A Reduced-Size Transportation Algorithm for Maximizing the Overlap Between Surveys

LAWRENCE R. ERNST and MICHAEL M. IKEDA

ABSTRACT

When redesigning a sample with a stratified multi-stage design, it is sometimes considered desirable to maximize the number of primary sampling units retained in the new sample without altering unconditional selection probabilities. For this problem, an optimal solution which uses transportation theory exists for a very general class of designs. However, this procedure has never been used in the redesign of any survey (that the authors are aware of), in part because even for moderately-sized strata, the resulting transportation problem may be too large to solve in practice. In this paper, a modified reduced-size transportation algorithm is presented for maximizing the overlap, which substantially reduces the size of the problem. This reduced-size overlap procedure was used in the recent redesign of the Survey of Income and Program Participation (SIPP). The performance of the reduced-size algorithm is summarized, both for the actual production SIPP overlap and for earlier, artificial simulations of the SIPP overlap. Although the procedure is not optimal and theoretically can produce only negligible improvements in expected overlap compared to independent selection, in practice it gave substantial improvements in overlap over independent selection for SIPP, and generally provided an overlap that is close to optimal.

KEY WORDS: Linear programming; Sample redesign; Survey of Income and Program Participation.

1. INTRODUCTION

The problem of maximizing the expected number of primary sampling units (PSUs) retained in sample when redesigning a survey with a stratified design for which the PSUs are selected with probability proportional to size was introduced to the literature by Keyfitz (1951). Typically, the motivation for maximizing the overlap of PSUs is to reduce additional costs, such as the training of a new interviewer for a household survey, incurred with each change of sample PSU. Procedures for maximizing overlap do not alter the unconditional probability of selection for a set of PSUs in a new stratum, but conditions its probability of selection in such a manner that the probability of a PSU being selected in the new sample is generally greater than its unconditional probability when the PSU was in the initial sample and less otherwise.

Overlap procedures are applicable when the redesign results in either a restratification of the PSUs or a change in their selection probabilities. Keyfitz (1951) presented an optimal procedure, but only for one-PSU-per-stratum designs in the special case when the initial and new strata are identical, with only the selection probabilities changing. Causey, Cox and Ernst (1985) obtained an optimal solution to the overlap problem under very general conditions by formulating it as a transportation problem, which is a special form of linear programming problem. This procedure imposes no restrictions on changes in strata definitions or number of PSUs per stratum. (A similar result had been independently obtained by Arthanari and Dodge (1981), although they did not discuss the issue of changes in strata definitions. Both sets of authors obtained their results by generalizing work of Raj (1968).) However, there are at least two other difficulties with the procedure of Causey, Cox and Ernst which can make it unusable in practice, one which is the focus of Ernst (1986), and the other the focus of the current paper.

The first difficulty is that, if the initial sample of PSUs was not selected independently from stratum to stratum, the information necessary to compute all the joint probabilities required by this method may not be available in practice. An alternative linear programming procedure, for use in such cases, was developed by Ernst (1986). The Bureau of the Census has used linear programming to overlap its demographic surveys on five occasions. On four of these occasions (the selection of the 1980s and 1990s Current Population Survey (CPS) designs, and the 1980s and 1990s National Crime Victimization Survey (NCVS) designs) the procedure in Ernst (1986) was used because the initial design was not selected independently from stratum to stratum. In particular, as explained in Ernst (1986), if the initial sample was itself selected by overlapping with a still earlier design then this independence assumption generally does not hold, which was the key reason why it did not hold for these four redesigns.

The second difficulty with the optimal procedure is that the transportation problem may be too large to solve in practice. The Bureau of the Census also used linear

programming to overlap the 1990s Survey of Income and Program Participation (SIPP) design with the 1980s SIPP design, both two-PSUs-per-stratum designs. The initial sample for SIPP was selected independently from stratum to stratum. However, the transportation problem for the optimal procedure would have been too large to practically solve for many strata. This is because for each new stratum to be overlapped consisting of \(n \) PSUs, the number of variables in the transportation problem for the optimal procedure can be as large as \(2^n \times \binom{\frac{n}{2}}{2} \). The largest value of \(n \) for which a transportation problem with that many variables can be solved with the computer facilities that we have used is approximately \(n = 15 \).

This paper presents a reduced-size formulation of the overlap procedure as a transportation problem which decreases the numbers of variables in the SIPP problem to \(\left(\frac{n}{2} + n + 1 \right) \times \binom{\frac{n}{2}}{2} \), a striking reduction for moderate to large values of \(n \). The procedure assumes that the initial sample was selected independently from stratum to stratum, and hence could not have been used instead of the procedure of Ernst (1986) to overlap the CPS and NCVS designs. This reduced-size procedure has been successfully run for strata with as many as 68 PSUs. In contrast, for \(n = 68 \), the \(2^{68} \times \binom{\frac{68}{2}}{2} \) possible number of variables for the unreduced formulation is far beyond the size of problem that can be solved by any current computer. Furthermore, though the reduced-size procedure sacrifices optimality in exchange for its size reduction, it does appear in practice to yield results fairly close to optimal, as we will show. The reduced-size procedure is the procedure that was used to overlap SIPP.

In Section 2 the procedure of Causey, Cox and Ernst (1985) is reviewed, to provide background for the presentation of the reduced-size procedure.

The reduced-size procedure is presented in Section 3. Although the approach has general applicability, for ease of presentation it is only described in detail for the case when both the initial and new designs are two-PSUs-per-stratum without replacement. A small, artificial example of the reduced-size procedure is also presented in Section 3. This example serves to illustrate the procedure and to demonstrate that the ordering of the pairs of PSUs in a new design stratum, a key step in the algorithm, affects the expected overlap. We also outline in this section some analytical results on the comparison between the reduced-size procedure and the optimal procedure. Upper bounds on the loss in expected overlap from using the reduced-size procedure instead of the optimal procedure are stated. It is also explained that in certain situations this loss can approach two PSUs for two-PSUs-per-stratum designs, the worst possible situation. Further details and proofs of the results in this section as well as some results in other sections are presented in Ernst and Ikeda 1994.

In Section 4 the performance of the reduced-size procedure is presented, both for the actual SIPP production overlap and for earlier, artificial simulations of the SIPP overlap. The expected overlap for this procedure is compared to that for independent selection of the new sample PSUs and to an upper bound on the optimal expected overlap. The results show that for this application, in contrast with some of the theoretical results described in Section 3, the expected overlap with the reduced-size procedure is much larger than if independent selection had been used to select the new sample PSUs, and nearly as large as the optimal expected overlap. Also presented are computer running times for the reduced-size procedure as a function of stratum size.

Finally, our conclusions are stated in Section 5.

2. REVIEW OF THE OVERLAP PROCEDURE OF CAUSEY, COX AND ERNST (1985)

The overlap procedure of Causey, Cox and Ernst (1985), like all overlap procedures, conditions the selection of sample PSUs in each new stratum in some way on which PSUs in the stratum were in the initial sample. This particular overlap procedure attains true optimality by making complete use of this information and formulating the procedure as a transportation problem. We proceed to present this procedure.

First, however, we introduce some notation that will be used throughout the paper. Let \(S \) denote a stratum in the new design. Each such stratum corresponds to a separate overlap problem. Let \(n \) denote the number of PSUs in \(S \) and let \(A_1, \ldots, A_n \) denote the PSUs in \(S \). Let \(I \) denote the random subset of \(\{1, \ldots, n\} \) such that \(k \in I \) if and only if \(A_k \) was in the initial sample, and let \(N \) denote the corresponding set with respect to the new sample. For example, if \(A_3 \) and \(A_1 \) were the PSUs in \(S \) that were in the initial sample and \(A_1 \) and \(A_3 \) are the PSUs in the new sample, then \(I = \{2,3\} \) and \(N = \{1,3\} \). Let \(m^*, \; n^* \) denote the number of possible values for \(I \) and \(N \), respectively. Let \(J_i, i = 1, \ldots, m^* \), denote the possible values for \(I \) and let \(S_j, j = 1, \ldots, n^* \), denote the possible values for \(N \). The goal of all overlap procedures is to maximize the expected number of PSUs in \(N \cap I \), while preserving the values of the \(P(S_j)'s \).

To illustrate some of these concepts further, consider an example for which \(n = 3 \). Then \(n^* = 3 \) if the new design is either 1 or 2 PSUs per stratum with the values for \(N \), that is the \(S_j \)'s, consisting of \(\{1\}, \{2\}, \{3\} \) in the 1 PSU per stratum case and \(\{1,2\}, \{1,3\}, \{2,3\} \) in the two PSUs per stratum case. Suppose PSUs \(A_1 \) and \(A_2 \) were in one initial stratum and PSU \(A_3 \) was in another initial stratum and there were three PSUs in each of these initial strata. If the initial design was 1 PSU per stratum, then \(m^* = 6 \), with the values of \(I \), that is the \(J_i \)'s, consisting of \(\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\} \); if the initial design was 2 PSUs per stratum then \(m^* = 6 \), with the \(J_i \)'s consisting of \(\{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \).
We now present the transportation problem for the overlap procedure of Causey, Cox and Ernst (1985). Abbreviate by $P(J_i)$ the probability that $I = J_i$ and by $P(S_j)$ the probability that $N = S_j$. In addition, let x_{ij} be the variable denoting the joint probability of these two events, and let c_{ij} denote the number of elements in $J_i \cap S_j$. The $P(J_i)$'s, $P(S_j)$'s and c_{ij}'s are known values, while the x_{ij}'s are variables for which the optimal values are to be determined. Then the transportation problem to solve is to determine $x_{ij} \geq 0$ which maximize

$$
\sum_{i=1}^{m^*} \sum_{j=1}^{n^*} c_{ij} x_{ij} \tag{2.1}
$$

subject to

$$
\sum_{j=1}^{n^*} x_{ij} = P(J_i), \quad i = 1, \ldots, m^*, \tag{2.2}
$$

$$
\sum_{i=1}^{m^*} x_{ij} = P(S_j), \quad j = 1, \ldots, n^*. \tag{2.3}
$$

Note that in this transportation problem, the objective function (2.1) is the expected number of PSUs in S that are in $N \cap I$. Also note that the constraints (2.2) and (2.3) are required by the definitions of the $P(J_i)$'s, $P(S_j)$'s and the x_{ij}'s.

Once the optimal x_{ij}'s have been obtained, the conditional probability that $N = S_j$ given that $I = J_i$ is then $x_{ij} / P(J_i)$ for all i,j.

We present an example to illustrate the use of the formulation (2.1)–(2.3) in the case where both the initial and new designs are two-PSUS-per-stratum without replacement. In this example, and throughout the paper, p_i, π_i denote the predetermined probability that $i \in I$ and $i \in N$, respectively.

Consider a final stratum S with $n = 3$. All of the PSUs were in different initial strata. Let $p_1 = .6, p_2 = .75, p_3 = .7, \pi_1 = .5, \pi_2 = .8, \pi_3 = .7$. Since the PSUs were all in different initial strata, there are 8 different possibilities for I, with probabilities given in Table 1.

| Possibilities for Possible Sets of Initial Sample PSUs |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| I_i | 1,2,3 | 1,2 | 1,3 | 2,3 | 1,11 | 1,12 | 1,13 |
| $P(J_i)$ | .315 | .135 | .105 | .21 | .045 | .09 | .07 | .03 |
3. THE ALGORITHM FOR THE REDUCED-SIZE PROCEDURE

Previous work on reducing the size of the transportation problem (2.1)–(2.3) has focused on accomplishing the size reduction while retaining optimality. For example, the approach of Aragon and Pathak (1990) retains optimality and reduces the size of the problem by 75 percent when \(m^* = n^* \). Unfortunately, when \(m^* \) is much larger than \(n^* \), which is when size reduction is most needed, their method produces negligible size reduction in relative terms. A generalization of this approach is presented in Pathak and Fahimi (1992), but there is no indication that their procedure always yields a size reduction that is substantial in relative terms.

In this section a reduced-size procedure is presented which takes a different approach. We sacrifice optimality, at least in theory, in return for an assured size reduction down to a manageable size transportation problem. This size reduction is accomplished, in the case when the initial and new designs are both two PSUs per stratum for example, by ordering all pairs of PSUs in a new stratum and then conditioning the new selection probabilities for any initial set of sample PSUs of size greater than 2 on the first pair of PSUs in the ordering contained in the initial set, rather than conditioning on the entire initial set. That is, each possible initial set of sample PSUs which consists of more than 2 PSUs is combined with a set of size 2. As illustrated in Section 4, this procedure may yield a near optimal overlap in practice; particularly with an appropriate ordering of the pairs of PSUs, as described in Section 3.1.2.

The reduced-size procedure is applicable whenever PSUs in the initial and new designs are selected without replacement. However, the procedure will be described in detail, in Section 3.1, only for the case when both the initial and new designs are two-PSUs-per-stratum. Then, in Section 3.2, the changes necessary to apply this procedure for other initial and new designs will be sketched. Finally, in Section 3.3, some analytical results are outlined on the relationships among the expected overlap for the reduced-size procedure, the optimal procedure and independent selection. It is assumed throughout this section that PSUs in the initial sample were selected independently from stratum to stratum.

3.1 Reduced-Size Procedure When Both Designs Are Two-PSUs-Per-Stratum

The reduced-size procedure to be described includes the following key aspects: the specific ordering of the pairs of PSUs; the reformulation of the transportation problem (2.1)–(2.3) for the reduced size procedure; the computation of the probabilities for the initial outcomes for this formulation; and the computation of the cost coefficients (the \(c_{ij} \)’s) in the objective function. In Section 3.1.1 we present a detailed outline of the reduced-size procedure, including the reformulated transportation problem. The ordering of the pairs is described in Section 3.1.2. Finally, the computation of the probabilities for the initial outcomes and the cost coefficients are given in Section 3.1.3.

3.1.1 General Outline of the Procedure

The general outline of the procedure is as follows. First, the \(\binom{n}{2} \) subsets of \{1, \ldots, n\} of size 2 are ordered in a manner to be described later. (For now, we simply note that any ordering can be used to reduce the size of the transportation problem. The specific one used is for the purpose of accomplishing the size reduction while also attempting to give up as little as possible of the gains in overlap that the optimal procedure yields.) We let \(I_i, i = 1, \ldots, \binom{n}{2} \), denote the \(i \)-th element in the ordering; let \(\binom{n}{2} + 1, \ldots, \binom{n}{2} + n \) be the \(n \) singleton subsets and set \(\binom{n}{2} + n + 1 = \emptyset \). Thus, the \(I_i \)'s constitute all subsets of \{1, \ldots, n\} of 2 or fewer elements. For each possibility for \(I_i \), a unique set \(I^* \) is associated among these \(\binom{n}{2} + n + 1 \) subsets and the new selection probabilities conditioned on the associated \(I_i \), rather than on \(I_i \) itself. Therefore, the new selection probabilities are conditioned on \(\binom{n}{2} + n + 1 \) events instead of a possible \(2^n \) events, which is the reason for the size reduction. The associated \(I^* \) is the first \(I_i \) for which \(I_i \subset I \). That is, if \(I_i \) consists of at least two integers, the associated \(I^* \) is the first pair in the ordering contained in \(I_i \), while if \(I_i \) is a singleton set or empty then \(I^* = I \).

The reduced-size transportation problem attempts to retain the PSUs corresponding to elements in the associated set \(I^* \) in the new sample, but does not use information on elements in \(I \sim I^* \). The form of this reduced-sized transportation problem based on the set of \(I_i \)'s is as follows. Let \(p_{ij}^* \) be the probability that \(I^* = I_i, i = 1, \ldots, \binom{n}{2} + n + 1 \), and abbreviate \(\pi_j^* = P(S_j), j = 1, \ldots, \binom{n}{2} \). For each \(i, j \), the variable \(x_{ij} \) is the joint probability that \(I^* = I_i \) and that \(N = S_j \), while \(c_{ij} \) is the expected number of elements in \(I_i \cap S_j \) given \(I^* = I_i \). The problem to solve is to determine \(x_{ij} \geq 0 \) that maximize

\[
\sum_{j=1}^{\binom{n}{2} + n + 1} c_{ij} x_{ij},
\]

subject to

\[
\sum_{j=1}^{\binom{n}{2}} x_{ij} = p_{ij}^*, \quad i = 1, \ldots, \binom{n}{2} + n + 1,
\]

\[
\sum_{i=1}^{\binom{n}{2} + n + 1} x_{ij} = \pi_j^*, \quad j = 1, \ldots, \binom{n}{2}.
\]
Once the optimal \(x_{ij} \)'s have been obtained, then the conditional new selection probabilities for \(S_j, j = 1, \ldots, \binom{n}{2} \), given \(I^* = I_j \), are \(x_{ij}/p^* \). Note that the number of variables, \(x_{ij} \), in the formulation (3.1)-(3.3) is \(\left(\binom{n}{2} + n + 1 \right) \times \binom{n}{2} \), in comparison with a maximum of \(2^n \times \binom{n}{2} \) in the formulation (2.1)-(2.3).

It remains to explain the general method for obtaining the ordering of the \(\binom{n}{2} \) pairs and the procedures for computing the \(p^* \)'s and \(c_{ij} \)'s. Before doing this, we present an example of the reduced-size procedure, namely the two-PSUs-per-stratum example used in Section 2 to illustrate the transportation problem formulation for the optimal procedure.

The ordering of the pairs for this example, as will be shown later, is \{2,3\}, \{1,2\}, \{1,3\}. Consequently, the \(I_j \)'s are as given in Table 3. Note that if \(I = \{1,2,3\} \) or \(I = \{2,3\} \), then the associated set is \(I_1 = \{2,3\} \). For the other six possibilities for \(I \) the associated set is \(I \) itself.

Consequently, from Table 1 we obtain that
\[
\begin{align*}
p^*_1 &= P(I = \{1,2,3\}) + P(I = \{2,3\}) = .525, \\
p^*_2 &= P(I = \{2,3\}) + P(I = \{1,2\}) = .625, \\
p^*_3 &= P(I = \{1,2\}) + P(I = \{1,3\}) = .725, \\
p^*_4 &= P(I = \{1,3\}) + P(I = \{2,3\}) = .825, \\
p^*_5 &= P(I = \{2,3\}) + P(I = \{2,3\}) = .925, \\
p^*_6 &= P(I = \{2,3\}) + P(I = \{2,3\}) = 1.000.
\end{align*}
\]

The \(c_{ij} \) values for this example are given in Table 4. In order to obtain these values, we simplified the computation by letting
\[
b_{it} = P(I \in I \mid I^* = I_j),
\]
\[
i = 1, \ldots, \binom{n}{2} + n + 1, \quad t = 1, \ldots, n,
\]
and noting that if \(S_j = \{s,t\} \) then
\[
c_{ij} = b_{it} + b_{it}.
\]

That is, the expected number of elements in \(I \cap S_j \) given \(I^* = I_j \) is simply the sum of the probabilities that each of the two elements in \(S_j \) was in \(I \) given \(I^* = I_j \). Also observe that while the transportation problem for the optimal procedure knows the exact value for \(I \) and hence knows with certainty whether each element in \(S_j \) was in \(I \), this is not the case for the reduced-size procedure, since only the associated set \(I_j \) is known. To illustrate, consider the first row of Table 4. Since \(I_1 = \{2,3\} \), we know that \(2 \in I \) and \(3 \in I \), and hence \(b_{12} = b_{13} = 1.0 \). However, we do not with certainty whether \(1 \in I \) since \(I_1 \) is the associated set for both \(I = \{1,2,3\} \) and \(I = \{2,3\} \). In fact, from Table 1,
\[
b_{11} = \frac{P(I = \{1,2,3\})}{P(I = \{1,2,3\}) + P(I = \{2,3\})} = .625.
\]

Then \(c_{11} = b_{11} + b_{12} = 1.6 \), with \(c_{12}, c_{13} \) computed similarly. For the remaining six rows in Table 4, \(I = I \) and hence it is known with certainty which integers were in \(I \). Consequently, the \(c_{ij} \)'s for these six rows are easily computed.

Finally, we maximize the expected overlap (3.1) subject to (3.2) and (3.3), obtaining the \(x_{ij} \) values in Table 4. The conditional probabilities \(P(N = S_j \mid I^* = I_j) \) in Table 5 are then obtained by dividing each of the \(x_{ij} \) entries in the \(i \)-th row of Table 4 by \(p^* \).

<table>
<thead>
<tr>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2,3}</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>{1,2}</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>{1,3}</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>{1}</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>{2}</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>{3}</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>\emptyset</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2,3}</td>
<td>0</td>
<td>1/21</td>
</tr>
<tr>
<td>{1,2}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>{1,3}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>{2}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>{3}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\emptyset</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The expected overlap for the reduced-size procedure is .01 less than optimal, that is 1.725 PSUs. The deviation from optimality arises solely because the expected overlap is 1.6 for the joint event that \(I_0 = \{2,3\} \) and \(N = \{1,3\} \). Since the probability of this joint event is .025, and the optimal procedure for this example always produces an overlap of 2 when at least 2 of the PSUs in the initial sample, the deviation from optimality is .025(2 − 1.6) = .01.

The reason that the reduced-size procedure is not able to attain optimality is that the pair \(\{2,3\} \) has a smaller probability of selection in the new sample than in the initial sample. As a result, both the optimal procedure and the reduced-size procedure must sometimes select another pair (always \{1,3\} for both procedures in this example) when \(\{2,3\} \) was in the initial sample. The distinctness between the two procedures is that the optimal procedure only selects \{1,3\} when \(I = I_0 \). The reduced-size procedure is unable to use the information about whether \(1 \in I \). As a result, when \(\{2,3\} \subseteq I, 1 \notin N \) independently of whether \(1 \in I \). This results in a deviation from the optimal overlap.

3.1.2 The Ordering of the Pairs

We now proceed to show in general how the ordering of the pairs is obtained. We use the additional notation here that \(p_{st}, \pi_{st}, s, t = 1, \ldots, n, s \neq t, \) is the joint probability that \(s, t \in I \) and \(s, t \in N \), respectively.

The motivation for the ordering of the pairs is as follows. If the \(i \)-th pair in the ordering is \(\{s, t\} \) then it would be possible for the transportation problem to retain this pair in the new sample when \(I_0 = I \) with conditional probability \(\min\{1, \pi_{st}/p_{st}^k\} \). (The conditional retention probability cannot be any higher than this, since a higher value would result in an unconditional selection probability for the pair in the new design exceeding \(\pi_{st} \).) Therefore, roughly the goal in the ordering is to make these conditional probabilities as large as possible on average over all pairs.

To illustrate how the ordering of the pairs affects the expected overlap we consider the example of Table 3. Our ordering procedure, as will be shown later, produces the indicated ordering and yields an expected overlap of 1.725 PSUs. Next consider the following alternative ordering for this example. Let the first pair in the ordering be \{1,3\}, the second pair be \{1,2\} and the last pair be \{2,3\}. With this alternative ordering, \(I_0 = \{1,3\} \) whenever either \(I = \{1,2,3\} \) or \(I = \{1,3\} \). Therefore, for this ordering \(p_{st}^k \) is the probability that \(I_0 = \{1,3\} \), which is now .42. Furthermore, for this alternative ordering, \(p_{st}^k = P(I_0 = \{2,3\}) = P(I = \{2,3\}) = .21 \), while the other 5 columns in Table 3 remain unchanged. The alternative ordering results in a table of conditional probabilities similar to Table 5, except that in row 1 the \(I_j \), \(j = 2 \) and \(j = 3 \) columns now become \{1,3\}, 10/21 and 11/21, respectively, and in row 3 the corresponding columns are now \{2,3\}, 0 and 1, respectively.

It can be calculated, using the same approach used for the original ordering that the expected overlap for the alternative ordering is .055 less than optimal, that is 1.68 PSUs. The reason that this alternative ordering results in a lower expected overlap is as follows. In general a later placement of a pair in the ordering, results in a lower value for the corresponding \(p_{st}^k \), and hence a higher conditional retention probability when \(I_0 = I \). That is, with \{1,3\} first in the ordering, \(\pi_{13}/p_{13}^k = 10/21 \), which is the conditional retention probability for this pair when \(I_0 = \{1,3\} \); while when \{1,3\} is third in the ordering, \(\pi_{13}/p_{13}^k > 1 \) and this pair is retained with certainty. Now the conditional retention probability for the pair \{2,3\} when \(I_0 = \{2,3\} \) also increases to 1 when \{2,3\} is moved from first to third in the ordering, but the increase is only from 20/21, and hence the original ordering in Table 3 produces a higher expected overlap than the alternative ordering.

Thus, as this example illustrates, the goal of the ordering is to place pairs earlier in the ordering that have a relatively high conditional retention probability even with an early placement. To obtain the desired ordering of the pairs of integers, an ordering \(f(1), \ldots, f(n) \) of \{1, \ldots, n\} will first be obtained by recursion. Then corresponding to each \(k = 1, \ldots, n - 1 \), an ordering \(g_k(1), \ldots, g_k(n - k) \) of \{1, \ldots, n\} \sim \{f(1), \ldots, f(k)\} \) will be constructed by recursion. A linear ordering of the distinct pairs in \{1, \ldots, n\} would then be determined as follows. Each such pair can be represented uniquely as an ordered pair \((f(k'), g_k(\ell')) \) for some \(k' \in \{1, \ldots, n - 1\}, \ell' \in \{1, \ldots, n - k\} \). A second pair representable in the form \((f(k'), g_k(\ell')) \) precedes \((f(k), g_k(\ell)) \) if and only if either \(k' < k \) or \(k' = k \) and \(\ell' < \ell \). To illustrate, for the example just considered it will be shown later that \(f(1) = 2, f(2) = 3, f(3) = 1, g_1(1) = 3, g_1(2) = 1, g_2(1) = 1 \), and hence the ordering of the pairs is \{2,3\}, \{2,1\}, \{3,1\}. Both the \(f \) ordering and the \(g_k \) ordering will be constructed to meet the goal stated at the beginning of this paragraph.

To obtain the ordering \(f(1), \ldots, f(n) \), recursively define \(f(k), k = 1, \ldots, n \), by choosing \(f(k) \in T_k \) satisfying

\[
\pi_{f(k)}/p_{f(k)}^k = \max\{\pi_i/p_i^k : i \in T_k\},
\]

where

\[
T_1 = \{1, \ldots, n\}, \quad T_k = T_{k-1} \setminus \{f(k - 1)\},
\]

\[
k = 2, \ldots, n, \quad p_i^k = P(i \in I \text{ and } I \subset T_k),
\]

\[
k = 1, \ldots, n, \quad i \in T_k.
\]

Since \(p_i^{(1)} = p_i \), the ordering just defined corresponds to placing first a PSU with the greatest value of \(\pi_i/p_i^k \). For all \(k \), \(p_{ij}^{(k)} \) is the probability that \(f(k) \) was in \(I \) and none of the \(k - 1 \) elements preceding \(f(k) \) in the \(f \) ordering were in \(I \), and hence \(p_{ij}^{(k)} \) is the probability that
an attempt is made to retain \(A_{f(k)} \) in the new sample either as the first member of an ordered pair of initial sample PSUs or as the only initial sample PSU in \(S \). Generally, the larger \(\pi_{f(k)}/p_{f(k)}^{(k)} \) is, the greater the probability that this attempt would be successful. Thus, the motivation for the \(f \) ordering of the individual PSUs is the analog of the motivation for the ordering of the pairs of PSUs that we previously discussed.

It remains to explain how to compute \(p_{f(k)}^{(k)} \) for \(k \geq 2 \). To this end, let \(r \) denote the number of initial strata with PSUs in common with \(S \) and let \(F_0, \alpha = 1, \ldots, r \), denote a partition of \(\{1, \ldots, n\} \) such that \(i \) and \(j \) are in the same \(F_\alpha \) if and only if \(A_i \) and \(A_j \) were in the same initial stratum. Then let

\[
p_{\alpha}^*(T) = P(I \cap F_\alpha \subset T), \quad \alpha = 1, \ldots, r,
\]

\[T \subset \{1, \ldots, n\}, \quad (3.8)\]

\[
p_{\alpha}^*(T) = P(i \in I \text{ and } I \cap F_\alpha \subset T), \quad \alpha = 1, \ldots, r,
\]

\[T \subset \{1, \ldots, n\}, \quad i \in F_\alpha \cap T, \quad (3.9)\]

and observe that

\[
p_{\alpha}^*(T) = 1 - \sum_{j \in F_\alpha \cap T} p_j + \sum_{i,j \in F_\alpha \cap T \atop i < j} p_{ij}, \quad (3.10)\]

\[
p_{\alpha}^*(T) = p_i - \sum_{j \in F_\alpha \cap T} p_{ij}, \quad (3.11)\]

and finally, as established in Ernst and Ikeda (1994),

\[
p_{f(k)}^{(k)} = p_{\alpha}^*(T_k) \prod_{i=1 \atop i \neq \alpha}^r p_i^*(T_k), \quad k = 1, \ldots, n,
\]

\[i \in F_\alpha \cap T_k, \quad (3.12)\]

Next, for each \(k = 1, \ldots, n - 1 \), the ordering \(g_k(\ell) \), \(\ell = 1, \ldots, n - k \), is recursively defined by choosing \(g_k(\ell) \in T_{k+1} \) satisfying

\[
\pi_{f(k),g_k(\ell)}/p_{f(k),g_k(\ell)}^{(k)} = \max\{ \pi_{f(k),j}/p_{f(k),j}^{(k)} : j \in T_{k+1} \},
\]

where

\[T_{k+1} = \{1, \ldots, n\} \sim \{f(1), \ldots, f(k)\}, \]

\[T_k = T_{k(\ell-1)} \sim \{g_k(\ell - 1)\}, \quad \ell = 2, \ldots, n - k, \]

\[T_k^* = T_k \cup \{f(k)\}, \quad \ell = 1, \ldots, n - k, \]

\[
p_{f(k),i}^{(k)} = P(f(k), \quad j \in I \text{ and } I \subset T_k^*),
\]

\[\ell = 1, \ldots, n - k, \quad (3.13)\]

Note that \(p_{f(k),i}^{(k)} \) is thus the joint probability that \(f(k) \) is the first integer in the \(f \) ordering in \(I \), that none of the first \(\ell - 1 \) integers in the \(g_k \) ordering are in \(I \), and that \(f \in I \). Consequently, \(p_{f(k),g_k(\ell)}^{(k)} \) is the probability that \(I^* = \{f(k), g_k(\ell)\} \). Furthermore, if \(I_1 = \{f(k), g_k(\ell)\} \) then \(p_{f(k),g_k(\ell)}^{(k)} = p_{f(k),g_k(\ell)}^{(k)} \) and hence the choice of \(g_k(\ell) \) results in the largest value of \(\pi_{f(k),g_k(\ell)}/p_{f(k),j}^{(k)} \) among the elements in \(T_{k+1} \), in accordance with the previously stated goal for the ordering of the pairs of PSUs.

To compute \(p_{f(k),i}^{(k)} \), it is established in Ernst and Ikeda (1994) that if \(f(k) \in F_\alpha \), \(j \in F_\beta \), then

\[
p_{f(k),i}^{(k)} = p_{f(k),i}^* \prod_{i=1 \atop i \neq \alpha}^r p_i^*(T_k^*) \quad \text{if } \alpha = \beta,
\]

\[
p_{f(k),i}^{(k)} = p_{f(k),i}^* (T_k^*)^\alpha p_{f(k),i}^* (T_k^*)^\beta \prod_{i=1 \atop i \neq \alpha, \beta}^r p_i^*(T_k^*) \quad \text{if } \alpha \neq \beta.
\]

(3.14)

We illustrate the computations used in obtaining the ordering for the example that we have been considering. First note that \(f(1) = 2 \) since the largest value of \(\pi_{i}/p_i \) occurs for \(i = 2 \). Next we find \(g_1(1) \) which, since \(f(1) = 2 \), is the first in \(\{1,3\} \) with the maximum value of \(\pi_{1}(p_{f(1),1}) \). To find this \(j \), first let \(F_\alpha = \{\alpha\}, \alpha = 1,2,3 \), and note that \(T_1 = \{1,2,3\} \). From (3.14) with \(\alpha = 2 \), \(\beta = 1 \), it then follows that

\[
p_{f(1),1}^{(1)} = p_{f(1),1}^* (1,2,3) p_{f(1),1}^* (1,2,3) p_{f(1),1}^* (1,2,3) = p_1 p_2 \cdot 1 = .45,
\]

and similarly it can be obtained that \(p_{f(2),1}^{(2)} = .525 \). Hence \(g_1(1) = 3 \), since \(.5/ .525 > .3 / .45 \). Therefore, the first pair in the ordering is \(\{f(1), g_1(1)\} = \{2,3\} \). Then \(g_1(2) = 1 \), since 1 is the only integer remaining to be used in the \(g_1 \) ordering, and consequently the second pair in the ordering is \(\{f(1), g_1(2)\} = \{2,1\} \). It is not really necessary to determine \(f(2) \), since \(\{1,3\} \) is the only remaining pair, and hence the last pair, but to further illustrate the computations, observe that \(T_2 = \{1,3\} \), \(p_{f(2),g_1(1)}^{(2)} = p_{f(2),g_1(1)}^{(2)} (1,3) p_{f(2),g_1(1)}^{(2)} (1,3) p_{f(2),g_1(1)}^{(2)} (1,3) = p_1 (1 - p_2) \cdot 1 \cdot .15 \) by (3.12), and similarly \(p_{f(2),g_2(1)}^{(2)} = p_3 (1 - p_2) \cdot 1 \cdot .175 \). Hence \(f(2) = 3 \), since \(.7 / .175 > .5 / .15 \). Consequently, \(g_2(1) = 1, f(3) = 1 \).

3.1.3 Computation of \(p_{f}^* \) and \(c_{ij} \)

Next we explain the computation of the \(p_{f}^* \)'s. If \(I_{f} \) consists of the pair of integers \(I_{f} = \{f(k), g_k(\ell)\} \), then, as previously noted, \(p_{f}^* = p_{f(k),g_k(\ell)}^{(k)} \). Consequently, \(p_{f}^* \) can be computed from (3.14) with \(j = g_k(\ell) \).

If \(I_{f} \) is a singleton set \(\{t\} \) for some \(t \in F_\alpha \), then, as established in Ernst and Ikeda (1994),
\[p_i^* = p_{\alpha}^*(\{t\}) \prod_{u=1}^{r} p_{u}^*(\emptyset). \]

Finally, if \(I_i = \emptyset \), then

\[p_i^* = \prod_{u=1}^{r} p_{u}^*(\emptyset). \]

It remains only to explain how to compute the \(c_{ij} \)'s which, by (3.5) and (3.6), reduces to computing \(b_{ti} \), \(i = 1, \ldots, (\binom{n}{2}) + n + 1, \ t = 1, \ldots, n. \)

To compute \(b_{ti} \), observe that

\[b_{ti} = 0 \quad \text{if} \quad I_i = \emptyset, \]

\[= 1 \quad \text{if} \quad I_i = \{v\} \quad \text{and} \quad t = v, \]

\[= 0 \quad \text{if} \quad I_i = \{v\} \quad \text{and} \quad t \neq v, \]

while if \(I_i = \{f(k), g_k(\ell)\} \) and \(f(k) \in F_\alpha, g_k(\ell) \in F_\beta, \ t \in F_\gamma \), then

\[b_{ti} = 1 \quad \text{if} \quad t = f(k) \quad \text{or} \quad t = g_k(\ell), \]

\[= 0 \quad \text{if} \quad t \notin T_{k_i}, \]

\[= 0 \quad \text{if} \quad t \in T_{k_i} - \{g_k(\ell)\} \]

and \(\gamma = \alpha = \beta, \)

\[= \frac{p_{f(k),\alpha}(T_{k_i})}{p_{f(k),\alpha}(T_{k_i})} \quad \text{if} \quad t \in T_{k_i} - \{g_k(\ell)\} \]

and \(\gamma = \alpha \neq \beta, \)

\[= \frac{p_{g_k(\ell),\beta}(T_{k_i})}{p_{g_k(\ell),\beta}(T_{k_i})} \quad \text{if} \quad t \in T_{k_i} - \{g_k(\ell)\} \]

and \(\gamma = \beta \neq \alpha, \)

\[= \frac{p_{\alpha}(T_{k_i})}{p_{\alpha}(T_{k_i})} \quad \text{if} \quad t \in T_{k_i} - \{g_k(\ell)\} \]

and \(\gamma \neq \alpha, \gamma \neq \beta. \)

In Ernst and Ikeda (1994) it is demonstrated how (3.16)–(3.21) were obtained.

In the actual implementation for the SIPP application, modifications of the reduced-size procedure were needed to overlap the 1990s SIPP design with the 1980s SIPP design. The modifications were necessary because the PSU definitions in the 1980s and 1990s designs were not identical. As a result, some PSUs in the 1990s design could intersect more than one 1980s design PSU. These modifications are detailed in Ernst and Ikeda (1994).

3.2 Modifications of Reduced-Sized Procedure for Other Designs

In general, consider any \(m' \)-PSUs-per-stratum without replacement initial design and any \(m' \)-PSUs-per-stratum without replacement final design, where \(m', m \) are any positive integers. Although the reduced-size procedure in Section 3.1 was only presented for the case \(m = m' = 2 \), it is actually applicable for any \(m, m' \). We will sketch the modifications necessary when \(m \neq 2 \) or \(m' \neq 2 \).

A different value of \(m' \) only requires modification of some of the computations. For example, if \(m = 2 \), but \(m' \neq 2 \), then the computations for \(p_{f(k)}^*, p_{f(k),t}^* \) and \(c_{ij} \) would be different but their definitions would not change.

If \(m = 3 \), then, regardless of the value of \(m' \), the set of all distinct triples, instead of pairs, of integers in \(\{1, \ldots, n\} \), is ordered. If \(I \) consists of at least three integers, then the new selection probabilities are conditioned only on the first listed triple in the ordering contained in \(I \). Otherwise, the new selection probabilities are conditioned on \(I \) itself. Thus the new selection probabilities are conditioned on \(\binom{n}{3} + \binom{n}{2} + n + 1 \) events.

To obtain the desired ordering of the triples of integers, first the orderings \(f(1), \ldots, f(n) \) and \(g_k(1), \ldots, g_k(n-k) \) are constructed exactly as in the case \(m = 2 \). Then, corresponding to each \(k = 1, \ldots, n-2, \ell = 1, \ldots, n-k-1, \) an ordering \(h_{k\ell}(1), \ldots, h_{k\ell}(n-k-\ell) \) of \(\{1, \ldots, n\} - \{f(1), \ldots, f(k), g_k(1), \ldots, g_k(\ell)\} \) is constructed in a manner similar to the construction of \(g_k(1), \ldots, g_k(n-k) \). For example, in defining \(h_{k\ell}(v) \) for \(v \geq 2 \), \(p_{f(k),\alpha}(T_{k_i}) \) in the definition of \(g_k(\ell) \) is replaced by

\[P(f(k), g_k(\ell), j \in I \quad \text{and} \quad I \subset (T_{k_i} \cup g_k(\ell)) \sim \{h_{k\ell}(1), \ldots, h_{k\ell}(v-1)\}). \]

A linear ordering of the distinct triples in \(\{1, \ldots, n\} \) is then determined by representing each triple uniquely as an ordered triple of the form \((f(k), g_k(\ell), h_{k\ell}(v^*)) \). A second triple \((f(k'), g_{k'}(\ell'), h_{k'\ell'}(v^*')) \) precedes the first if and only if either \(k' < k \), or \(k' = k \) and \(\ell' < \ell \), or \(k' = k \) and \(\ell' = \ell \) and \(v' < v \).

For \(m \geq 4 \), ordered \(m \)-tuples would be defined in a similar manner and the new selection probabilities conditioned on \(\binom{n}{m} + (m-1) \) + \(n + 1 \) events.

For \(m = 1 \), the new selection probabilities are conditioned on the first member of the ordering \(f(1), \ldots, f(n) \) in \(I \) if \(I \neq \emptyset \), or on \(\emptyset \) if \(I = \emptyset \).

Note that if \(m > m' \), it is possible that at least some ordered \(m \)-tuples cannot be subsets of \(I \), in which case all such subsets should be excluded from the ordering and the set of events on which the new selection probabilities are conditioned. If no \(m \)-tuple can be a subset of \(I \), then the new selection probabilities are conditioned on \(I \) itself.
It is not necessary to limit the initial events used in the transportation problem to subsets of I of size m or less. For example, if $m = 2$ and $\binom{n}{2} + \binom{n}{1} + n + 1$ is sufficiently small, then a procedure conditioned on subsets of three or less can be used, resulting in a generally higher expected overlap. Conversely, if $\binom{n}{m} + \binom{n}{m-1} + \ldots + n + 1$ is too large, the new selection probabilities can be conditioned on subsets of I of size m^* or less, where $m^* < m$, although with a generally smaller expected overlap.

3.3 Relationship Between Expected Overlap for the Reduced-Size Procedure, the Optimal Procedure and Independent Selection

Let Ω_0, Ω_R, Ω_i denote the expected overlap for the independent selection, the reduced-size procedure, and the optimal procedure, respectively. In Ernst and Ikeda (1994) the relationship between these quantities is explored. We briefly summarize here some of the results.

It is established that $\Omega_0 \leq \Omega_R \leq \Omega_i$ for any m, m^* where m, m^* are as in Section 3.2. In addition, for the case that we have been focusing on, $m = m^* = 2$, lower bounds are established on Ω_R and upper bounds are established on Ω_i and $\Omega_i - \Omega_R$.

For example, let μ_2 denote the probability that there are at least two elements in I, μ_1 denote the probability that I is a singleton set, and

$$
\lambda = \min \{ \min \{ \pi_i/p_i : i = 1, \ldots, n \}, \min \{ \pi_i/p_i : i, j = 1, \ldots, n, i \neq j \} \},
$$

Then $\Omega_0 \leq 2 \mu_2 + \mu_1$, $\Omega_R \geq 2(1 - \lambda) \mu_2 + (1 - 2\mu_1)$.

Unfortunately these bounds are not always very tight. However, in certain circumstances they are useful. For example, if π_i/p_i for all i, j and the probability is 1 that there is at least two elements in I, then it follows from these bounds that $\Omega_R = \Omega_i = 2$.

Finally, an example is presented to illustrate a worst case situation for Ω_R in relation to Ω_i for the case m, $m^* = 2$. It shows that Ω_R may equal 2, while Ω_R is arbitrarily close to 0. Thus, at least in theory, the reduced-size procedure can be ineffective. However, in practice, as will be shown in the next section, Ω_R is much closer to Ω_i than to Ω_0, at least for the SIPP application.

4. APPLICATION OF REDUCED-SIZE PROCEDURE TO SIPP

Results from simulations of the SIPP overlap, done prior to production for research and testing purposes, are presented, as well as results from the actual SIPP production overlap. Further details are given in Ernst and Ikeda (1992b, 1994).

In the implementation of the reduced-size overlap procedure, minimum cost flow (MCF) optimization software, written by Darwin Kingman and John Mote at the University of Texas at Austin, was used to solve the required transportation problem. A FORTRAN program was written to produce input to and process output from the MCF software.

To test the software prior to production, the program was used to overlap two stratifications, based on 1970 census data, of the SIPP Midwest region with the actual 1980s design stratification for the SIPP Midwest region. (At the time of this test, 1990 census data was not yet available.) The 1970-based stratifications were produced by stratifying the 1980s SIPP noncertainty PSUs in the Midwest region using 1970 data. Both of the 1970-based stratifications partitioned the noncertainty PSUs into 31 strata, using different sets of stratification variables. The stratifications based on 1980 and 1970 data were treated as "initial" and "final" stratifications for the purposes of the overlap algorithm.

In the actual implementation, as noted in Section 3.1 and detailed in Ernst and Ikeda (1994), a modification of the reduced-size procedure was used to overlap the 1990s SIPP design with the 1980s SIPP design, because the PSU definitions in the 1980s and 1990s designs were not identical. The modified reduced-size procedure was used to overlap 103 final (1990s design) nonselfrepresenting strata in SIPP.

The expected overlap was calculated for the reduced-size maximum overlap algorithm, for independent selection of final PSUs, and for an upper bound to the expected overlap for the optimal procedure. An upper bound was calculated instead of the actual optimal overlap, since the optimal overlap cannot be calculated for the larger strata. For the simulation, the upper bound used is the one stated in Section 3.3, $\mu_2 + 2\mu_1$, while for the production SIPP, a different upper bound, described in Ernst and Ikeda (1994), was required because the PSU definitions in the 1980s and 1990s were not identical.

The results from the two final stratifications in the simulation were generally similar to each other. Combining the results from both stratifications, the mean expected overlap for this set of 62 strata was 1.552, 1.569 and 0.480 PSUs/stratum for the reduced-size procedure, the upper bound to the optimal overlap and independent selection respectively. For the actual SIPP implementation, the corresponding number was 1.523, 1.647 and 0.582, respectively, while the corresponding expected number of PSUs overlapped for the 103 strata was 156.9, 169.6 and 59.9, respectively. Thus, in both the simulations and the production SIPP, the reduced-size procedure yielded results reasonably close to the upper bound for the optimal procedure.

The reduced-size algorithm took a fairly short time to run on most strata. The CPU times in the simulation for
final strata with different numbers of PSUs are given below. The reduced-size program was run on a Solbourne 5/605 computer. The median number of PSUs in a stratum, for the entire group of 62 strata, was 17 PSUs. The 68 PSUs stratum was the largest stratum.

<table>
<thead>
<tr>
<th>Number of PSUs</th>
<th>CPU Time (hrs:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0:36</td>
</tr>
<tr>
<td>37</td>
<td>5:44</td>
</tr>
<tr>
<td>49</td>
<td>24:05</td>
</tr>
<tr>
<td>68</td>
<td>2:23:43</td>
</tr>
</tbody>
</table>

For CPS, the overlap procedure resulted in an average increase in expected overlap, in comparison with independent selection, of .26 PSUs/stratum, and for NCVS the overlap procedure resulted in an average increase in expected overlap of .30 PSUs/stratum. This compares with an increase of .94 PSUs/stratum for the reduced-size procedure over independent selection for SIPP. If the two overlap procedures are equally effective, then one might expect that the increase in overlap per stratum for SIPP would be roughly twice as large as for CPS and NCVS, since SIPP has a two-PSUs-per-stratum design. By this standard, the reduced-size procedure program performs better than the procedure in Ernst (1986). However, since the stratifications were quite different for these three surveys, the validity of this comparison is open to question.

For the example considered in Sections 2 and 3, a valid comparison of the different overlap procedures can be made, since the expected overlap values for the procedure in Ernst (1986), 1.625, was easily calculated by hand. For the reduced-size procedure the corresponding overlap value is 1.725, and for the optimal procedure it is 1.735.

CONCLUSIONS

The reduced-size overlap procedure presented in this paper meets its two key objectives in practice. It reduces the size of the transportation problems to a usable size, as evidenced both by the size of the transportation problem in the formulation (3.1)-(3.3), and the fact that it has actually been implemented in the redesign of a major survey. In addition, the procedure accomplishes the size reduction while yielding nearly optimal overlap, at least for the SIPP application. It can only be used when the PSUs in the initial design are selected independently from stratum to stratum, but when this condition is met we believe it is the overlap procedure of choice for large strata.

ACKNOWLEDGEMENTS

The programming assistance of Todd Williams is gratefully acknowledged. The authors would also like to thank the referees and the editors for their constructive comments. The views expressed in this paper are attributable to the authors and do not necessarily reflect those of the Bureau of Labor Statistics and the Census Bureau.

REFERENCES

