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Statistical Process Control of Sampling Frames

A.W. SPISAK!

ABSTRACT

Statistical process control can be used as a quality tool to assure the accuracy of sampling frames that are constructed
periodically. Sampling frame sizes are plotted in a control chart to detect special causes of variation. Procedures
to identify the appropriate time series (ARIMA) model for serially correlated observations are described. Applications
of time series analysis to the construction of control charts are discussed. Data from the United States Department
of Labor’s Unemployment Insurance Benefits Quality Control Program is used to illustrate the technique.
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1. INTRODUCTION

The integrity of the sampling frame is of paramount
importance in survey research. Frame imperfections inciude
missing elements (incomplete frame), element clusters
(more than one element in a single listing), blank or foreign
elements, and duplicate listings. These imperfections can
cause several difficulties by contributing to nonsampling
error, reducing the number of sample cases from sub-
classes of the population, and requiring the use of complex
weights to estimate population characteristics. Techniques
to minimize frame problems or reduce their impact on the
survey are discussed in detail in most textbooks on statis-
tical surveys.

This article focuses on the statistical process control of
sampling frames which are constructed periodically (daily,
weekly, or monthly, for example) and which consist of
elements that are generated by a continuous process.
Because of the variation inherent to any dynamic process,
the sizes of the sampling frames will vary. How do we
know that the changes in the sizes of the sampling frames
reflect the random variation of the process and not errors
in the construction of the frames? Statistical process
control allows survey managers to distinguish between the
variation inherent in the process (common causes) and
variation which signals a possible problem with frame
construction (special causes).

2. PROCESS VARIATION AND STATISTICAL
PROCESS CONTROL

Over the last several years managers in the manufac-
turing, service, and public sectors of the economy increas-
ingly have adopted the quality philosophies developed by
W. Edwards Deming, J.M. Juran, Philip B. Crosby, Kaoru
Ishikawa, and others. Quality management comprises an

array of tools and techniques, including the use of con-
trol charts to determine if a process is in statistical control.
According to Deming (1982), statistical control is achieved
by eliminating special causes of variation, leaving only the
random variation of a stable process. The behavior of a
process that is in statistical control is predictable.

The distinction between common and special causes of
variation is a key principle of statistical process control.
Deming (1982) credits Dr. Walter A. Shewhart, who devel-
oped many of the principles of statistical process control
in the 1920s and 1930s, with originating the concept of
special or assignable causes. Special causes are usually
attributable to one part of the process, such as a worker,
machine, or office. They will reoccur unless they are iden-
tified and eliminated. Special causes are signaled by data
points that fall outside of the control limits, by consecutive
points that fall above or below the process average, or by
runs of increasing or decreasing points.

Common causes of variation are inherent to the process;
they are present at all times and effect the entire process.
Common causes are reduced or eliminated through man-
agement actions that change the process.

3. STATISTICAL PROCESS CONTROL
APPLICATION TO THE
CONSTRUCTION OF SAMPLING FRAMES
FOR PERIODIC SURVEYS

3.1 United States Unemployment Insurance Benefits
Quality Control

The use of statistical process control as a quality man-
agement tool for sampling frames is illustrated by an
example from the United States Department of Labor’s
Unemployment Insurance Benefits Quality Control program.
Since 1987, the 50 states, the District of Columbia, and
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Puerto Rico have conducted the Benefits Quality Control
program in cooperation with the United States Depart-
ment of Labor. The goal of the program is to reduce the
overpayment and underpayment of Unemployment Insur-
ance benefits by identifying the causes of payment errors
and initiating measures to improve the benefit payment
process.

When an individual files a claim for Unemployment
Insurance benefits, Unemployment Insurance staff deter-
mine whether the claimant has met all of the eligibility
requirements - for example, the claimant earned sufficient
wages in his or her previous employment to qualify for
benefits; the claimant is involuntarily unemployed; and the
claimant is able and available to work and is actively
seeking employment. If all of the eligibility requirements
are satisfied, the state Unemployment Insurance agency
issues a benefits check for the week of unemployment
claimed.

3.2 Benefits Quality Control Sampling Procedures
and Sources of Error

Each state selects weekly random samples of Unem-
ployment Insurance payments that are examined to deter-
mine if the correct amount was paid to the claimant. If the
amount paid was incorrect, the investigator identifies the
types and causes of the errors so that program managers
can initiate corrective measures. The sampling frames
are constructed each week from the universe of Unem-
ployment Insurance payments that were issued between
12:00 am Sunday and 11:59 pm the following Saturday.
A computer program edits the state’s database to insure
that only payments that meet the program’s operational
definition of the target population are included in the
frame. For example, payments for some temporary or
small Unemployment Insurance programs are excluded
from the frame.

The volume of Unemployment Insurance checks issued
each week (and therefore the size of the sampling frames)
varies in response to the number of individuals who claim
and receive benefits during that week. However, there are
several sources of potential errors which can affect the
integrity of the frame. Some of the most serious of these
errors are:

e The payments made from some of the local Unemploy-
ment Insurance offices might not be picked up for
inclusion in the state’s central database, due to tele-
communication or ADP problems.

e If the state builds a separate file for each day’s transac-
tions, the transactions for one or more days might be
erroneously omitted from the final cumulative file.

¢ Incorrect coding of transactions could result in either
foreign elements being included in the frame or the
editing out of transactions that should be included.
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4. DATA ANALYSIS AND MODEL
DEVELOPMENT

Figure 1 is a time series plot of sampling frame sizes for
a 52 week period. Each week’s sampling frame consists of
the previous week’s Unemployment Insurance benefit
recipients who continue to receive benefits, minus the
previous week’s Unemployment Insurance recipients who
have returned to work, exhausted their benefits, or failed
to file a claim, plus newly eligible claimants and eligible
claimants who did not file a claim or were not compensated
for a claim the previous week.
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Figure 1. Number of UI payments per week.

Control charts for individual observations assume that
the data are independent and identically distributed (i.i.d.).
However, if the data are serially correlated, the estimates
of the process variance (and therefore the control limits)
could be seriously in error. So, before control charts for
the Unemployment Insurance sampling frame data can be
constructed, we have to determine if the observations are
serially correlated.

The plot of the time series in Figure 1 provides visual
evidence that the observations are not independent. The
sampling frame data display distinct trends of increasing
values during the first 13-week quarter, decreasing values
over the next two quarters, and increasing values during
the final 13-week quarter. The serial correlation suggested
by the plot of the data in Figure 1 can be tested using methods
developed to analyze time series. Although a detailed
discussion of the analysis of time series data is beyond the
scope of this article, the concepts of stationarity and auto-
correlation will be examined, in order to explain the proce-
dures used to identify the appropriate model. Readers who
are unfamiliar with the basic principles of time series analysis
should consult one of the many texts on the subject, in
particular Box and Jenkins (1976).
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4.1 Stationarity

We can think of the individual observations that consti-
tute a time series as a collection of jointly distributed
random variables - p(z,, ..., Z,) — where p is a proba-
bility density function and z;, ..., z, are random variables.
If the joint distribution of the random variables does not
vary with respect to time, that is, p(z,, ..., Z4pn) =
P(Zysms -- -5 Zeen+m), the process is said to be strictly
stationary. In practice strict stationarity is difficult to
establish. In this application, the time series is assumed to
be weakly stationary. This is also referred to as second-
order stationarity, because the first and second moments of
the process are invariant with respect to time - E(z,) =
E(z1m), VAR(z;) = VAR(Z4 ), and COV (2,,2,14) =
COV(zt+mazt+k+m)-

Throughout the rest of this article, the terms stationary
or stationarity refer to a process that satisfies the condi-
tions of weak stationarity.

4.2 Autocorrelation

In a stationary time series the covariance between any
two observations depends only on the number of time
periods (lags) that separate them - COV(z,,2,,4) =
COV (24 m»Zt+k+m)- The correlation of z, and z,, , equals
COV(z,,2,41x)/VAR(z,) and is denoted p;, where k is the
number of periods between observations. For example, p,
is the correlation of observations in the time series sepa-
rated by one period and equals COV(z,,z,,.1)/VAR(2,).
A correlation for period & is referred to as an autocorrela-
tion, because it is the correlation for observations which
constitute a time series. The autocorrelations for the
various lags can de displayed in a graph called a corre-
logram, which is useful in identifying the appropriate
model for a time series.

4.3 Time Series Model Identification

Figure 2 is the correlogram for the 52 week time series
of the number of Unemployment Insurance payments in
the sample frames. The autocorrelations decrease or “‘die
out’’ very slowly, which is characteristic of a nonstationary
process. (Again, the reader is referred to Box (1976) and
other texts on time series for a complete discussion of
model identification.)

One method to transform a nonstationary series to a
stationary series is differencing. The symbol B is the
backshift operator, which when applied to z, shifts the
subscript back one period. Thus, the first difference of z,
is (1 — Bz, =z, — 74—

Figure 3 is the time series of the differences z, — z,_; of
the Unemployment Insurance sampling frame data. This
series appears stationary around a mean of zero. (The esti-
mated sample mean of the differences is 150.8, with a stan-
dard error of 2064.0. The test statisticz = (150.8 — 0)/
2064 equals .07, and the hypothesis that u = 0 cannot be
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rejected). First differences might not be sufficient to achieve
stationarity for other time series, and transformations such
as second differences - (1 — B)%z, = (2, — z,_1) —
(z,_1 — Z,_2), seasonal differences, or logarithmic or
other variance stabilizing procedures may be required.

Auto- Stand.

Lag Corr. FErr. -1 -.75 =-.5 -.25 0 .25 .5 .75 1 Box-Ljung Prob.
domcwlooeg il . + i
1 .91 135 46.086 000
2 .%00  .133 91.592 000
3 .830  .132 . - 131.116 000
4 778 131 . - 166.570 000
5 .699  .129 . wen 195.749 000
6 .631 .128 - 220.036 000
7 .557  .127 * 239.375 000
8 .468  .125 - 253.366 000
9 .381 .124 - 262.822 000
10 .298  .122 - 268.774 000
11 .216 121 - 271.979 000
12 .157 119 * 273.714 000
13 .084 118 . 274.220 000
.
15 -.012 115 274.464 000
16 -.040 113 - 274.586 000
17 -.084 112 b 275.156 000
18 -.099 110 * 275.967 000
19 - 277.737 000
20 -.178  .107 280.516 000
21 -.221  .105 284.959 000
22 -.263  .103 291.419 000
23 -.297  .102 299.936 000
24 - 310.739 000

339,530  .000

Plot Symbols: Autocorrelations * Two Standard Error Limits .

Total casss: 52 Computable first lags: 51

Figure 2. Autocorrelations for Ul weeks paid time series.
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Figure 3. First differences of UI payments.

The autocorrelations of the first differences of the time
series, which are displayed in Figure 4, are consistent with
a stationary process. The autocorrelations decrease rapidly,
while the partial autocorrelations (not displayed) die off
after lag 1. This suggests that the data can be modelled
with a first-order integrated autoregressive process, ARI
(1,1). The AR term indicates that a single autoregressive
parameter will be estimated, and the integration term (I)
shows that the original time series has been transformed
using first differences.
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20 .075 107 * . 37.776 009
21 -.048 105 - . 37.983 013
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Plot Symbols: Autocorrelations * Two Standard Error Limits .

Total cases: 52 Computable first lags after differencing: 50

Figure 4. Autocorrelations for first differences of UI weeks paid.

4.4 Model Estimation

The model was estimated using the ARIMA procedure
of the SPSS Trends software (release 4.0), which is based
on the work of Box and Jenkins.

The tentative model is:

2= (1 + &1)z-1 — 0122 + &, Or
2 — o1 = 61(Z—1 — Z—2) + e

where ¢, is the first-order autoregressive parameter, and
e is the error term, which is assumed to be normally
distributed with a mean of 0 and variance ¢2. The
estimated autoregressive parameter, ¢; is —.4045, and
the estimated residual variance, aez’ , is 184,275,853 (with
50 degrees of freedom). The negative sign on the AR
parameter is consistent with the alternating signs of the
autocorrelations in Figure 4. The model does not include
a constant term, because the estimated process mean was
not significantly different than zero.

4.5 Model Diagnostics

The adequacy of the estimated model for the observed
data can be assessed by examining the model residuals. If
the model adequately fits the data, the residuals (e;)
should be “‘white noise’’, that is, uncorrelated. Figure 5
displays the autocorrelations of the model residuals.
Although the autocorrelation at lag 13 in Figure 5 is signifi-
cant, the Box-Ljung Q statistic through lag 13 is not
significant. (The Q statistic tests the significance of
autocorrelations for lags 1 through k. For a detailed
discussion, see Box and Pierce (1970)). In addition, none
of the partial autocorrelations (not displayed) are signifi-
cant. These results indicate that the residuals are not
serially correlated.
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Plot Symbols: Autocorrelations * Two Standard Error Limits .

Total cases: 52 Computable firast lags: S50

Figure 5. Autocorrelations for time series model residuals.

To test the assumption that the model residuals are
normally distributed, N (0,02), a Kolmogorov-Smirnov
(K-S) goodness of fit test was conducted. For the esti-
mated variance of 184,275,853, the K-S test statistic equals
.591 (p = .876), and the hypothesis that the differences
are normally distributed cannot be rejected.

For a stationary AR (1) process, the absolute value of
the autoregressive parameter must be less than one. To test
the hypothesis that | ¢; | = 1 for the model, we compute:
t = (| ¢{ | — 1)/SE(é{), where | ¢; | is the absolute
value of the estimated autoregressive parameter, and
SE () is the standard error of ¢{. The model statistics
resultinz = (.4045 — 1)/.12950rt = —4.6. Thechance
of observing an absolute value of ¢{ as small as .4045 if
the true absolute value of ¢; = 1 is very small (< .00001).
The hypothesis that | ¢; | = 1 is rejected, and we can
conclude that the series of first differences is stationary.

5. USE OF THE ARIMA MODEL IN
A CONTROL CHART

5.1 Control Charts for Individual Observations

The control limits for a chart of individual observations
are set at ¥ + 3¢’, where X is the average of observation
values and o’ is the estimated standard deviation of the
process. Ryan (1989) discusses alternative procedures to
estimate the process standard deviation either by computing
the average of the moving ranges (the mean of the absolute
differences of successive observations) or using the stan-
dard deviation (s) of the sample observations, ¢’ = s/c,
where c is an adjustment constant which depends on the
sample size.

When data are serially correlated, the use of either the
sample standard deviation or the average moving range
can result in poor estimates of ¢. The control limits
constructed from these estimates can produce seriously
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misleading results by either generating false signals that
the process is out of control or failing to detect special
causes of process variation. The moving range can under-
estimate o, because the differences of successive values will
tend to be small if the successive observations are highly
correlated. The underestimation of ¢ will result in control
limits that are too narrow and an increase in the number
of signals of special causes. Ryan notes that using the
sample standard deviation to estimate the process standard
deviation will result in a better estimate of o than the aver-
age moving range when the data are correlated, provided
the sample consists of at least 50 observations. However,
the sample standard deviation is an unbiased estimator of
o only when the observations are independent.
Vasilopoulos and Stamboulis (1978) analyzed the effect
of serially correlated data on the control limits of ¥ and
s (standard deviation) charts and developed equations for
factors that can be used to adjust the control limits for data
generated by an autoregressive process. Alternatively, a
time series model can be identified for the correlated data,
and a control chart can be constructed using the model
residuals to monitor the process. This approach is described
by Berthouex, Hunter, and Pallesen (1978) for subgroups
of measurements of environmental data collected at water
treatment plants. Alwan and Roberts (1988) use the resid-
uals of exponentially weighted moving average (EWMA)
models for both stationary and nonstationary time series.
Montgomery and Mastrangelo (1991) use the residuals of
an autoregressive model in an EWMA chart and contend
that EWMA charts can be used to approximate many
autocorrelated models, particularly if the observations are
positively correlated and the mean does not drift too
quickly. The reader is also referred to Maragah and
Woodall (1992) and Woodall and Faltin (1993) for addi-
tional discussion of the effects of autocorrelation on
statistical process control procedures.

5.2 Control Charts for the Unemployment Insurance
Data

Figure 6 is a control chart of the residuals (e, = z; — z/)
of the ARI (1,1) model identified for the Unemployment
Insurance sampling frame data. Since the model diagnostics
support the conclusion that the residuals are independent
and identically distributed (i.i.d.) N(0,62), the residuals
are standardized, so that the chart’s center line is 0 and
the control limits are set at = 3. The chart includes model
residuals for the sampling frame sizes in the 52 week
baseline period and subsequent calendar quarter. The
difference between the size of the sampling frame for week
56 and the value predicted by the model falls outside the
upper control limit, signaling a special cause.

As an alternative to charting the model residuals, control
charts for the Unemployment Insurance sampling frame
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Figure 6. Control chart for model residuals (baseline data +
next quarter).

sizes can be constructed. The original observations must
be transformed to achieve stationarity, if necessary. The
estimated parameters of the time series model are used to
construct the mean and control limits of the chart. The
variance of an AR(1) process is > = ¢2/(1 — ¢#). For
the time series model of first differences, ¢ is —.4045,
and the estimated residual variance, o, 2 is 184,275,853.
The estimated process variance is 184,275,853/(1 — .1636)
or 220,325,579.4, and the process standard deviation is
14,843.4. The upper and lower control limits are set at
+30’ from the estimated mean difference of zero:
+44,530.2. The control chart is shown in Figure 7 and
signals a special cause for observation 56, like the control
chart for the residuals in Figure 6.
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Figure 7. Control chart for Ul payments (first differences —
baseline + next quarter).
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6. CONCLUSIONS

Statistical process control is a useful quality assurance
too!l for surveys in which samples are selected from frames
that are constructed for specified periods from a contin-
uous process. Because the frame sizes constitute a time
series, the data may be serially correlated and may have
to be transformed in order to achieve stationarity. If the
observations are correlated, the appropriate time series
(ARIMA) model must be identified in order to estimate
the process variance used in setting the control limits. The
time series in the preceding example was fitted by a first-
order autoregressive integrated (differenced) model - ARI
(1,1). More generally, time series may be described by
other ARIMA (p,d,q) models, where p is the number of
autoregressive terms in the model, d is the degree of
differencing to achieve stationarity, and ¢ is the number
of moving average terms in the model. Seasonal time series
models include additional AR, MA, and differencing
parameters for the appropriate lag(s).

Once the model has been identified from baseline data,
observations from subsequent periods can be plotted in
the control chart. In the control charts in Figures 6 and 7,
one calendar quarter (13 weeks) of observations are plotted
following the observations from the 52 week baseline. The
time series model should be checked periodically, depending
on the data collection interval, to determine if the model
parameters have changed.

If the statistical process control procedures signal a
special cause of variation, survey managers must use other
quality management tools to determine the root causes of
the frame problems and then implement corrective actions
to improve survey procedures. Survey managers can move
from troubleshooting and error correction to continuous
improvement of the survey process by systematically
removing the assignable causes of variation identified
through statistical process control.

In the case of the Unemployment Insurance sampling
frame data, the special cause was not preventable: the
volume of Unemployment Insurance payments spiked
during a week which followed a short work week due to
a holiday and which coincided with a layoff at a large
establishment. The large sampling frame was not the result
of a technical problem with the construction of the frame.
In other states, at different time periods, statistical process
control has detected errors as diverse as data entry mistakes
(a frame of 558,432 reported instead of 5,558,432),
omission of the Unemployment Insurance transactions for
one of five work days, resulting in an approximate
20 percent decrease in the frame size, and the failure to
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update edits in the sample selection software, which caused
‘oreign elements to enter the frame.

The procedure described in this article is applicable to
other areas of survey and information management in
addition to the integrity of sampling frames. The proce-
dure can be used to reduce nonsampling error attributable
to data recording or data entry for surveys conducted
daily, monthly, efc. More generally, statistical process
control can be used to assure the integrity of databases or
management information systems whenever information
is collected or reported in subgroups, such as data collected
at multiple sites or by several researchers or auditors.

ACKNOWLEDGEMENT

The author wishes to thank the reviewers for their
helpful comments and suggestions.

REFERENCES

ALWAN, L.C., and ROBERTS, H.V. (1988). Time series
modeling for statistical process control. Journal of Business
and Economic Statistics, 6, 87-95.

BERTHOUEX, P.M., HUNTER, W.G., and PALLESEN, L.
(1978). Monitoring sewage treatment plants: some quality
control aspects. Journal of Quality Technology, 10, 139-149.

BOX, G.E.P., and PIERCE, D.A. (1970). Distribution of
residual autocorrelations in autoregressive moving average
time series models. Journal of the American Statistical
Association, 65, 1509-1526.

BOX, G.E.P., and JENKINS, G.M. (1976). Time Series Analysis:
Forecasting and Control. San Francisco: Holden-Day.

DEMING, W.E. (1982). Quality, Productivity, and Competitive
Position. Cambridge: Massachusetts Institute of Technology
Center for Advanced Engineering Study.

MARAGAH, H.D., and WOODALL, W.H. (1992). The effect
of autocorrelation on the retrospective X-chart. Journal of
Statistical Computation and Simulation, 40, 29-42.

MONTGOMERY, D.C., and MASTRANGELO C.M. (1991).
Some statistical process control methods for autocorrelated
data. Journal of Quality Technology, 23, 179-204.

RYAN, T.P. (1989). Statistical Methods for Quality Improvement,
New York: John Wiley and Sons.

VASILOPOULOS, A.V., and STAMBOULIS, A.P. (1978).
Modification of control chart limits in the presence of data
correlation. Journal of Quality Technology, 10, 20-30.

WOODALL, W.H., and FALTIN, F.W. (1993). Autocorrelated
data and SPC. American Society for Quality Control
Statistics Division Newsletter, 13, 18-21.



