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A Reduced-Size Transportation Algorithm for Maximizing
the Overlap Between Surveys

LAWRENCE R. ERNST and MICHAEL M. IKEDA!

ABSTRACT

When redesigning a sample with a stratified multi-stage design, it is sometimes considered desirable to maximize
the number of primary sampling units retained in the new sample without altering unconditional selection
probabilities. For this problem, an optimal solution which uses transportation theory exists for a very general class
of designs. However, this procedure has never been used in the redesign of any survey (that the authors are aware
of), in part because even for moderately-sized strata, the resulting transportation problem may be too large to solve
in practice. In this paper, a modified reduced-size transportation algorithm is presented for maximizing the overlap,
which substantially reduces the size of the problem. This reduced-size overlap procedure was used in the recent redesign
of the Survey of Income and Program Participation (SIPP). The performance of the reduced-size algorithm is
summarized, both for the actual production SIPP overlap and for earlier, artificial simulations of the SIPP overlap.
Although the procedure is not optimal and theoretically can produce only negligible improvements in expected overlap
compared to independent selection, in practice it gave substantial improvements in overlap over independent selection

for SIPP, and generally provided an overlap that is close to optimal.

KEY WORDS: Linear programming; Sample redesign; Survey of Income and Program Participation.

1. INTRODUCTION

The problem of maximizing the expected number of
primary sampling units (PSUs) retained in sample when
redesigning a survey with a stratified design for which the
PSUs are selected with probability proportional to size was
introduced to the literature by Keyfitz (1951). Typically,
the motivation for maximizing the overlap of PSUs is to
reduce additional costs, such as the training of a new inter-
viewer for a household survey, incurred with each change
of sample PSU. Procedures for maximizing overlap do not
alter the unconditional probability of selection for a set
of PSUs in a new stratum, but conditions its probability
of selection in such a manner that the probability of a PSU
being selected in the new sample is generally greater than
its unconditional probability when the PSU was in the
initial sample and less otherwise.

Overlap procedures are applicable when the redesign
results in either a restratification of the PSUs or a change
in their selection probabilities. Keyfitz (1951) presented an
optimal procedure, but only for one-PSU-per-stratum
designs in the special case when the initial and new strata
are identical, with only the selection probabilities changing.
Causey, Cox and Ernst (1985) obtained an optimal solution
to the overlap problem under very general conditions by
formulating it as a transportation problem, which is a
special form of linear programming problem. This proce-
dure imposes no restrictions on changes in strata defini-
tions or number of PSUs per stratum. (A similar result had

been independently obtained by Arthanari and Dodge
(1981), although they did not discuss the issue of changes
in strata definitions. Both sets of authors obtained their
results by generalizing work of Raj (1968).) However,
there are at least two other difficulties with the procedure
of Causey, Cox and Ernst which can make it unusable in
practice, one which is the focus of Ernst (1986), and the
other the focus of the current paper.

The first difficulty is that, if the initial sample of PSUs
was not selected independently from stratum to stratum,
the information necessary to compute all the joint proba-
bilities required by this method may not be available in
practice. An alternative linear programming procedure,
for use in such cases, was developed by Ernst (1986). The
Bureau of the Census has used linear programming to
overlap its demographic surveys on five occasions. On
four of these occasions (the selection of the 1980s and
1990s Current Population Survey (CPS) designs, and the
1980s and 1990s National Crime Victimization Survey
(NCVS) designs) the procedure in Ernst (1986) was used
because the initial design was not selected independently
from stratum to stratum. In particular, as explained in
Ernst (1986), if the initial sample was itself selected by
overlapping with a still earlier design then this independ-
ence assumption generally does not hold, which was the
key reason why it did not hold for these four redesigns.

The second difficulty with the optimal procedure is
that the transportation problem may be too large to solve
in practice. The Bureau of the Census also used linear
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programming to overlap the 1990s Survey of Income and
Program Participation (SIPP) design with the 1980s SIPP
design, both two-PSUs-per-stratum designs. The initial
sample for SIPP was selected independently from stratum
to stratum. However, the transportation problem for the
optimal procedure would have been too large to practically
solve for many strata. This is because for each new stratum
to be overlapped consisting of n PSUs, the number of
variables in the transportation problem for the optimal
procedure can be as large as 2" X (g) The largest value
of n for which a transportation problem with that many
variables can be solved with the computer facilities that
we have used is approximately n = 15.

This paper presents a reduced-size formulation of the
overlap procedure as a transportation problem which
decreases the numbers of variables in the SIPP problem
to((3) +n+1) x (1), a striking reduction for mod-
erate to large values of n. The procedure assumes that the
initial sample was selected independently from stratum to
stratum, and hence could not have been used instead of
the procedure of Ernst (1986) to overlap the CPS and
NCVS designs. This reduced-size procedure has been
successfully run for strata with as many as 68 PSUs. In
contrast, for n = 68, the 26% x (628 ) possible number of
variables for the unreduced formulation is far beyond the
size of problem that can be solved by any current computer.
Furthermore, though the reduced-size procedure sacrifices
optimality in exchange for its size reduction, it does appear
in practice to yield results fairly close to optimal, as we will
show. The reduced-size procedure is the procedure that
was used to overlap SIPP.

In Section 2 the procedure of Causey, Cox and Ernst
(1985) is reviewed, to provide background for the presen-
tation of the reduced-size procedure.

The reduced-size procedure is presented in Section 3.
Although the approach has general applicability, for ease
of presentation it is only described in detail for the case
when both the initial and new designs are two-PSUs-per-
stratum without replacement. A small, artificial example
of the reduced-size procedure is also presented in Section 3.
This example serves to illustrate the procedure and to
demonstrate that the ordering of the pairs of PSUs in a
new design stratum, a key step in the algorithm, affects
the expected overlap. We also outline in this section some
analytical results on the comparison between the reduced-
size procedure and the optimal procedure. Upper bounds
on the loss in expected overlap from using the reduced-size
procedure instead of the optimal procedure are stated. It
is also explained that in certain situations this loss can
approach two PSUs for two-PSUs-per-stratum designs,
the worst possible situation. Further details and proofs of
the results in this section as well as some results in other
sections are presented in Ernst and Tkeda 1994.

In Section 4 the performance of the reduced-size pro-
cedure is presented, both for the actual SIPP production

overlap and for earlier, artificial simulations of the SIPP
overlap. The expected overlap for this procedure is compared
to that for independent selection of the new sample PSUs
and to an upper bound on the optimal expected overlap.
The results show that for this application, in contrast with
some of the theoretical results described in Section 3, the
expected overlap with the reduced-size procedure is much
larger than if independent selection had been used to select
the new sample PSUs, and nearly as large as the optimal
expected overlap. Also presented are computer running times
for the reduced-size procedure as a function of stratum size.

Finally, our conclusions are stated in Section 5.

2. REVIEW OF THE OVERLAP PROCEDURE OF
CAUSEY, COX AND ERNST (1985)

The overlap procedure of Causey, Cox and Ernst (1985),
like all overlap procedures, conditions the selection of
sample PSUs in each new stratum in some way on which
PSUs in the stratum were in the initial sample. This partic-
ular overlap procedure attains true optimality by making
complete use of this information and formulating the
procedure as a transportation problem. We proceed to
present this procedure.

First, however, we introduce some notation that will be
used throughout the paper. Let S denote a stratum in the
new design. Each such stratum corresponds to a separate
overlap problem. Let n denote the number of PSUs in S
and let A4, ..., A, denote the PSUs in S. Let  denote
the random subset of {1, ..., n} such that k € I'if and
only if A, was in the initial sample, and let N denote the
corresponding set with respect to the new sample. For
example, if A, and A, were the PSUs in S that were in the
initial sample and 4, and A; are the PSUs in the new
sample, then I = (2,3} and N = {1,3}. Let m*, n*
denote the number of possible values for 7 and N, respec-
tively. Let J;, i = 1, ..., m*, denote the possible values
for I and let S;, j = 1, ..., n*, denote the possible
values for N. The goal of all overlap procedures is to
maximize the expected number of PSUs in N N I, while
preserving the values of the P(S;)’s.

To illustrate some of these concepts further, consider
an example for which » = 3. Then n* = 3 if the new
design is either 1 or 2 PSUs per stratum with the values
for N, that is the §;’s, consisting of {1},{2},{3} in the 1
PSU per stratum case and {1,2},{1,3},{2,3} in the two
PSUs per stratum case. Suppose PSUs 4, and A, were in
one initial stratum and PSU A; was in another initial
stratum and there were three PSUs in each of these initial
strata. If the initial design was 1 PSU per stratum, then
m* = 6, with the values of I, that is the J;’s, consisting
of &, {1},12},{3},{1,3},{2,3); if the initial design was
2 PSUs per stratum then m* = 6, with the J;’s consisting
of {1},{2},{1,2},{1,3},{2,3},{1,2,3}.
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We now present the transportation problem for the
overlap procedure of Causey, Cox and Ernst (1985).
Abbreviate by P(J;) the probability that I = J; and by
P(S;) the probability that N = §;. In addition, let x;; be
the variable denoting the joint probability of these two
events, and let ¢; denote the number of elements in
J; N S;. The P(J;)’s, P(S;)’sand ¢;;’s are known values,
while the x;;’s are variables for which the optimal values
are to be determined. Then the transportation problem to
solve is to determine x;; = 0 which maximize

m* n*
E Cij Xij 2.1
i=1 j=1
subject to
n*
Y ox; =P, i=1,...,m, 2.2)
j=1
.
Y xy =P, j=1,...,n"% (2.3)
i=1

Note that in this transportation problem, the objective
function (2.1) is the expected number of PSUs in § that
arein N N I. Also note that the constraints (2.2) and (2.3)
are required by the definitions of the P(J;)’s, P(S;)’s
and the x;;’s.

Once the optimal x;;’s have been obtained, the condi-
tional probability that N = §; given that I = J; is then
x;;/P(J;) for all i, /.

We present an example to illustrate the use of the for-
mulation (2.1)-(2.3) in the case where both the initial and
new designs are two-PSUs-per-stratum without replace-
ment. In this example, and throughout the paper, p;, 7;
denote the predetermined probability that i € Jandi € N,

respectively.
Consider a final stratum S with n = 3. All of the PSUs
were in different initial strata. Let p; = .6, p, = .75,

py=.7, 7 = .5 m = .8, m3 = .7. Since the PSUs
were all in different initial strata, there are 8 different
possibilities for 7, with probabilities given in Table 1.

Table 1
Probabilities for Possible Sets of Initial Sample PSUs

i 1 2 3 4 5 6 7 8

i 112,31 {1,2) (1,3} (2,3} (1} (2} (3) O
P(J;) 315 135 105 .21 .045 .09 .07 .03

Since the new design is two-PSUs-per-stratum without
replacement, there are 3 different possibilities for N,
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namely the pairs §; = {1,2}, S, = (1,3}, S; = {2,3},
and hence P(S;) = .30, P(S,) = .20, P(S;) = .50.

Furthermore, the values of ¢;; are then as given in
Table 2. Upon maximizing (2.1) subject to (2.2) and (2.3)
with the given P(J;)’s, P(S;)’s and ¢;;’s, an optimal set of
x;;’s, presented in Table 2, is obtained. Finally, by dividing
each of the x;; entries in row i of Table 2 by P(J;), an
optimal set of conditional probabilities P(S; | J;), is
obtained. For example, since x;, = .025 and P(J;) = .315,
it follows that P(S, | J;) = 5/63.

Table 2

Values of ¢;; and Values of x;; that Maximize Overlap
for Optimal Procedure

Ci jj X; i

J J
i 1 2 3 | 2 3
1 2 2 2 .000 .025 .290
2 2 1 1 135 .000 .000
3 1 2 1 .000 .105 .000
4 1 1 2 .000 .000 .210
5 1 1 0 .045 .000 .000
6 1 0 1 .090 .000 .000
7 0 1 1 .000 .070 .000
8 0 0 0 .030 .000 .000

For this example, as can be computed from (2.1) and
Table 2, the expected overlap under the optimal procedure
is 1.735 PSUs. In comparison, the expected overlap if the
initial and final designs are selected independently is
D17 + Dy + Py = 1.39 PSUs.

For two-PSU-per-stratum without replacement problems,
the possible values for N are always the ('21 ) subsets of
{1, ..., n} of size 2, thatis n* = (g) However m* can
vary widely. m* = (g) when the PSUs in S comprise a
single initial stratum. The upper bound of 2” on m* is
attained when all the PSUs in S were in different initial
strata, as illustrated by the previous example, and in some
other situations. A general, exact expression for m* is
presented in Ernst and ITkeda (1994).

For the two-PSUs-per-stratum without replacement
overlap problem, the number of variables in the transpor-
tation problem for the optimal procedure is m*n* which
can be as large as 2"(5’). Forn = 15, 2”(;) = 3,440,640,
which is about as large a transportation problem as can
be solved with the computer facilities that we used. How-
ever, n > 15 for nearly half the nonselfrepresenting strata
(that is strata consisting of noncertainty PSUs) in our SIPP
application, and consequently it was necessary to develop
a procedure, described in the next section, which reduces
the size of the transportation problem, while still producing
nearly maximal expected overlap in practice.
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3. THE ALGORITHM FOR THE REDUCED-SIZE
PROCEDURE

Previous work on reducing the size of the transportation
problem (2.1)-(2.3) has focused on accomplishing the size
reduction while retaining optimality. For example, the
approach of Aragon and Pathak (1990) retains optimality
and reduces the size of the problem by 75 percent when
m* = n*. Unfortunately, when m* is much larger than
n*, which is when size reduction is most needed, their
method produces negligible size reduction in relative
terms. A generalization of this approach is presented in
Pathak and Fahimi (1992), but there is no indication that
their procedure always yields a size reduction that is
substantial in relative terms.

In this section a reduced-size procedure is presented
which takes a different approach. We sacrifice optimality,
at least in theory, in return for an assured size reduction
down to a manageable size transportation problem. This
size reduction is accomplished, in the case when the initial
and new designs are both two PSUs per stratum for
example, by ordering all pairs of PSUs in a new stratum
and then conditioning the new selection probabilities for
any initial set of sample PSUs of size greater than 2 on the
first pair of PSUs in the ordering contained in the initial
set, rather than conditioning on the entire initial set. That
is, each possible initial set of sample PSUs which consists
of more than 2 PSUs is combined with a set of size 2. As
illustrated in Section 4, this procedure may yield a near
optimal overlap in practice; particularly with an appro-
priate ordering of the pairs of PSUs, as described in
Section 3.1.2.

The reduced-size procedure is applicable whenever
PSUs in the initial and new designs are selected without
replacement. However, the procedure will be described in
detail, in Section 3.1, only for the case when both the initial
and new designs are two-PSUs-per-stratum. Then, in
Section 3.2, the changes necessary to apply this procedure
for other initial and new designs will be sketched. Finally,
in Section 3.3, some analytical results are outlined on the
relationships among the expected overlap for the reduced-
size procedure, the optimal procedure and independent
selection. It is assumed throughout this section that PSUs
in the initial sample were selected independently from
stratum to stratum.

3.1 Reduced-Size Procedure When Both Designs Are
Two-PSUs-Per-Stratum

The reduced-size procedure to be described includes the
following key aspects: the specific ordering of the pairs of
PSUs; the reformulation of the transportation problem
(2.1)-(2.3) for the reduced size procedure; the computation
of the probabilities for the initial outcomes for this formu-
lation; and the computation of the cost coefficients (the

¢;;’s) in the objective function. In Section 3.1.1 we present
a detailed outline of the reduced-size procedure, including
the reformulated transportation problem. The ordering of
the pairs is described in Section 3.1.2. Finally, the compu-
tation of the probabilities for the initial outcomes and the
cost coefficients are given in Section 3.1.3.

3.1.1 General Outline of the Procedure

The general outline of the procedure is as follows. First,
the (g) subsets of {1, ..., n} of size 2 are ordered in a
manner to be described later. (For now, we simply note
that any ordering can be used to reduce the size of the
transportation problem. The specific one used is for the
purpose of accomplishing the size reduction while also
attempting to give up as little as possible of the gains in
overlap that the optimal procedure yields.) We let I,
i=1,..., (g), denote the i-th element in the ordering;
let I(; Sl on- ,I(n +n be the n singleton subsets; and set
I (3’) wn+et = . Thus, the I;’s constitute all subsets of
{I, .., n} of 2 or fewer elements. For each possibility for
I, a unique set I* is associated among these ('21) +n+1
subsets and the new selection probabilities conditioned on
the associated I*, rather than on [ itself. Therefore, the
new selection probabilities are conditioned on ('2’) +n+1
events instead of a possible 2” events, which is the reason
for the size reduction. The associated I* is the first J; for
which I; C I. That is, if I consists of at least two integers,
the associated I* is the first pair in the ordering contained
in I, while if I is a singleton set or empty then /* = I.

The reduced-size transportation problem attempts to
retain the PSUs corresponding to elements in the asso-
ciated set I* in the new sample, but does not use infor-
mation on elements in I ~ I*. The form of this reduced-
sized transportation problem based on the set of I;’s is as
follows. Let p¥ be the probability that I* = I;, i = 1,

. (5’) + n + 1, and abbreviate 7 = P(S;),
j=1,..., (g) For each i,j, the variable x;; is the joint
probability that I* = I;and that N = §;, while ¢;; is the
expected number of elements in 7 N §; given I* = I,.
The problem to solve is to determine x;; = 0 that maximize

(2)+n+1 (3)
E E Cij Xij» (31)

i=t  j=1
subject to

()
xy=pF, i=1,..., (;’) +n+1, (3.2
j=1

(;)+n+1

— *
Y xy =,
i=1
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Once the optimal x;;’s have been obtained, then the con-
ditional new selection probabilities for §;,7 = 1, ..., (5’),
given I* = I, are x;;/p}. Note that the number of variables,
Xy, in the formulation (3.1)-(3.3)is ((3) + n + 1) x (3),
in comparison with a maximum of 2" X (3) in the formu-
lation (2.1)-(2.3).

It remains to explain the general method for obtaining
the ordering of the ('21 ) pairs and the procedures for com-
puting the p¥’s and ¢;;’s. Before doing this, we present an
example of the reduced-size procedure, namely the two-
PSUs-per-stratum example used in Section 2 to illustrate
the transportation problem formulation for the optimal
procedure.

The ordering of the pairs for this example, as will be
shown later, is {2,3}, (1,2}, {1,3}. Consequently, the
I;’s, are as given in Table 3. Note thatif / = {1,2,3} or
I = {2,3}, then the associated setis I; = {2,3}. For the
other six possibilities for I the associated set is 7 itself.

Consequently, from Table 1 we obtain that

pt = P(I =1{1,23}) + P(I ={2,3)) =.525, (3.4

pl* = P(Jl)’l = 2’3’ andpl* = P(Ji+l)’i = 43 ey 79
yielding the values in Table 3. Since 7rj’~l= = P(S;), we
have n¥ = .30, 73 = .20, =¥ = .50.

Table 3
Probabilities of Associated Sets: Reduced-Size Procedure

i

1 2 3 4 5 6 7

5 (2,31 (1,2 (1,31 {1 2y B8} ©
pt 525 135 105 .045 09 07 .03

The ¢; values for this example are given in Table 4.
In order to obtain these values, we simplified the compu-
tation by letting

by =Pel|I*=1),
. n
i=1, ...,<2> +n+1, t=1,...,n, (3.9

and noting that if S; = {s,7} then
c; = b + by. (3.6)

That is, the expected number of elements in I N §;
given I* = [;is simply the sum of the probabilities that
each of the two elements in S; was in I given I* = I;. Also
observe that while the transportation problem for the
optimal procedure knows the exact value for / and hence
knows with certainty whether each element in S; was in /,
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this is not the case for the reduced-size procedure, since
only the associated set I; is known. To illustrate, consider
the first row of Table 4. Since I, = {2,3}, we know that
2 € Iand 3 € I, and hence b, = b3 = 1. However, we
do not with certainty whether 1 € I since /, is the asso-
ciated set for both I = {1,2,3} and I = {2,3}. In fact,
from Table 1,

B P(I = {1,2,3)) B
TP = (1,2,3)) + PU = (2,3))

by,

Then ¢;; = by + by, = 1.6, with ¢, ¢;3 computed
similarly. For the remaining six rows in Table 4, I; = I
and hence it is known with certainty which integers were
in I. Consequently, the c;;’s for these six rows are easily
computed.

Finally, we maximize the expected overlap (3.1) subject
to (3.2) and (3.3), obtaining the x;; values in Table 4. The
conditional probabilities P(N = S; | I* = I;) in Table 5
are then obtained by dividing each of the x;; entries in the
i-th row of Table 4 by p¥.

Table 4

Values of c;; and Values of x;; that Maximize Overlap
for the Reduced-Size Procedure

C,-j Xij
J J
i I; 1 2 3 1 2 3

{2,3} 1.6 1.6 2.0 0.000 0.025 0.500
{1,2} 2.0 1.0 1.0 0.135 0.000  0.000
(1,3} 1.0 2.0 1.0 0.000 0.105 0.000
{1} 1.0 1.0 0.0 0.045 0.000  0.000
{2} 1.0 0.0 1.0 0.090 0.000 0.000
{3} 0.0 1.0 1.0 0.000 0.070  0.000
%] 00 00 00 0.030 0.000 0.000

~l N U AW

Table 5
Conditional Probabilities for the Reduced-Size Procedure

J
i I; 1 2 3
1 {2,3} 0 1/21 20/21
2 {1,2} 1 0 0
3 {1,3} 0 1 0
4 {1} 1 0 0
5 {2} 1 0 0
6 {3} 0 1 0
7 %) 1 0 0
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The expected overlap for the reduced-size procedure is .01
less than optimal, that is 1.725 PSUs. The deviation from
optimality arises solely because the expected overlap is 1.6
for the joint event that I* = {2,3}and N = {1,3}. Since
the probability of this joint event is .025, and the optimal
procedure for this example always produces an overlap of
2 when at least 2 of the PSUs were in the initial sample,
the deviation from optimality is .0252 — 1.6) = .01.

The reason that the reduced-size procedure is not able
to obtain optimality is that the pair {2,3} has a smaller
probability of selection in the new sample than in the initial
sample. As a result, both the optimal procedure and the
reduced-size procedure must sometimes select another pair
(always {1,3} for both procedures in this example) when
{2,3] was in the initial sample. The distinction between
the two procedures is that the optimal procedure only
selects {1,3} when 1 € I. The reduced-size procedure is
unable to use the information about whether 1 € 1. Asa
result, when {2,3} C I, 1 € Nindependently of whether
1 € 1. This results in a deviation from the optimal overlap.

3.1.2 The Ordering of the Pairs

We now proceed to show in general how the ordering
of the pairs is obtained. We use the additional notation
here that pg, 7y, S, £ = 1, ..., n, s # t, is the joint
probability that s, € I and s, ¢ € N, respectively.

The motivation for the ordering of the pairs is as
follows. If the i-th pair in the ordering is {s,7} then it would
be possible for the transportation problem to retain this
pair in the new sample when I* = J; with conditional
probability min{1,r,/p¥}. (The conditional retention
probability cannot be any higher than this, since a higher
value would result in an unconditional selection proba-
bility for the pair in the new design exceeding =, .) There-
fore, roughly the goal in the ordering is to make these
conditional probabilities as large as possible on average
over all pairs.

To illustrate how the ordering of the pairs affects the
expected overlap we consider the example of Table 3. Our
ordering procedure, as will be shown later, produces the
indicated ordering and yields an expected overlap of 1.725
PSUs. Next consider the following alternative ordering for
this example. Let the first pair in the ordering be {1,3}, the
second pair be {1,2} and the last pair be {2,3}. With this
alternative ordering, I* = {1,3} whenever either 7 =
{1,2,3} or I = {1,3}. Therefore, for this ordering pf is
the probability that I* = {1,3}, which is now .42. Further-
more, for this alternative ordering, p¥ = P(I* = {2,3}) =
P(I = {2,3}) = .21, whilethe other 5 columns in Table 3
remain unchanged. The alternative ordering results in a
table of conditional probabilities similar to Table 5, except
thatinrow 1the /;, j = 2andj = 3 columns now become
{1,3}, 10/21 and 11/21, respectively, and in row 3 the
corresponding columns are now {2,3}, 0and 1, respectively.

It can be calculated, using the same approach used for
the original ordering that the expected overlap for the
alternative ordering is 0.055 less than optimal, that is 1.68
PSUs. The reason that this alternative ordering results in
a lower expected overlap is as follows. In general a later
placement of a pair in the ordering, results in a lower value
for the corresponding p¥, and hence a higher conditional
retention probability when I* = I;. That is, with {1,3}
first in the ordering, 73/p¥ = 10/21, which is the condi-
tional retention probability for this pair when I* = {1,3};
while when {1,3} is third in the ordering, 7 ;3/pf > 1
and this pair is retained with certainty. Now the conditional
retention probability for the pair {2,3} when I* = {2,3}
also increases to 1 when {2,3} is moved from first to third
in the ordering, but the increase is only from 20/21, and
hence the original ordering in Table 3 produces a higher
expected overlap than the alternative ordering.

Thus, as this example illustrates, the goal of the ordering
is to place pairs earlier in the ordering that have a relatively
high conditional retention probability even with an early
placement. To obtain the desired ordering of the pairs of
integers, an ordering f (1), ..., f(n)of {1,...,n} will
first be obtained by recursion. Then corresponding to each
k=1, ...,n — 1,anordering g, (1), ..., g(n — k)
of {1,...,n} ~ {f(1), ..., f(k)} will be constructed
by recursion. A linear ordering of the distinct pairs in
{1,...,n} would then be determined as follows. Each
such pair can be represented uniquely as an ordered
pair (f(k), g,(f)) for some k€ {l,...,n — 1},
€ {1,...,n — k}. A second pair representable in the
form (f(k’), g, (")) precedes (f(k), gx(f)) if and only
if either k' < k, or k' = k and ¢’ < £. To illustrate, for
the example just considered it will be shown later that
Sy =2,12)=3,f3)=1,g()=3,g(2)=1,
g,(1) = 1, and hence the ordering of the pairs is {2,3},
{2,1}, {3,1}. Both the f ordering and the g, ordering will
be constructed to meet the goal stated at the beginning of
this paragraph.

To obtain the ordering (1), ..., f(n), recursively
define f(k), k = 1, ..., n, by choosing f(k) € Ty
satisfying

Ty /PNy = max{m/piP: i€ Ty,

Te = Tey ~ (k= DY,
pi(k) = P(l € I and I C Tk),

k=1,...,n i€T.. 3.7

Since p{’ = p;, the ordering just defined corresponds
to placing first a PSU with the greatest value of «;/p¥.
For all k, p/(%) is the probability that f(k) was in / and
none of the k — 1 elements preceeding f(k) in the f
ordering were in I, and hence p}(kk)) is the probability that
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an attempt is made to retain A, in the new sample
either as the first member of an ordered pair of initial
sample PSUs or as the only initial sample PSU in S. Gener-
ally, the larger ms ) /p}(kk)) is, the greater the probability
that this attempt would be successful. Thus, the moti-
vation for the f ordering of the individual PSUs is the
analog of the motivation for the ordering of the pairs of
PSUs that we previously discussed.

It remains to explain how to compute p*’ for k = 2.
To this end, let » denote the number of initial strata with
PSUs in common with Sandlet F,, « =1, ..., r, denote
a partition of {1, ..., n} suchthatiand/ arein the same
F, if and only if A;and 4; were in the same initial stratum.
Then let

p(Ty=PUNF,CT), a=1,...,r
TC{l,...,n}, (3.8

pi(T)=P(iel and INF,CT), a=1,...,r,

TCc{l,...,n}, ieF,NT, 3.9

and observe that

po(Dy=1- Y p+ Y, Py (3.10)
i€k ~T i,jeFy~T
i<j
(D) =p; — Y, Py G.11)

jeE,~T

and finally, as established in Ernst and Ikeda (1994),

,
pi = pii(Ty) Hpe'(Tk), k=1,...,n,

=1
(#a

i€F,n1. (3.12)

Next, foreachk = 1, ..., n — 1, the ordering g, ({),
=1, ..., n — k, is recursively defined by choosing

gr(0) € Ty satisfying

® _ o .
sy, (0 /P Ry = My, /0 K0T € Tials

where
T = {1,...,n} ~ Uf(1), ..., f(K)},
Teo = Te—1y ~ (&= 1)}, £=2,...,n—k,
B=Ty U [(f()}, ¢=1,...,n—k,
Pith,; = P(f(k), jeland IC Tf),
t=1,...,n—k, j€ Ty (3.13)
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Note that pf“()k)’ ;is thus the joint probability that f (k)
1s the first integer in the f ordering in /, that none of the
first £ — 1 integers in the g, ordering are in 7, and that
Jj € 1. Consequently, p}g()k),gk(e) is the probability that
I* = {f(k),g,(0)}. Furthermore, if I; = {f(k), g, ()}
then p¥ = p}g()k),gk(g), and hence the choice of g, ({) results
in the largest value of 7y ., /pF among the elements
in T;;in accordance with the previously stated goal for the
ordering of the pairs of PSUs.

To compute p}‘?k), j» it is established in Ernst and Ikeda
(1994) that if f (k) € F,, j € F3, then

,
p%cm = DPri,j Hp,’ (TE) if a=06,

t=1
o

(3.14)

= Pl TEID/(TE) T £/ (Th) if =B

=1
t#a,f

We illustrate the computations used in obtaining the
ordering for the example that we have been considering.
First note that (1) = 2 since the largest value of =;/p;
occurs for i = 2. Next we find g;(1) which, since
f(1) = 2,is thej € {1,3} with the maximum value of
i /3P To find this j, first let F, = {a}, o = 1,2,3,
and note that 7§ = {1,2,3}. From (3.14) with o = 2,
B = 1, it then follows that

P3P = pp{1,2,3)p11(1,2,3)p1 (1,23} = pyp, - 1 = .45,

and similarly it can be obtained that p{{) = .525. Hence
g1(1) = 3, since .5/.525 > .3/.45. Therefore, the first
pair in the ordering is {f(1), g,(1)} = {2,3}. Then
£:(2) = 1,since 1 is the only integer remaining to be used
in the g, ordering, and consequently the second pair in
the ordering is {f(1), £,(2)} = {2,1}. It is not really
necessary to determine f(2), since {1,3} is the only
remaining pair, and hence the last pair, but to further
illustrate the computations, observe that 75, = {1,3},
pi? = piit1,3}p3{1,3)p3 (1,3} = p1(1 = py) - 1 = .15
by (3.12), and similarly p{® = p3(1 — p,) - 1 = .175.
Hence f(2) = 3, since.7/.175 > .5/.15. Consequently,

&) =1,f3) = 1.

3.1.3 Computation of p} and ¢;

Next we explain the computation of the p¥’s. If [;
consists of the pair of integers I; = {f(k), g(£)] then,
as previously noted, p¥f = p}f,l),gk(g). Consequently, p¥*
can be computed from (3.14) with j = g, ().

If I; is a singleton set {¢} for some ¢ € F,, then, as
established in Ernst and Ikeda (1994),
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v = pi () I pi(2). (3.15)

u=1
uFa

Finally, if I; = (), then

pt =TI pi(2).
u=1

It remains only to explain how to compute the ¢;’s
which, by (3.5) and (3.6), reduces to computing b;,,
i=1..,05) +n+1, t=1,...,n

To compute b;,, observe that
b, =0 it I, =,
=1 if I,={v}] and ¢t =,
=0 if I,=1{v}] and ¢ # v,

while lfI, = {f(k)’ gk(f)} andf(k) € Fou gk(e) € F[i,
t € F,, then

b, =1 if t=f(k) or t= g0, (3.16)

0 if ¢¢Th (3.17)

=0 if reTy ~ {g(0)}
and y =a=p, (3.18)

= PO e T ~ ()
Pfuy,o (TH)
and y =a # B, (3.19

= PaOL it e Ty ~ (ge(0))
D08 Tk
and ¥y =8 # «, (3.20)

_ pt{;(wf) i

{ €T ~ (ge(D)
P(TE) S

and v # o,y # 8. (3.21)

In Ernst and Ikeda (1994) it is demonstrated how
(3.16)-(3.21) were obtained.

In the actual implementation for the SIPP application,
modifications of the reduced-size procedure were needed
to overlap the 1990s SIPP design with the 1980s SIPP
design. The modifications were necessary because the PSU
definitions in the 1980s and 1990s designs were not iden-
tical. As a result, some PSUs in the 1990s design could
intersect more than one 1980s design PSU. These modifi-
cations are detailed in Ernst and Ikeda (1994).

3.2 Modifications of Reduced-Sized Procedure for
Other Designs

In general, consider any m’-PSUs-per-stratum without
replacement initial design and any m-PSUs-per-stratum
without replacement final design, where m’, m are any
positive integers. Although the reduced-size procedure in
Section 3.1 was only presented forthecasem = m’ = 2,
it is actually applicable for any m, m’. We will sketch the
modifications necessary when m # 2 or m’ # 2.

A different value of m’ only requires modification of
some of the computations. For example, if m = 2, but
m’ # 2, then the computations for p{%, pf“()k),j and ¢;;
would be different but their definitions would not change.

If m = 3, then, regardless of the value of m’, the set
of all distinct triples, instead of pairs, of integers in
{1, ..., n}, is ordered. If I consists of at least three
integers, then the new selection probabilities are conditioned
only on the first listed triple in the ordering contained in
1. Otherwise, the new selection probabilities are conditioned
on I itself. Thus the new selection probabilities are condi-
tioned on (3) + (5) + n + 1 events.

To obtain the desired ordering of the triples of inte-
gers, first the orderings f(1), ..., f(n) and g((1), ...,
gr(n — k) are constructed exactly as in the case m = 2.
Then, correspondingtoeachk =1, ...,n — 2,{ =1,
..., n—k — 1, an ordering hi(1), ..., h(n — k — )
of {1,...,n} ~ {f (1), ..., f(k),ge(1), ..., g(D)}is
constructed in a manner similar to the construction of
g, (1), ..., gx(n — k). For example, in defining A, (v)
forv = 2, p{{},,;in the definition of g, (¥) is replaced by

P(f(k), g(D),j €l and IC (Th U g()) ~

((1)s oy B (v = D).

A linear ordering of the distinct triples in {1, ..., n}
is then determined by representing each triple uniquely as
an ordered triple of the form (f(k), g«(D), he(v)). A
second triple (f(k’), g (£"), hyp (v7)) precedes the first
if and only if either k* < k,or k' = kand {’ < {, or
k' = kand{ = fand v’ < v.

For m = 4, ordered m-tuples would be defined in a
similar manner and the new selection probabilities condi-
tionedon () + (2 1) .- + n + 1events.

For m = 1, the new selection probabilities are conditioned
on the first member of the ordering f(1), ..., f(n) in
IifI # @, oron if I = .

Note that if m > m’, it is possible that at least some
ordered m-tuples cannot be subsets of 7, in which case
all such subsets should be excluded from the ordering
and the set of events on which the new selection proba-
bilities are conditioned. If no m-tuple can be a subset of
1, then the new selection probabilities are conditioned on
I itself.
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It is not necessary to limit the initial events used in the
transportation problem to subsets of 7 of size m or less. For
example, if m = 2and (3) + (3) + n + lissufficiently
small, then a procedure conditioned on subsets of three
or less can be used, resulting in a generally higher expected
overlap. Conversely, if () + (p 2 1) ... + n + lis
too large, the new selection probabilities can be condi-
tioned on subsets of I of size m” or less, where m” < m,
although with a generally smaller expected overlap.

3.3 Relationship Between Expected Overlap for the
Reduced-Size Procedure, the Optimal Procedure
and Independent Selection

Let Q;, Qp, Qo denote the expected overlap for the
independent selection, the reduced-size procedure, and the
optimal procedure, respectively. In Ernst and Ikeda (1994)
the relationship between these quantities is explored. We
briefly summarize here some of the results.

It is established that Q; < Qp < Q, for any m, m’
where m, m’ are as in Section 3.2. In addition, for the
case that we have been focusingon, m = m’ = 2, lower
bounds are established on Q; and upper bounds are
established on @, and @y — Qp.

For example, let u, denote the probability that there
are at least two elements in 1, u; denote the probability
that 7 is a singleton set, and

A= min{min{w,-/p,-: i=1,...,n},
min{w;/p;:i,j =1, ...,ni #j}, 1}

Then Qp < 2up + u1> Qr = M2py + p(/2), and
Qo — Qe < 2(1 = Nuy + (1 — N2,

Unfortunately these bounds are not always very tight.
However, in certain circumstances they are useful. For
example, if w; = pj; for all /,j and the probability is 1
that there is at least two elements in /, then it follows from
these bounds that Qp = Qp = 2.

Finally, an example is presented to illustrate a worst
case situation for Qp in relation to 2, for the case m,
m’ = 2. It shows that Q, may equal 2, while Qp is arbi-
trarily close to 0. Thus, at least in theory, the reduced-size
procedure can be ineffective. However, in practice, as will
be shown in the next section, Qg is much closer to Q, than
to @y, at least for the SIPP application.

4. APPLICATION OF REDUCED-SIZE
PROCEDURE TO SIPP

Results from simulations of the SIPP overlap, done
prior to production for research and testing purposes, are
presented, as well as results from the actual SIPP produc-
tion overlap. Further details are given in Ernst and Ikeda
(1992b, 1994),
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In the implementation of the reduced-size overlap
procedure, minimum cost flow (MCF) optimization soft-
ware, written by Darwin Kingman and John Mote at the
University of Texas at Austin, was used to solve the
required transportation problem. A FORTRAN program
was written to produce input to and process output from
the MCF software.

To test the software prior to production, the program
was used to overlap two stratifications, based on 1970
census data, of the SIPP Midwest region with the actual
1980s design stratification for the SIPP Midwest region.
(At the time of this test, 1990 census data was not yet
available.) The 1970-based stratifications were produced
by stratifying the 1980s SIPP noncertainty PSUs in the
Midwest region using 1970 data. Both of the 1970-based
stratifications partitioned the noncertainty PSUs into
31 strata, using different sets of stratification variables.
The stratifications based on 1980 and 1970 data were
treated as ‘‘initial’’ and ‘‘final”’ stratifications for the
purposes of the overlap algorithm.

In the actual implementation, as noted in Section 3.1
and detailed in Ernst and Ikeda (1994), a modification of
the reduced-size procedure was used to overlap the 1990s
SIPP design with the 1980s SIPP design, because the PSU
definitions in the 1980s and 1990s designs were not iden-
tical. The modified reduced-size procedure was used to
overlap 103 final (1990s design) nonselfrepresenting strata
in SIPP.

The expected overlap was calculated for the reduced-
size maximum overlap algorithm, for independent selection
of final PSUs, and for an upper bound to the expected
overlap for the optimal procedure. An upper bound was
calculated instead of the actual optimal overlap, since the
optimal overlap cannot be calculated for the larger strata.
For the simulation, the upper bound used is the one stated
in Section 3.3, u, + 2u;, while for the production SIPP,
a different upper bound, described in Ernst and Ikeda
(1994), was required because the PSU definitions in the
1980s and 1990s were not identical.

The results from the two final stratifications in the
simulation were generally similar to each other. Combining
the results from both stratifications, the mean expected
overlap for this set of 62 strata was 1.552, 1.569 and 0.480
PSUs/stratum for the reduced-size procedure, the upper
bound to the optimal overlap and independent selection
respectively. For the actual SIPP implementation, the
corresponding number was 1.523, 1.647 and 0.582, respec-
tively, while the corresponding expected number of PSUs
overlapped for the 103 strata was 156.9, 169.6 and 59.9,
respectively. Thus, in both the simulations and the pro-
duction SIPP, the reduced-size procedure yielded results
reasonably close to the upper bound for the optimal
procedure.

The reduced-size algorithm took a fairly short time to
run on most strata. The CPU times in the simulation for
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final strata with different numbers of PSUs are given
below. The reduced-size program was run on a Solbourne
5/605 computer. The median number of PSUs in a
stratum, for the entire group of 62 strata, was 17 PSUs.
The 68 PSUs stratum was the largest stratum.

Table 6
CPU Times for Reduced-Size Procedure

CPU Time

Number of PSUs (hrs:min:sec)

18 0:36
37 5:44
49 24:05
68 2:23:43

We also calculated for the actual SIPP implementation,
that of the 103 final strata overlapped by the modified
reduced-size procedure, 41 would not have run under the
optimal procedure. This calculation was based on our
estimate that the maximum size transportation problem,
in terms of number of variables, that could have run in
production was 4 x 108, The number of variables for the
optimal procedure was less than 4 X 106 for all 56 strata
for which n < 14, but exceeded this limit for all but 6 of
the 47 strata with n = 15, including two with n = 15. The
maximal size of the transportation for the optimal proce-
dure among the 103 strata occurred for a stratum with
n = 46, for which there were 3.61 x 10'2 variables. In
contrast, there were 1.03 x 10 variables for the modified
reduced-size procedure for this stratum.

Another question of interest is the overlap effectiveness
of the reduced-size procedure in comparison with the
overlap procedure of Ernst (1986). In general it is believed
that the reduced-size procedure should produce a higher
overlap in situations when both are usable, since the
reduced-size procedure makes use of the stratum-to-
stratum independence in the initial design. However,
although the procedure in Ernst (1986) is applicable to
two-PSU-per-stratum designs, no computer program has
ever been written at the Census Bureau (or anywhere else
that the authors are aware of) to implement this procedure
for such designs, since there has not yet been a production
application for this program. Consequently, we cannot
make a direct comparison of these two methods on the
same data. However, a crude comparison can be made
from the results of the reduced-size overlap procedure for
SIPP data and the results of the overlap using the proce-
dure in Ernst (1986) for the overlap of 1990s CPS and
NCVS designs with their respective 1980s designs. (Both
the 1980s and 1990s designs for CPS and NCVS are one-
PSU-per-stratum designs.)

For CPS, the overlap procedure resulted in an average
increase in expected overlap, in comparison with indepen-
dent selection, of .26 PSUs/stratum, and for NCVS the
overlap procedure resulted in an average increase in
expected overlap of .30 PSUs/stratum. This compares
with an increase of .94 PSUs/stratum for the reduced-size
procedure over independent selection for SIPP. If the two
overlap procedures are equally effective, then one might
expect that the increase in overlap per stratum for SIPP
would be roughly twice as large as for CPS and NCVS,
since SIPP has a two-PSUs-per-stratum design. By this
standard, the reduced-size procedure program performs
better than the procedure in Ernst (1986). However, since
the stratifications were quite different for these three
surveys, the validity of this comparison is open to question.

For the example considered in Sections 2 and 3, a valid
comparison of the different overlap procedures can be
made, since the expected overlap values for the procedure
in Ernst (1986)), 1.625, was easily calculated by hand. For
the reduced-size procedure the corresponding overlap
value is 1.725, and for the optimal procedure it is 1.735.

CONCLUSIONS

The reduced-size overlap procedure presented in this
paper meets its two key objectives in practice. It reduces
the size of the transportation problems to a usable size,
as evidenced both by the size of the transportation problem
in the formulation (3.1)-(3.3), and the fact that it has
actually been implemented in the redesign of a major
survey. In addition, the procedure accomplishes the size
reduction while yielding nearly optimal overlap, at least
for the SIPP application. It can only be used when the
PSUs in the initial design are selected independently from
stratum to stratum, but when this condition is met we
believe it is the overlap procedure of choice for large strata.

ACKNOWLEDGEMENTS

The programming assistance of Todd Williams is grate-
fully acknowledged. The authors would also like to thank
the referees and the editors for their constructive comments.
The views expressed in this paper are attributable to the
authors and do not necessarily reflect those of the Bureau
of Labor Statistics and the Census Bureau.

REFERENCES

ARAGON, J., and PATHAK, P.K. (1990). An algorithm for
optimal integration of two surveys. Sankhya: The Indian
Journal of Statistics, 52, 198-203.

ARTHANARI, T.S., and DODGE, Y. (1981). Mathematical
Programming in Statistics. New York: John Wiley and Sons.



Survey Methodology, December 1995

CAUSEY, B.D., COX, L.H., and ERNST, L.R. (1985).
Applications of transportation theory to statistical problems.
Journal of the American Statistical Association, 80, 903-909.

ERNST, L.R. (1986). Maximizing the overlap between surveys
when information is incomplete. European Journal of
Operational Research, 27, 192-200.

ERNST, L.R. (1989). Further Applications of Linear Programming
to Sampling Problems. Bureau of the Census, Statistical
Research Division, Research Report Series, No. RR-89/05.

ERNST, L.R., and IKEDA, M. (1992a). Modification of the
Reduced-Size Transportation Problem for Maximizing
Overlap When Primary Sampling Units Are Redefined in the
New Design. Bureau of the Census, Statistical Research
Division, Technical Note Series, No. TN-91/01.

ERNST, L.R., and IKEDA, M. (1992b). Summary of the
Performance of the Maximum Overlap Algorithms for the
1990°s Redesign of the Demographic Surveys. Bureau of the
Census, Statistical Research Division, Technical Note Series,
No. TN-92/01.

ERNST, L.R., and IKEDA, M. (1994). A Reduced-Size
Transportation Algorithm for Maximizing the Overlap
Between Surveys. Bureau of the Census, Statistical Research
Division, Research Report Series, No. RR-93/02.

157

GLOVER,F.,KARNEY,D., KLINGMAN,D., and NAPIER, A.
(1974). A computation study on start procedures, basic change
criteria and solution algorithms for transportation problems.
Management Sciences, 20, 793-813.

KEYFITZ, N. (1951). Sampling with probabilities proportional
to size: Adjustment for changes in probabilities. Journal of
the American Statistical Association, 46, 105-109.

KISH, L., and SCOTT, A. (1971). Retaining units after changing
strata and probabilities. Journal of the American Statistical
Association, 66, 461-470.

PATHAK, P.K., and FAHIMI, M. (1992). Optimal integration
of surveys. In Essays in Honor of D. Basu. Eds. M. Ghosh,
and P.K. Pathak. Hayward, California: Institute of Math-
ematical Statistics, 208-224.

PERKINS, W.M. (1970). 1970 CPS Redesign: Proposed Method
for Deriving Sample PSU Selection Probabilities Within 1970
NSR Stata. Memorandum to Joseph Waksberg, Bureau of
the Census.

RAIJ, D. (1968). Sampling Theory. New York: McGraw Hill.



