compute

Vs
ZZx_a/z[mse{S[I{y < £) —p]dF(y)}]

f) =
(5.2)

This calculation uses the asymptotic equivalence of £ —¢
and the estimated sum of the u*(y)’s given by (2.5).

We see that the estimated variance for the Low Income
Measure may be somewhat complex to compute. The
estimating functions framework has however provided us
with the appropriate formulae.

The discussion about the remainder term in the decom-
position (2.3) of the low income measure is analogous to
that made for the case of the quantile estimation (2.5).

6. ESTIMATION WITH A COMPLEX SURVEY

Let us assume a stratified multistage design with a large
number of strata, H, with a few primary sampling units
(clusters), ny,(=2), sampled from each stratum. For
example, in the Canadian Survey of Consumer Finance
(SCF) which uses the Labour Force Survey (LFS) vehicle,
the number of strata is several hundreds and the number
of clusters per stratum is on average less than six. Let wy,;
be the normalized weight attached to the i-th ultimate unit
in the c-th cluster of the A-th stratum such that the appro-
priate estimator of mean and the consistent estimator of
its mean squared error are

b= ) WhaVhei
N

n

mse(f) = Y3 —— Y G — @) 6D
h c

where u;:c = Ei whci(yhci - ﬂ') and ﬂ;: = 1/ny Ecu;c"
We use ¥, = Y,Y.Y; to denote summation over all
ultimate units in the sample incorporating all stages
of sampling. We assume that PSU’s are selected with
replacement.

This paper is not concerned with the efficiency of the
estimators but rather the properties of commonly used
estimators. An analysis of more complex estimators found
in the econometric literature is beyond the scope of our
study.

An estimator of the finite population distribution
function is

F(y) = E Whei I{Vnei = ¥}

s
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A consistent estimator of the approximation of the mean
squared error of the distribution function estimated in y takes
the form (6.1) where s, = T Wil l(yhe < ¥} — F(0) 1.

The usual estimate of the finite population quantile is
the sample quantile

ép = inf{yhc,-Es:F‘(yhc,-) = p}

which is the solution of the estimating equation
Y Wheill(Pnei = £} — p1 = 0.
s

Accordingly, using result (2.5), the estimator of the
mean squared error of the p-th quantile has the form
(6.1) with

1 .

Upe = —5 75— Wheil Il Yhei = €5} — P
C O EN? E o
If the expression (5.2) is used for the estimation of the

density function f(£), the MSE estimate of the quantile

£ » becomes

£ 2
mse, (£,) = (’ﬂ@) 6.2

2 -2

where D, (£,) = (b + hy)/2 = (£y — £,)/2 is the
half length of the 100(1 — «)% confidence interval for
£ - In a complex sample design, #; and h, are obtained as
solutions of

A A

&L =& — M =
inf (Vi €5:F Whet) 2 P — 24— a2 Jmse[F(£,)])

£U=£p+h2=

inf (P €5:FDei) = P + 2y_app Jmse[F(E,)]].

The estimator (6.2) was also used by Francisco and
Fuller (1991). Generally speaking the motivation for (5.2)
and consequently for (6.2) comes from Woodruff’s (1952)
confidence interval for individual quantiles. Francisco and
Fuller (1986) and Rao and Wu (1987) used these intervals
to derive variance estimators. Although the estimator
depends on the confidence coefficient, they showed that
it is asymptotically consistent for any significance level .
Rao and Wu (1987) studied the standard errors of quantiles
for the cluster samples estimated in this manner. Their
Monte Carlo results suggest that 95% confidence interval
works well as a basis for extracting the standard error.
Binder and Patak (1994) obtained a similar form of the
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variance estimator by using the estimating equations
approach.

The estimate of the usual Gini coefficient is the solution
of the following estimating equation

Y Whei (2P Onet) = 1Vhei — GPnei} = 0

s

and takes the form

G =

w9

E Whei F(Vnei) Ynei — 1
S

where i = Eswhci Yhci-

The estimate of the MSE of the Gini coefficient can be
computed using expression (6.1) by replacing uj,., origi-
nally defined by (3.1), with its complex survey form. After
some algebraic manipulation we obtain the following
expression:

2 iooA
Upe = : Y Whei [A Dhei)Vnei + Bnei) =2 (G + 1)]
i
where
. G+ 1
AD) = FO) = ——
and

B(y) = E Whei Yhei I Vpei = ¥},

s

The Lorenz curve ordinates could be obtained by
solving a system of estimating equations

Y WneilIhei < £p)nei — LPIVhil = 0
s
E Whei [ [{ynei < £} — p1 = 0.
S
The resulting estimate is

L(p) = E Whei Yhei I{Vna < €}

s

T | =

To estimate the mean squared error of the Lorenz curve
ordinates we simply use the values of u,. defined by (6.3)
in (6.1)

* —
Upe =

T} -

E thi[()’ha‘ — E){ype < £,)

+p€, —ma Lp)].  (6.3)
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Similarly, the mse of the quantile share

E Whei Vhei Hép, < Yhei = épz}

s

O(p1,p) =

-~

is approximated by (6.1) using

E thi[(yhci - épz)l{yhci = épz}

i

* —
Upe =

T |

- (yhci - épl)l{yhci = épl}
+ Dofp, — Pikp, — Yhei O(p1.p2)]-

The Low Income Measure defined by (1.3) is estimated
as

6 = F(M/2) = E Whei 1{(Vnei = M/2}.

s

The mean squared error of the low income measure can
be estimated approximately by the expression (6.1), where,
(from the equation (5.1)):

. Jw2)

) Y Wil Iy = M} — 1/2]

i

+ Y WiilItyhe < M72}) — 6].

1

7. ILLUSTRATION

The methodology above is illustrated with an applica-
tion to the family income data collected in the Canadian
Survey of Consumer Finance (SCF). We use the file on the
Disposable Income of Economic Families obtained for the
province of Ontario in 1988. Disposable income is defined
as total income after tax reported in the survey. The SCF
uses the framework of the Canadian Labour Force Survey
which is based on a stratified, multistage design. For more
details on the sample design see Singh et al. (1990).

We estimated the median M, the Gini coefficient G,
the Low Income Measure O, Lorenz Curve Ordinates
and quintile shares Q(0,.2), 0(.2,.4),0(.4,.6),0Q(.6,.8),
0(.8,.1.0). Their standard errors are obtained using the
proposed methodology and the jackknife ‘delete-one-
cluster’ method.

We present a brief description of the jackknife ‘delete-
one-cluster’ method used for this illustration. First, we
assume that the estimate of the unknown parameter © can
be expressed as © = £ (F), where F is the estimated
distribution function. The estimate of the distribution
function F( »jy obtained from the sample after removing

the j-th sampled cluster of the A-th stratum (j = 1, ...,
n,,h=1,...,H)is

Fiepy ) = Y Ancil@) Wheil 1 < ¥)

s

1, h # g;
n .
where Ani(8:d) = § - = [ h=g c#J;
g
0, h=g ¢c=J.

Then O ,;, = £(F(,;,) and the resulting ‘delete-one-
cluster’ jackknife estimator of the variance of © = £ (F)
is

N -1
var/(Q) = Mg

D=

g
Y (B — 6)2
n ;
g=1 & =1

It is known that the jackknife variance estimator
performs poorly for quantiles due to its inconsistency
(Kovar et al. 1988). There are some recent results (Shao
and Wu 1989, Rao, Wu and Yue 1992) that suggest that
the ‘delete d’ jackknife and ‘delete-one-cluster’, under
certain conditions, may have desirable asymptotic prop-
erties for the variance estimation of non-smooth statistics
like quantiles or the low income measure. On the other
hand, for statistics like the Gini coefficient the jack-
knife estimator of the asymptotic variance is consistent
(Shao 1993).

Unlike jackknifing, the estimating equations approach
is not computationally intensive. It is simple, explicit and
incorporates the sample design. It provides formulae for
the asymptotic variance that are easy to program despite
their complicated form.

Realizing the limitations imposed by using a single
sample to make an objective comparison between different
methods, the purpose of this example is to point out
differences in the standard errors obtained by the esti-
mating equations approach and a computationally intensive
method like the jackknifing. Results are summarized in
the table below. The direction of the difference in the
estimated standard errors confirms the overall conser-
vativeness of the jackknifing method. The difference can
be attributed to the upward bias of the jackknifing method
in the case of the median, although the ‘delete-one-cluster’
jackknife is preferable to the ‘delete-1” jackknife. For the
quantile shares it can be partly explained by the fact that
upper quantile shares may not cut over all primary sampling
units but rather perform as separated classes which may
affect the jackknifing more than the estimating equations
method.
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Table 1
Measures of Income Inequality and Their Standard Errors

Standard Error

Measure Estimate Estimating Jackknifing
Equations ‘Delete-One-
Approach Cluster’
Median 31705 303.3 569.8
Gini 0.3482 0.005 0.005
Low Income
Measure 0.1980 0.00586 0.00613
Lorenz Curve
Ordinates
L(0.2) 0.0561 0.00137 0.00175
L(0.4) 0.1745 0.00166 0.00194
L(0.6) 0.3522 0.00246 0.00285
L(0.8) 0.5982 0.00317 0.00393
Quintile Shares
Q(0, 0.2) 0.0561 0.00137 0.00167
Q(0.2, 0.4 0.1186 0.00159 0.00221
Q(0.4, 0.6) 0.1775 0.00157 0.00282
Q(0.6, 0.8) 0.2461 0.00158 0.00337
Q(0.8, 1.0) 0.4017 0.00395 0.00451

8. SUMMARY

The problem of estimating the variance of complex
statistics, such as measures of income inequality, have
eluded statisticians for years. Replication methods such
as the jackknife are often suggested for estimation. The
advantage of the linearization approach is that it can be
used under a wide class of sampling designs and does not
suffer from the need for intensive computations which
methods such as the bootstrap entail. Through the method
of estimating functions and the decomposition given in
(2.3), we find that some difficult problems can be solved
more easily. A discussion about the order of the remainder
term for some of these measures is given as well. A more
rigorous proof for a complex sample design can be estab-
lished along the lines given in Shao and Rao (1994).
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