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Estimation of Correlation in Randomized Response

D.R. BELLHOUSE!

ABSTRACT

Stanley Warner’s contributions to randomized response are reviewed. Following this review, a linear model, based
on random permutation models, is developed to include many known randomized response designs as special cases.
Under this model optimal estimators for finite population variances and covariances are obtained within a general
class of quadratic design-unbiased estimators. From these results an estimator of the finite population correlation
is obtained. Three randomized response designs are examined in particular: (i) the unrelated questions model of
Greenberg et al. (1969); (ii) the additive constants model of Pollock and Bek (1976); and (iii) the multiplicative
constants model of Pollock and Bek (1976). Simple models for response bias are presented to illustrate the effect

of this bias on estimation of the correlation.

KEY WORDS: Additive constants model; Linear models; Multiplicative constants model; Response bias; Unrelated

question model; Variance estimation.

1. A BRIEF OVERVIEW OF WARNER'’S
CONTRIBUTIONS TO
RANDOMIZED RESPONSE

Randomized response is a technique used to elicit
responses to sensitive questions. It was developed thirty
years ago by Stanley Warner (Warner 1965) to estimate
a proportion under a simple random sampling design with
replacement. The development was a substantial intellec-
tual achievement requiring much originality of thought.
How does one get truthful responses to sensitive questions?
Warner’s solution was to get the response without the
interviewer knowing whether the sensitive question had
actually been asked. He devised the probabilistic structure
to the questioning so that an estimate of the required
proportion could be obtained. In Warner’s original for-
mulation the population is divided into two mutually
exclusive and exhaustive groups, A and B. It is of interest
to estimate the proportion 7 of the population belonging
to group A. To do this, a spinner is constructed with a face
marked with the letters A and B. The construction is such
that the spinner points to the letter A with probability p
and to B with probability 1 — p. The interviewee spins the
spinner and is required only to say yes or no according to
whether or not the spinner points to the interviewee’s
correct membership group. The with replacement design
allows estimation of m by maximum likelihood.

This very original idea has received substantial attention
over the past thirty years. Since Warner’s original work,
several randomized response techniques have been suggested
for the estimation of a proportion or set of proportions
as in polytomous data, or for the estimation of a popula-
tion mean with continuous data. A variation on Warner’s
original theme is asking the sensitive question or an

unrelated question with probabilities pand 1 — prespec-
tively. This was originally due to Greenberg et al. (1969).
Other variations with continuous data include adding a
random variable to the response to the sensitive question
or multiplying the response by a random variable. The
underlying theme to any of these techniques is the masking
of the original response in such a way that the sensitive
information cannot be attributed to any single respondent
but that information on the sensitive attribute can be
extracted from the whole sample. A substantial literature,
including a monograph by Chaudhuri and Mukerjee (1988),
has grown up around these techniques. Nathan (1988) has
provided a fairly comprehensive bibliography of this
literature. Umesh and Peterson (1991) have given several
detailed examples from very diverse areas of the applica-
tion and applicability of the techniques of randomized
response.

With several different randomized response techniques,
the question arises as to how to compare the different
methods. Minimization of variance cannot be the sole
criterion. Each method is designed to protect the privacy
of the respondent. A gain in efficiency, in terms of
variance, by the choice of different values of the proba-
bilities in the randomizing device, or by the choice of one
randomized response method over another, could lead to
jeopardizing the privacy of the respondents. In response
to this, Leysieffer and Warner (1976) and Warner (1976)
formulated natural measures of respondent jeopardy.
These measures are related to the probability of the inter-
viewer being able to infer the interviewee’s response to the
sensitive attribute. The theory of respondent jeopardy is
reviewed in Chaudhuri and Mukerjee (1988) and some
practical considerations regarding respondent jeopardy
are reviewed in Umesh and Peterson (1991).
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Stanley Warner made two other contributions to the
literature of randomized response. The first contribution
is directly related to the results obtained here. With the
explosion of new ideas and new techniques in randomized
response, Warner (1971) formulated a linear model which
unified the theory. Most of the randomized response
techniques at that time could be put in his linear model
framework. The second contribution was in response to
the growing use of telephone interviewing. Stem and
Steinhorst (1984) described randomized response methods
applicable to telephone interviewing and to mail question-
naires. Warner (1986) suggested practical natural random-
izing devices, such as the serial numbers on paper money,
for use in telephone interviewing.

The major topics in randomized response methodology
are: the development of randomized response techniques,
the comparison of these techniques through the concept
of respondent jeopardy, the construction of reasonable
randomizing devices, the development of a unified theory
of randomized response, and the validation of randomized
response techniques through field studies. Stanley Warner’s
contributions to randomized response touch on most of
these major developments in the subject. Moreover, most
of these contributions were substantial and influential. He
is the originator of the technique. His original setup of a
dichotomous population was quickly generalized to a
polytomous one and to populations with continuous
measurement. New randomized response techniques
continue to be developed. Warner was at the forefront of
evaluating randomized response designs through the
modeling of respondent jeopardy. His work in the devel-
opment of a unified linear model for randomized response
designs was the foundation on which a unified theory of
randomized response has been built.

2. INTRODUCTION TO ESTIMATION
OF CORRELATION

Consider a finite population of size N with two mea-
surements of interest x;and y; forj = 1, ..., N. Itis of
interest to estimate the finite population correlation

~ T
b}
0,0y

where o,, = ¥ (x; — X)(y; — Y)/Nis the finite popu-
lation covariance between the variables x and y and where
o2 and oyz are the finite population variances of the vari-
ables x and y respectively. To estimate p a sample of fixed
size n is chosen with probability P(s) from the finite
population where s denotes the set of finite population
units chosen for the sample. The expectation operator with
respect to the sampling design P(s) is denoted by E,.
Estimators for p are obtained by replacing o7, o} and g,

by their respective estimators, unbiased or biased, optimal
in some sense or otherwise.

To illustrate the general results obtained here for esti-
mation of the finite population correlation coefficient,
three particular randomized response techniques will be
considered:

(i) The unrelated questions model due to Greenberg ef al.
(1969). The sensitive question is asked with proba-
bility p and an unrelated question which is not sensi-
tive is asked with probability 1 — p. For estimation
of the mean it is assumed that the finite population
mean X of the unrelated question is known. For esti-
mation of variance it is also assumed that ¢ is known.

(i1) The additive constants model due to Pollock and Bek
(1976). The outcome of a random variable from a
known probability distribution is added to the value
of the response to the sensitive question.

(iii) The multiplicative constants model due to Pollock
and Bek (1976). The value of the response to the sensi-
tive question is multiplied by the outcome of a random
variable from a known probability distribution.

Edgell et al. (1986) have provided estimators for p under
the unrelated questions model and the additive constants
model.

Most randomized response designs that have been con-
sidered have assumed that the sampling design is simple
random sampling either with or without replacement.
Since the results obtained here are under a fixed size
design, the simple random sampling design assumed here
is without replacement.

Assume that both x and y are sensitive variables. Conse-
quently, a randomized response technique is used to obtain
information on both these variables. Let w; and z;, for
J € sbethe sampled measurements that are obtained. Let
ujand v;forj = 1, ..., N be the nonsensitive measure-
ments associated with x; and y; respectively. Under the
unrelated question model (randomized response model (i))
u; and v; are the responses to the unrelated questions for
the j-th individual. Under the additive constants model or
the multiplicative constants model (randomized response
models (ii) or (iii)) #; and v; are the j-th outcomes of
random variables from two, possibly different, known
probability distributions.

3. RANDOM PERMUTATION MODELS

Several models for the finite population measurements
have been put forward in the survey sampling literature.
Here attention is focused on the random permutation
models of Rao (1975) and Rao and Bellhouse (1978).
One compelling reason for using these models is that the
model parameters have a direct interpretation in the finite
population of interest since model parameters in random
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permutation models are also finite population parameters.
In the simplest context for random permutation models
it is assumed that the N-dimensional vector of finite
population measurements is a random permutation of an
N-dimensional vector of fixed numbers. Rao (1975) has
shown how this assumption leads to a linear model.
Bellhouse (1980) extended this model to randomized
response designs under unequal probability sampling.

The model and associated designs applicable to unequal
probability sampling are not easily applicable to estimation
of variances and covariances either with or without a ran-
domized response. Consequently, a special case of the
model in Bellhouse (1980) is given here. In the model which
follows there are two different expectation operators at
work which together yield a composite expectation E,,,.
These expectation operators are: E,, the expectation
operator with respect to the randomizing device, and E,,,
the expectation operator with respect to the random per-
mutation model. The composite expectations E,, = E, E,
and E = E, E,. For the random permutation model we
assume that the pairs (x;, y;),j =1, ..., N are a
random permutation of a set of N fixed pairs of numbers,
say (p;,q;),J = 1, ..., N. This is a special case of model
(4.1) in Rao and Belthouse (1978); the more general model
in Rao and Bellhouse (1978) was used in double sampling
and sampling on two occasions. The unrelated questions
randomized response model (randomized response model
(i)) requires an additional assumption that the quadruples
(xj,yj, u;,v;),j = 1, ..., Nare arandom permutation
of a set of N fixed quadruples of numbers, say (p;, g;, 7},
t),j=1,...,N.

Assume that the randomizing device coupled with the
random permutation model leads to the following linear
model:

Wj = o + BIX'F elj
) M
Zj = oy + ﬁzY + €355,

forj = 1, ..., Nwhere X and Y are the finite population
means of the x and y measurements respectively and where
forj=1,...,N

E,(e;) = E,(ey) = 0,

En(el) = 107 + Yo + ¥ X + Yo X7,

E,(e3) = ¢07 + Yoo + V12 Y + ¥ Y2,

E,,,(elj e,k) = 610)% + )\], E,,,(ezj €2k) = 520)% + )\2,

for j # k,

E,,,(elj ezj) = ¢30’xy + 11/3, and

Em(elj eZk) = 63(Txy + )\3, for j # k. (2)
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and all other higher moments are independent of ;. In the
model given by (1) and (2), the a’s, N’s, ¢’s, y’s and &’s
are all known constants. The finite populations variances
and covariances of the sensitive questions, o7, o and o,
are all unknown.

For the unrelated questions model (randomized response
model (i)) assume that the randomizing schemes on the two
sensitive questions are independent and that sensitive
question i, i = 1, 2, is asked with probability p; and the
associated nonsensitive questions with probability 1 — p;.
Assume further that the sensitive questions are unrelated
to the nonsensitive questions so that ,,, = 0,, = 0, =
oy, = 0. This assumption is unnecessary under simple
random sampling with replacement. When, in addition,
a random permutation model is assumed on the quadruple
(x;, yj» u;, v;) then in the model given by (1) and (2):

g = (1 —ppU, B =p,on = (1 —p)V, By = p,

¢ = pi, Yo = (1 — p)oi + p(1 — p)T?,

¥y = =2p (1 — p)) G, va = pi(1 — pp),
b = Do, Yoo = (1 — pr)ol + pa(1 — py) P2,

Yia = =2p,(1 — p)V, ¥ = pa(1 — py),
8 = —pt/(N = 1), N\ = —(1 — p)oi/(N — 1),
b = —p3/(N = 1), = —(1 — p)’a)/(N - 1),

O3 = pipy, 63 = — 3/ (N — 1),
¥3 = (1 — p)(1 — pr)oy,
and )\3 = "'I#3/(N - 1). (3)

Note that the model assumptions require that the finite
population variance-covariance matrix of the nonsensitive
questions is known as well as the finite population means.

For the additive constants model (randomized response
model (ii)) assume that the random variables u and v that
are added to the value of the responses to the two sensitive
questions are independent with means p, and u, and
variances o2 and o2 respectively. When the random per-
mutation model is assumed on the pair (x;, y;) then in the
model given by (1) and (2):

23] =.u'ua61 = 1’a2=“v’62= 1,

b1 = ¢ = b3 = 1, ¢y 203”1002:03’
61 =62=63: _1/(N_1)7

Vi =vYa=vYn=yYn =y =N =M=N=0.
@
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In the multiplicative constants model, two independent
random variables, ¥ and v with means g, and p, and
variances ¢2 and o2 respectively, are multiplied respectively
by the value of the response on the x-variable and the
y-variable. When the random permutation model is
assumed on the pair (x;, y;) then in the model given by
(1) and (2):

ay =a, =0,8 = Bus B2 = Wy,
2 2 2 2
¢ = py + 0u1¢2 = py + 0y, d3 = py Ky,
_ 2 _ 2
Yo = 0y, Yoo = 0y,

& = —p2/(N —1),8 = —pl/(N = 1),
83 = —puu,/ (N — 1), and

Vo=V =V =V¥n=V¥; =N =N=N=0.
(&)

4. ESTIMATION OF VARIANCE
AND COVARIANCE

Consider estimation of a} so that the appropriate data
are z; for units j € s. The general class of quadratic esti-
mators of oyz is of the form:

ey = b + Y, bz Y, byt +) ), bezizis (6

J€s Jjes i#jes

where the coefficients of the z’s are defined for all s, all
J € s and all pairs (i, ) € s.

In the context of randomized response, an estimator e,
in the class defined by (6) is design-unbiased for ay2 if
E,E.(e,) = ayz and is pm-unbiased if E(e,) = a)%. Con-
ditions under which an estimator e, is pm-unbiased are
obtained upon taking the expectation E of (6) under (1)
and (2). On equating coefficients in ¥°, ¥!, ¥? and o
four equations in four unknowns are obtained. The solution
to these four equations yields the following conditions
under which estimators in the class defined by (6) are
pm-biased for o2:

B3
E b} = — A, (T
p( E Jj) B3 (dy — 83) — So¥m 2 @)

J€s

B3 + Y
E bs[' = - =
p(E E J) B3 (dy — 83) — S

i#jes

—(A2 + By), (8)

_ QRagyyy — Boyn2)
Ep( E bg.) = Bos - 0 — bdm G, )
and
£ (5, ) = 228+ ¥) = (et = cobodia + BV

B3 (¢ — &) — S¥m
= D,. (10)

In order to obtain the optimal estimator we need to define
an associated class of quadratic estimators of 0. This is
given by

€ = Cs. T+ E Csj. %j + E Csjj sz + E E Csij Zi%j -

Jjes jés i#jes

The conditions for an estimator e, in this class to be
pm-biased for 0 are

Eplc.) = Ep( Y Csj.) = E,,< Y csjj) =

Jjes Jjes

E, (EL‘ cs,-,.) =0. (11

i#jes

Derivation of the minimum variance quadratic design-
unbiased estimator of a)% follows along the same lines as
that used for the finite population mean by Rao and
Bellhouse (1978) for cases without randomized response
and by Bellhouse (1980) for cases with randomized
response. The covariance E(eye.) under the composite
expectation is determined under the model such that only
expectations of the form E, remain to be determined.
From this expression the coefficients b are set to make
E(epe.) = 0under the conditions in (11). The values of
the coefficients b are then determined from the conditions
in (7) through (10). From a theorem on minimum variance
unbiased estimation of Rao (1952), the resulting estimator
is the optimal pm-unbiased estimator of a}%. If there exists
a design such that this estimator is also design-unbiased for
ayz , then by arguments similar to those given in Theorem
(2.4) of Rao and Bellhouse (1978), the estimator is also the
optimal design-unbiased estimator of 03. We present
results for pm-unbiased estimators first (Theorems 1 and 2)
and then present results for design-unbiased estimators
under the three randomized response schemes.

Theorem 1. Under the model defined by (1) and (2) and
for any design of fixed size n, the pm-variance of e,
E,,[E,E (e, — o})?] = E(e, — 0;)?, is minimized for
the estimator given by

1
(A2 + By)s} = B~ Y, 4/ + G2+ Dy, (12)
n

Je€s
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where Z is the sample mean of the data and

1
2 =2
S, = E i — %
¢ n—1 (% )

Jés

is the sample variance of the data obtained through ran-
domized response where A,, B,, C, and D, are defined in
(7) through (10) respectively.

Proof. Under the model given by (1) and (2) the covariance

E(e,e,) is algebraically quite lengthy but may be expressed
in the following form:

b'Ge + H, (13)

where b7 is the vector

[E,,(bs..), E,,( Yy bsj.> ; Ep< )) bs,y),

jes Jjes

E, (E ) bs,-,) ] , (14)

i#jEs

and ¢ is the same as (14) with the b’s replaced by ¢’s. The
4 X 4 matrix G in (13) contains functions of the first order
moments of z; and the second order moments of e,; in (1).
The expression H in (13) is a sum of terms of the form

K E bsij Cski» 15)

where the summation symbol is up to a quadruple sum,
where the subscripts of b could be replaced by adot (.) and
where « is a function of second through fourth order
moments of e,; in (1). Note that these moments are all
independent of j. In (15) the sum is a single sum over j € §
when, for example, the subscriptsi = j = k = /or when
i = kandjand/arereplaced by dots. The sum is a double
sum over i # k € swhen, for example, i # kandjand /
are replaced by dots. This process continues to the qua-
druple sum in which / # j # k # [. From (11) E(epe.)
reduces to 0 if bs = hy, by; = hy, bg; = h3, and bg; = hy,
where the h; are constants. From (7) through (10) and the
fact that the design is of fixed size we obtain

bs. = Dy, by = Cy/n, by; = _m’

by = Ay/n,

so that the estimator in (12) minimizes the variance in the
pm-unbiased class of quadratic estimators of oyz. Q.E.D.

By the same arguments

1
(A, + By)s: — B~ 2: wl+ Cw + Dy,  (16)
n

Jjes
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is the optimal pm-unbiased estimator for 2 where

2

A= Bi ’

Bi(é — 8;) — iy
B = BT + ¥

1 — 2 >

Bi(dy — 61) — d1¥y
c = 2(24351%1 — Bav11) . and

Bi(edy — 81) — 81y
D, = M(BE + ¥a1) — (alym — aiBivn + Bivar)

Bi(¢) — 8)) — 81y

The same technique can be used to estimate the co-
variance o,,. The general class of quadratic estimators of
oy, is of the form

ey = dg + E diz; + E dy; W; +EE dsijwizj’

jes J€s i#jes

where the coefficients of the w’s and z’s are defined for
all 5, all j € s and all pairs (i, j) € s. The result on the
covariance is stated without proof in

Theorem 2. Under the model defined by (1) and (2)
and for any design of fixed size n, the pm-variance of
es EplE,E (€4 — 0,)?) = E(ey — 0,,)?%, is minimized
for the estimator given by

Swz — (‘1/3 - )\3) (17)
¢3 — 03 '
where

1
n—1

Y, W= W)z - 2)

JEs

SWZ

is the sample covariance between w and z.

An estimator for p is obtained from (12), (16) and (17).
In the additive constants randomized response model
(randomized response model (ii)) the estimator of p is
given by

S
Pac = vz . 18
Poe = I(s2 — o) (5T — oB) 19

This is the same as the estimator obtained by Edgell ef al.
(1986). Under the multiplicative constants model (random-
ized response model (iii)) the estimator reduces to
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SWZ
2,2 2,2
\/sz_Mlng\/sz_Mlzzz
w J 4 7
1+ 03/“’3 njes 1+ Ug/l"\% njes

(19)

for u, # 0and u, # 0. When g, = 0 the coefficient of
Y w? is 1/n and when g, # 0 the coefficient of ¥ z7 is
1/n. The estimator for p under the unrelated questions
model (randomized response model (i)) is

_U=pd=pg

. 4V}
bug = _ )

wzZ uv

where S,, = Noa,,/(N — 1) and where

- 1 _
S2=s5— (1 —Pl);E Wj2+2(1 - ppUw —

Jes

_ 1 —p
(1 -p)0* - (1 —pl)oi(pl +N—_-—1’)
and

. 1 _
Sf=sz2—(l—pz);Eij+2(l—p2)VZ—
Jjes

(1 -p)7 - (1 —pz)aﬁ(pz 4+ 2 —p2> :

N -1

When p, = p, this may be compared to the estimator in
Edgell ef al. (1986). The resulting estimator for p,, differs
from the estimator in Edgell et al. (1986) who assume that
o,, = 0. They also use biased estimators of o2 and a}.
Edgell et al.’s estimator for ayZ is obtained by writing the
design variance of 7 under simple random sampling with
replacement as

N
oi/n =Y (zj — Z)*/(Nn). @1

j=1
The design variance of Z under the randomizing device is
[p202 + (1 = py)ot + pa(1 = p) (Y — P)21/n. (22)

Expression (22) is found in Greenberg et al. (1971). The
estimator for ayz is found by equating (22) to the left hand
side of (21), by substituting sample the estimator of ozz
and the randomized response estimator of ¥ in the
resulting equation, and then by solving for af.

Each of the estimators of the finite population variances
and covariance, which are the components of g in (18), (19)
and (20), are design-unbiased under the appropriate ran-
domized response model for any design with joint inclusion
probability for units / and j given by 7w; = n(n — 1)/
[N(N — 1)]. Consequently, each estimator is the optimal
design-unbiased estimator for its finite population para-
mater counterpart. To obtain the appropriate unbiased
estimators in (18), multiply the numerator and denomi-
nator each by (N — 1)/N. The resulting numerator is
design-unbiased for o,, and the expressions under the
square root sign in the denominator of (18) are unbiased
for o and o7. In (19) it is necessary to multiply the
numerator and denominator by (N — 1)/[Ny,u,] in
order to obtain the correct form of the design-unbiased
estimators. The correct estimators are obtained in (20)
when the multiplier is (N — 1)/ (Npp3).

In any of the randomized response designs, the simplest
estimate of the variance of j is the jackknife estimate of
variance. Jackknife estimates of variance for 5 can be
obtained from formulae (4.2.3) or (4.2.5) in Wolter (1985).

5. EFFECT OF RESPONSE BIAS

In the additive constants model, the respondent is asked
to add a random variable ¥ to x and an independent
random variable v to y. Instead, the respondent may add
different independent random variables, say ¥’ and v’.
The means and variances of u’ and v’ may differ from
those of u and v. It is reasonable to assume, however, that
02, = o2and 02, = o2. One example in which this situa-
tion might occur is the following. The respondent does not
want to add on the outcome of a random variable near to
the mean of the distribution of the random variable. In
this case the distribution of response bias could be modelled
by the original distribution with an interval around the
mean in which any outcome from the original distribution
which falls in the chosen interval is set to one of the end
points of the interval. On taking separately the expectations
of the numerator and the expression under each of the
square root signs in the denominator of (18) the expression

Oyy
(23)
b
Jo,% + aﬁr — a,% \/0}% + a%: - 03

is obtained. From (23) it may be noted that the response
bias leads to an estimate of correlation lower than the true
value.

The multiplicative constants model is the same as the
additive constants model with the exception that the
responses to the sensitive questions are multiplied by the
random variables. As in the response bias model for
additive constants, assume that ¥’ and v’ are used by the’
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respondent instead of # and v. Then on taking separately
the expectations of the numerator and the expressions
under each of the square root signs in the denominator of
(19) the expression

Oxy

N
2
Ey!' 2 2 2 2
2, /=1 OyBy — Oy iy
°y+Nz 2, 2
Ky’ o, + Uy

N
2
Ex/zz 2 2

az+j=l Oy — Oy by
Y Nu? 2+ ul
Py Oy Ty

>

(24)

is obtained. If pu, = py' s phy = o> 0% = o2 and a2, = o2,

as in the case of the additive constants model, then from
(24) the response bias leads to an overestimate of the
correlation.

In the unrelated questions model a reasonable model
for response bias is to assume that the sensitive questions
are answered with probability p/ < p;and p; < p,.In
general the effect of this response bias is dependent on the
relative values of the various probabilities, the means and
variances of the sensitive questions, and the means and
variances of the nonsensitive questions. Under simple
random sampling without replacement and the response
bias model, the design expectation of the numerator of (20)
is given by

. (1-p{)(1=p3)— A =—p) U —p))
P12 [Sxy+ : : o : 2 Suv ’
pip2
which is greater than p{ p; S, . Likewise the design expec-
tation of $2 in (20) is

S2[p{? + (N — 1)p{(p — p{)/N]
+ (o1 — p{)S2p{ — (p{ + 2p; — 2)/N]

+ pi(py — P)(X = 0)3,

which is greater than p{ 2$? when N is large. If S,,, = 0,
then the response bias leads to an underestimate of the
correlation.
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