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Between-State Heterogeneity of Undercount Rates and Surrogate
Variables in the 1990 U.S. Census

JAY JONG-IK KIM, ALAN ZASLAVSKY and ROBERT BLODGETT!

ABSTRACT

As part of the decision on adjustment of the 1990 Decennial Census, the U.S. Census Bureau investigated possible
heterogeneity of undercount rates between parts of different states falling in the same adjustment cell or poststratum.
Five ‘‘surrogate variables’’ believed to be associated with undercount were analyzed using a large extract from the
census and significant heterogeneity was found. Analysis of Post Enumeration Survey on undercount rates showed
that more variance was explained by poststratification variables than by state, supporting the decision to use the
poststratum as the adjustment cell. Significant interstate heterogeneity was found in 19 out of 99 poststratum groups
(mainly in nonurban areas), but there was little if any evidence that the poststratified estimator was biased against
particular states after aggregating across poststrata. Nonetheless, this issue should be addressed in future coverage

evaluation studies.
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1. INTRODUCTION

The Post Enumeration Survey (PES) of the 1990
Decennial Census of the United States was designed to
produce coverage estimates for 1,392 poststrata. The nation
was first divided into 116 domains, called poststratum
groups (PSGs) according to geography, race/Spanish
origin and tenure (owner vs. renter). With only 4 excep-
tions, all PSGs are defined within a census division, one
of nine contiguous geographic areas each composed of
several states. Each PSG was further divided into 12 age-
by-sex groups, the poststrata. For example, roughly all
Black renters in New York city constitute a PSG and all
females, age 0-9, of this PSG make a poststratum (PS).
Further details on the PES are in Hogan (1992,1993).

Small area undercount rates were calculated by synthetic
estimation; the same adjustment factor was applied to
persons from a given PS in all areas. This procedure is
accurate under the “‘synthetic assumption’’ of homogeneity
of undercount rate within a PS. The validity of the syn-
thetic assumption has been hotly debated (Section 2). This
paper reports on research conducted as a part of a PES
evaluation project (the ‘‘P12 project’’) which investigated
heterogeneity within poststrata. In particular, this research
focused on the following question: can differences in
coverage be identified between parts of a poststratum that
fall into different states?

Under the homogeneity assumption, the rates are the
same within a PS regardless of state. Thus, this assumption
can be tested by comparing rates from state to state within
a PS; this test focuses attention on the question of whether
synthetic estimation is ‘‘unfair’’ to certain states. The unit

of analysis is the intersection of a census block and a PS
or PSG, called a block part (BP) for the analysis of the
undercount rate data. A census block is a small area
bounded by visible features such as streets, streams etc.
and/or by political boundaries. In urban areas it roughly
corresponds to a city block. In fact, most of our analyses
are performed on PSGs, since the age-sex breakdown of
the PSG did not vary much from state to state. Hence, the
analysis focuses on whether BPs differ between states
within PSG.

- Two distinct analyses were performed. The distributions
of five ‘‘surrogate variables’’ were investigated (Section 3),
using a large (4.26%) extract from the census. The distri-
bution of undercount was investigated using the much
smaller PES data set (Section 4). For more detailed tables
and documentation of the project, see Kim (1991).

2. LITERATURE REVIEW

Two key questions have been addressed in the literature
on heterogeneity:

1. The empirical question: how much heterogeneity is
there, and how can it be described?

2. The theoretical and policy question: what are the impli-
cations of heterogeneity for the accuracy of synthetic
adjustments and the validity of assessments of these
adjustments?

Heterogeneity may be identified and analyzed at many
levels of aggregation. Perfect homogeneity of undercount
rates for very small domains is numerically impossible,
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because of discreteness of the true population and the
census counts. Indeed, because census errors (omissions
or erroneous enumerations) tend to be either independent
of each other or positively associated (as when a household
with several members is omitted, or when some local
characteristic affects an entire block), we would anticipate
at least binomial variability in observed undercount rates.

Hengartner and Speed (1993) analyzed 1990 PES data
from two sites by fitting models in which the explanatory
variables were block and ‘‘demoid’’ (a unit defined by
the non-geographic poststratification variables, such as
race, sex, age, and tenure). They found that the amount
of variance explained by block was slightly greater than
the amount explained by demoid; the number of blocks
was not much greater than the number of demoids in
their data set. In response, Schafer (1993) argued that an
estimation scheme involving block effects would not be
practical because it would require collecting data from
every block.

Heterogeneity of undercount at any level may be
defined as excess variability in observed undercount rates
at that level over what would be expected as a consequence
of variability at a lower level of aggregation. For example,
confining our attention to a single poststratum, a set of
blocks are heterogeneous if their undercount rates in that
poststratum differ more than would be expected if house-
holds, including those counted, partially counted, and
omitted in the census, had been randomly distributed
across the blocks. Similarly, a group of states are hetero-
geneous (similarly controlling for poststratum) if they
differ more than would be expected if blocks, including
those with higher and lower undercounts, had been
randomly distributed across the states. Several studies
have attempted to measure heterogeneity in undercount
rates and other census variables. Wachter and Freedman
(1992) analyzed a large sample of census data (similar to
that considered in Section 3). They estimated the excess
variability between ‘‘superblocks’” over that predicted by
a binomial model with uniform rates, for four ‘‘artificial
population’’ variables (multi-unit housing rate, non-
mailback rate, allocations, and substitutions, described in
Section 3). Compared to the greatest possible amount of
heterogeneity (if each block were homogeneous), the
‘“‘excess variability”’ ranged from around 20% (for multi-
unit housing) to 2% (for substitutions). Another study by
Freedman and Wachter (1993) examined between-state
heterogeneity using ‘artificial populations’’ based on the
same variables and two others, and found substantial
variability.

Alho, Mulry, Wurdeman and Kim (1993) used condi-
tional logistic regression models to describe heterogeneity
associated with measured covariates that were not captured
in the poststratification. Their concern was primarily with
reducing the bias of dual system estimates of population,
rather than with more accurate small-area estimates.

A controversial topic in evaluation of the proposed
adjustment of the 1990 census was the effect of hetero-
geneity on the accuracy of adjusted population counts
obtained by synthetic estimation, and particularly on
comparisons of the accuracy of adjusted and unadjusted
counts. Wachter and Freedman (1992) argued that because
the ““synthetic assumption’’ of uniform coverage within
poststrata is demonstrably false, aggregate measures of the
accuracy of an adjusted census systematically under-
estimate error. Because nonuniformity of coverage affects
the accuracy of an unadjusted census as well, however, the
implications of this conclusion for the appropriateness of
adjustment are not obvious.

In one of the earlier ‘‘surrogate variables’’ studies,
Isaki, Schultz, Diffendal and Huang (1988) simulated the
behavior of synthetic estimators on ‘‘artificial populations’’
which were transformations of the substitution (unit
imputation) rate. They found that a synthetic estimator
generally did better than ‘‘unadjusted’’ counts.

Schirm and Preston (1987) argued, using analytical
calculations and simulation, that synthetic estimation makes
estimates for small areas more accurate under plausible
conditions, even if the synthetic assumption does not hold.
Wolter and Causey (1991) investigated the performance
of synthetic estimators and of a single ratio adjustment
when the undercount rates are estimated with error, using
undercount rates from the 1980 Post-Enumeration Program
(PEP) and simulating various levels of sampling error;
they estimated ‘‘break-even’’ coefficients of variation at
which sampling error in the adjusted counts or proportions
would make them less accurate than unadjusted counts or
proportions. The conclusions of these articles were criticized
by Freedman and Navidi (1992), who gave counterexamples
of possible distributions of undercount for which adjust-
ment by synthetic estimation would make population
distribution less accurate.

Fay and Thompson (1993) simulated effects of hetero-
geneity on accuracy of synthetic estimates, using eight sur-
rogate variables (including the five used in this study) and
the same data set as analyzed in Section 3. They performed
a loss function analysis as in Mulry and Spencer (1993) to
compare the accuracy of simulated unadjusted counts to
that of synthetically adjusted counts. They found that the
effect of ignoring heterogeneity was to underestimate the
gain in accuracy due to synthetic adjustment for five of
eight variables, and to overestimate it for one variable
(unemployment rate), while there was little difference for
two other variables (poverty and migration rates).

3. ANALYSIS OF SURROGATE VARIABLES
In the analysis of census data, we selected variables

which were available for the entire census and which,
like undercount, were descriptive of or related to the
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census-taking process. The selected surrogates are the
allocation rate, mail return rate, multiunit structure rate,
mail universe rate (fraction of units receiving mail ques-
tionnaire) and substitution rate. The allocation rate is the
fraction of households for which imputations were made
for item nonresponse, and the substitution rate is the
fraction of households which were imputed as a whole
because it was determined that a unit was occupied but no
interview could be obtained.

Table 1 shows correlations between each of these variables
and undercount rate by PSG. These ‘‘ecological’’ correla-
tions (Freedman, Pisani and Purvis 1978, pp. 141-142) of
PSG averages differ from those which could be calculated
from block-level data. The latter are smaller, possibly
because of the noise introduced by random variability in
the small populations in each block.

Table 1

Correlation Coefficients between the
Surrogate Variable
and Undercount Rate by PSG

Variable Correlation
Allocation Rate .44
Mail Return Rate -.57
Multiunit Structure Rate .39
Mail Universe Rate .08
Substitution Rate 47

Applying a naive test which treats the PSGs as indepen-
dent, each correlation is significant except that for mail
universe rate, but the magnitudes of the correlations are
not large. To some extent, furthermore, these variables are
descriptive of conditions which tend to lead to higher
omission rates (allocations due to poor completion of
questionnaires, substitutions due to difficulty in obtaining
interviews) or to lower omission rates (high mail return
rates). On the other hand, difficult census-taking condi-
tions can also lead to erroneous enumerations, so these
effects on net undercount are not entirely clear-cut. We
do not analyze these variables simply because we believe
that they are distributed in exactly the same way as under-
count. Rather we hope that by obtaining results on the
distributions of a range of different census variables, we
may gain some insight into the distribution of undercount.

For the analyses of the surrogate variables, a stratified
cluster sample of 1990 Census data was extracted. This
sample is composed of 204,394 blocks corresponding to
125,000 block clusters. A block part containing less than
ten persons was combined with successive block parts
(in order by block number) until a minimum count of ten
persons was obtained. This operation was performed to
obtain relatively stable rates for the surrogate variables
which allows us to analyze the rates themselves.
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Surrogate variables are analyzed by logistic regression.
Two forms of logistic regression model were used. For the
within-PSG analysis, the model for PSG i is

log[P;/(1 — Py)] = A + C

and for the within-division analysis,

where Py is the rate for a surrogate variable in the i-th
PSG and j-th state, A4 is the intercept, B;is the i-th PSG
effect and C; is the j-th state effect. The models used only
the 99 PSGs astride two or more states. Models were built
for surrogate variables in the 99 PSGs and in each of nine
divisions. SAS PROC CATMOD estimated the parameters
by maximum likelihood and provided Wald statistics for
testing the significance of state effects.

The data were collected with a cluster sample rather
than a simple random sample so the test statistics must be
divided by a design effect. We estimate a design effect,

Kij
E nyx Byx — Py)*

S k=1
D,j =

K b (1 — py)

where jj is the rate for the i-th PSG, j-th state and k-th
combined BP; n;, is the size of the combined BP; Kj; is the
sample number of combined BPs in the i-th PSG in the
J-th state and j;; is the estimated rate for the i-th PSG and
J-th state. The fraction is the ratio of the observed between-
block variance to that expected under binomial sampling.

The estimated design effect D,-j is a measure of within-
state within-PSG heterogeneity. The more within-state
heterogeneity there is, the greater the sampling variance
of the state-level rate and the harder it is to detect a signifi-
cant difference. The magnitude of the design effect thus
affects the statistical power of the hypothesis tests.

The calculated design effect only approximates the
required correction. First, lﬁij sums over the combined
BPs rather than individual BPs. Second, the sample is a
stratified cluster sample, and most or all post-strata span
several sampling strata. The formula is only strictly correct
for an unstratified sample. Third, the correct effect
involves off-diagonal (covariance) as well as on-diagonal
(variance) terms, and the off-diagonal terms are omitted.
To account for the above, the calculated design effects
were multiplied by the judgmentally chosen factor, 1.25.

A design effect was calculated for each surrogate
variable and PSG. It is small (around 2) in most PSGs for
the allocation and substitution rate. The effect is slightly
higher for mail return rate, but it tends to be large (as much
as 20) for multiunit structure and mail universe rate, since
these characteristics are usually fairly uniform within a
block but vary greatly between blocks.
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Table 2 summarizes the design-corrected tests for state
effects within PSG.

Table 2

Number of PSGs with Significant (a = .05)
State Effect (Logistic Regression)

Div. g;’[; Alloc I‘é‘;‘ I\g;‘r“ I[\j“:‘Vl Sub
1 5 5 5 5 1y 34
2 12 1 1 12 23100 12
3 16 s 16 16 33)  1212)
4 8 8 8 7 5(6) 5(8)
s 10 10 9 10 44 78
6 s s 13 is sy 15
7 9 8 9 9 4(4) 8(8)
8 7 7 7 7 23)  6(6)
9 17 s 14 14 55) 6(12)

Sum 99 94 92 95 36(43)  74(84)

The numbers in ( ) are the number of PSGs for which test statistics
are available when they are less than the number of groups.

Nationally, for each surrogate variable the state effect
is significant for at least 84% of the PSGs. (The total
number of PSGs varies because when a PSG falls entirely
within one state or when only one state has non-zero obser-
vations for a particular variable, the corresponding model
cannot be fit). The results are summarized at the division
level. (Divisions 1 through 9 are New England, Mid-
Atlantic, South Atlantic, East South Central, West South
Central, East North Central, West North Central, Mountain
and Pacific Divisions.)

Table 3 shows the magnitude of state effects, expressed
as x 2 values of test statistics adjusted for design effect,
for three variables having relatively high correlation with
the undercount rate. In the table, the x2 values have from
1 to 8 degrees of freedom.

Table 3

Magnitude of State Effects with respect to
Test Statistics

Allocation Mail Return Substitution
Rate Rate Rate
Minimum 4.3 0.28 5.46
25%-ile 27.5 102.83 49.80
50%-ile 68.9 254.49 97.35
75%-ile 140.3 644.05 260.88
Maximum 945.2 8,779.88 1,815.12

In division-level models with state and PSG effects,
both the state and PSG effects were significant at the 1%
level in every division and for every variable (excluding
mail universe rate in two divisions where a test statistic
could not be calculated).

4. ANALYSIS OF UNDERCOUNT RATE

The results described above for surrogate variables were
obtained early in the census process, but they have limited
relevance to homogeneity of undercount itself. After PES
data were processed, direct analysis of the distribution of
undercount became possible.

The data set for these analyses merged two data sets for
the 12,124 PES sample blocks, one for the E-sample
(Census follow-up) and the other for the P-sample (PES).
There were 12,124 collection blocks, some of which were
split up for tabulation, giving 12,964 tabulation blocks.
More importantly, because some of the smaller blocks
were combined in the sampling, there were 5,293 block
clusters sampled. Correct enumerations and E-sample
total counts are on the E-sample file. The P-sample file
includes P-sample total counts and counts of matches
(P-sample cases that were included in the Census).

4.1 Variance Explained by State and PSG

For each division, a two-way ANOV A was fitted to under-
count rates for state parts. Table 4 shows the ratio of the sum
of squares due to PSGs to that due to states within a division.

Table 4

Variance of Undercount Rate Explained
by State and PSG

Div No. of No. of SS (Group) MS (Group)
" Groups  States* SS (State) MS (State)
1 5 6 4.51 5.64
2 12 3 4.88 .89
3 16 9 12.69 6.77
4 8 4 8.73 3.74
5 10 4 8.17 2.72
6 15 5 7.67 2.19
7 9 7 2.78 2.09
8 7 8 1.31 1.53
9 17 5 40.28 10.07
* States include D.C.

The ratio is always greater than one and in Division 9
it is 40.28, showing much larger effects for PSG than for
state. The mean square for group also exceeds the mean
square for state in each division except Division 2. This
supports the decision to use the PS rather than the state
as the cell for undercount estimation and adjustment.

4.2 Tests for State Effects on Undercount Rates

Assuming the substitution rate (fraction of units
imputed for nonresponse) is negligible, the adjustment
factor (R) for a domain is

P WCE/WE
wM/wpP’
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and the undercount rate is
1 — 1/R,

where WE and WP are the estimated population sizes
weighted up from the E and P-sample, respectively. WCE
is the weighted number of correct enumerations and WM
is the weighted number of matches in the PES.

The statistic for the influence (see Appendix) of the i-th
BP on the adjustment factor or undercount rate is

- (WCE, WP, WE, WM,
I i = R + - - 3
WCE wp WE WM

where WCE;, WP;, WE, and WM, are contributions
from the i-th BP to the totals above.

A linear model was fitted to BP influence statistics to
test for state effects. Under the null hypothesis, all the state
parts in a PSG have the same undercount rate and the
expected mean of the influence statistics for each state is
0 within each PSG. The influence statistics can be analyzed
with one way ANOVA within a single PSG or two way
ANOVA for all PSGs within a division.

Table 5 summarizes the tests for state effects on linear-
ized statistics within each PSG.

Table §
Analysis of Linearized Undercount at the PSG Level

Number of PSG with

Division Number of PSG P < 05
1 5 0
2 12 3
3 16 4
4 8 5
5 10 2
6 15 1
7 9 0
8 7 1
9 17 3

Sum 99 19
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groups show significant interstate heterogeneity at the 5%
level. This suggests that the poststratification can be
improved in those areas.

Table 6

Summary of Analysis of Linearized Undercount
by Place Type

Number of PSG with

Place Type Number of PSG P < .05
0 11 3
1 23 1
2 12 1
3 8 1
4 0 0
5 6 2
6 6 1
7 11 3
8 11 4
9 10 3

Table 7 shows the F-statistics and p-value for state
effect for state X PSG models, once weighted by the size
of domain and once without weights.

Table 7

State Effects by Division - Weighted
and Unweighted Data

Unweighted Weighted
Division D.F. Models Models

F D F D
1 5 57 72 .40 .85
2 2 4.64 .01 1.72 .18
3 8 .43 91 .65 .74
4 3 .64 .59 .66 .58
5 3 .66 .58 1.37 .25
6 4 .60 .66 .24 .92
7 6 .39 .88 .22 .97
8 7 .62 .74 .76 .62
9 4 .77 .54 .48 75

The tests reveal significant heterogeneity between states
in 19 out of 99 groups at the 5% significance level. The
magnitude of the estimated state effect ranges from a few
percent up to 20%, but the standard errors of these esti-
mates are very large.

Table 6 summarizes the results of these analysis by place
type. Place types 0, 1, 2 and 3 are large central cities in a
Primary Metropolitan Statistical Area (PMSA), place
types 4, S and 6 are non-central cities in PMSA with large
central cities and place types 7, 8 and 9 are other areas.

The significant results are concentrated in PSGs for
small areas (place types 7, 8 and 9). Ten out of 32 such

The additive effect of state was significant in only one
division (p = .01) in the unweighted state X PSG model;
when data were weighted by size of domain, the smallest
p-value for the state effect was .18. In both cases, the most
significant effect was observed in Division 2, in which New
Jersey appeared to have higher undercount rate, controlling
for PSG, than New York. Note that the most undercounted
area in New York (New York City) had its own poststrata.
In eight out of ten PSGs for which New Jersey and New
York could be compared, including nonurban areas, the
estimated undercount for New Jersey was larger than that
for New York. Elsewhere, because the state effects in
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different PSGs varied in magnitude and sometimes in sign,
and because only within a minority of PSGs in any division
were there significant state effects, there was not signifi-
cant evidence that in the aggregate the poststratification
was biased against certain states.

Table 8 shows point estimates of the state effects in linear
models for undercount rate by state part in each division,
with effects for state and poststratum group. (Effects are
centered at zero by division.) In effect, these are estimates
of interstate differences after correcting for effects explained
by the PSG composition of the different states.

Table 8

Estimated State Effects on Undercount within Division
(as percent)

Division 1 Division 4 Division 7
CT -242 AL -2.90 IA  -1.10
ME .74 KY 1.89 KS -0.50
MA -0.48 MS -0.02 MN -0.01
NH -0.14 TN 1.03 MO -0.66
RI 1.43 NE 1.76
VT 0.90 ND -0.07

SD 0.60

Division 2 Division 5 Division 8
NJ 4.18 AR 1.44 AZ 2.70
NY -3.91 CcoO 0.68

A -0 .
PA -0.26 L 0.71 ID -2.24
OK 1.58 MT - 161
X -2.30 NV -0.10

Division 3 NM 3.35
DE -0.42 uT 0.08
DC 2.82 WY -2.84
FL -0.88 s
GA —1.43 Division 6 Division 9
MD -1.32 IL- 0.8 AK  —0.78
NC  0.53 IN 1.12 CA 1.02
sC 0.70 ML -0.73 HI -0.18
VA -0.11 OH -0.88 OR -0.26
wVv 0.11 WI  -0.38 WA 0.18

The root mean square in the analysis of variance for
state within division, averaged across all divisions, is
1.72 percent. Recall that only in the unweighted Division 2
analysis were the differences between states significant, it
must be emphasized that the estimates in Table 8 do not
represent well-measured interstate differences. The fact
that the estimated effects are substantial in magnitude but
are still not statistically significant tells us that the power
of these tests to find interstate differences, given the
sample sizes of the PES, is not as great as might be desired.

Another approach to the power problem is to consider
the effect of reducing the size of the census extract used
in analysis of surrogate variables by a factor of 25, the
ratio of the census extract to the PES sample sizes. If we
divide by 25 each of the chi-square test statistics sum-
marized in Table 3, then in only 27 out of 99 PSGs would

interstate differences have been significant for allocation
rate (compared to 94 out of 99 PSGs with the full sample).
Similarly, significant differences would have been found
for 53 out of 99 PSGs for mail return rate (compared to
92 out of 99 PSGs with the full sample), and for 14 out
of 84 for substitution rate (compared to 74 out of 84).
Substitution rates are comparable in magnitude to under-
count rates; after our hypothetical reduction of sample
size, we obtain similar numbers of significant tests for
substitution and undercount rates. It is plausible that with
a much larger sample we would have found many more
significant interstate differences, although one can only
speculate on whether they would have been large enough
to be of substantive concern.

5. DISCUSSION

This paper evaluates interstate heterogeneity in under-
count rate and other census variables in the 1990 Census.

The evaluation used 1990 Census data and 1990 PES
data. When this research was first embarked upon, the
PES data were unavailable and were not expected to
become available for analysis before the scheduled com-
pletion date. Surrogate variables from the 1990 Census
were tested for significant heterogeneity among states
within PSG. At the PSG level, state effect was significant
(a = .05) for 84%-95% of its PSGs for the various
surrogate variables.

ANOVA on linearized undercount based on the PES
data at the PSG level showed significant (« = .05) state
effects for 19 out of 99 PSGs. The significant results were
concentrated in the PSGs in non-PMSA areas. Ten out of
32 such PSGs had significant state effects. This suggests
that the poststratification in the relatively nonurban areas
was not as successful as in the more urbanized areas.

How can we explain the different findings of the two
studies? The two data sets had very different sample sizes,
i.e., the Census data had 125,000 block clusters but the
PES data had 5,293 block clusters. It is therefore not
surprising that small differences between states on surrogate
variables would be statistically significant although
corresponding differences would not be demonstrable with
respect to undercount rates.

Furthermore, the correlations between the undercount
rate and the surrogate variables are low as shown in
Table 1. Therefore, any generalization from surrogate
variables to undercount rates is somewhat conjectural.
Given the modest correlation between undercount rates
and surrogate variables, we prefer to give greater weight
to the analysis of the PES data.

We conclude from these data that there are no demon-
strable differences in average undercount rate between
states within each division, after adjusting for PSG effects.
While there is weak evidence for a difference between
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New Jersey and New York within the Mid-Atlantic division,
this result must be downweighted in the context of the
number of divisions (nin€) for which the test was performed.
We conclude that if adjustment of population counts had
been carried out based on the 1990 PES, no state would
have been able to show that the poststratification was
manifestly unfair in that it underadjusted that state relative
to what direct state estimates showed that it deserved.

As the review in Section 2 shows, there is no consensus
on whether or not between-state heterogeneity in under-
count rates within PSG which is of substantial magnitude,
although not large enough to be accurately measured by
PES, would systematically affect the gain in accuracy
obtained by synthetic adjustment. Nonetheless, the differ-
ences between states that were identified in analysis of the
PES, together with the ancillary evidence of the surrogate
variable analyses, make it appear likely that heterogeneity
between states will again be an issue in coverage measure-
ment for the year 2000 census, especially for the larger states
for which these coverage differences can be most accurately
measured. Fay and Thompson (1993) argue that a coverage
measurement sample for 2000 should be designed to
support direct (rather than synthetic) estimates of under-
count for all states, although a CNSTAT panel (CNSTAT
1994) warns that for some states this could impose a highly
inefficient sample allocation. Research over the intervening
years must address the development of a combination of
sample design and estimation methods that will produce
defensible estimates of population by state.
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APPENDIX

Testing for Interstate Differences Using
Linearized Statistics

A two-way ANOVA for adjustment factors in state
parts yields an intuitively meaningful summary of the
relative contributions of state and PSG effects to the
variation in adjustment factors. Because the sampling unit
of the PES is the block cluster rather than the state part,
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these models do not yield valid statistical tests of the
significance of the state effects.

Consider a statistic whose sample estimate for a state
or state part is a weighted mean of the sample estimates
in each component block or BP. Significance of the state
effects for this statistic within a PSG could be evaluated
by one-way ANOVA with the included block parts as units
(corresponding to PSUs), or aggregated across PSGs by
two-way ANOVA for state and PSG effects.

The sample adjustment factor estimate ( WCE/WE)/
( WM/ WP) is a nonlinear function of sample counts. In
small primary sampling units (PSUs) such as block parts
this nonlinearity may be very noticeable, especially when
the number of matches in a PSU is very small or zero so
that the sample estimate of the adjustment factor is large
or infinite. In this situation, if PSU sample estimates are
treated as data, the additive assumptions of ANOVA are
violated. Useful tests may be recovered, however, by using
a linearized version of the statistic of interest.

Suppose that we are interested in a parameter Z = f(X)
where X is a vector of population proportions in certain
cells. Let %, x; represent the corresponding sample pro-
portions in the entire sample and in PSU i respectively, so
¥ = Y Nyx;/ Y N,is asize-weighted average of block cell
proportions. Let f; (X) be the gradient of fat X. Then by
Taylor linearization f(¥) — f(X) = fi(X)' (X — X) =
YN fi(X)'xi/ YN; — fi(X)'X, i.e., we may treat the
problem as one of inference regarding the quantities
(pseudo-observations) z; = f; (X) “x;. Because the approx-
imate (linearized) influence of PSU / on the estimate f(X),
that is, the difference between the estimate with and
without PSU / included, is N, f, (X) ' (x; — X), we may
describe this as a method based on influence statistics
(Hampel et al. 1986) or the infinitesimal jackknife (Efron
1982, Chapter 6).

To derive a sensible variance model, suppose that we
may regard PSU i as sample (not necessarily SRS) from
a superpopulation with cell proportions X;. A simple
model is then, for some covariance matrices U; and V;,

superpopulation model:
E(X) = X, Var(X) =V,
and
sampling model:
E(x; | Xj) = X;, Var(x | X)) = U,

The sampling covariance U; will typically be propor-
tional to N !. A plausible and mathematically conve-
nient specification for V;is ¥; o N;! (i.e., smaller PSUs
more variable than larger ones), so Varz; = ¢2/N; for
some constant o>. The corresponding linear model weight
for PSU i is N; so the model-based estimate of the mean
agrees with the design-based estimate obtained by aggre-
gating the cell counts if N; is a weighted size measure.
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In the case of the adjustment factor R = (WCE/WE)/
(WM/WP), the pseudo-observations are of the form

zi = X)) (5 — X) =

+ —_ pu—
WCE wpP WE WM

P (WCE,- WP; WE,; WM,) ’
where WCE;, WP;, WE; and WM, are similar to the
above for the i-th BP. We approximate the appropriate
weight of a block part by N; = (WE; + WP;)/2.

If the variance specifications of the model are inaccurate
so there is some heteroscedasticity, or if the distribution
is very long-tailed, then there will be a long-tailed distri-
bution of residuals, making the tests at least slightly
liberal. Some care must be taken to note the presence of
outliers signaling this heteroscedasticity, for example,
outlying blocks due to large-scale geocoding errors.

The assumption of approximately independent obser-
vations in ANOVA may be violated in two ways. First, the
PSUs are not selected by SRS but rather by a geographical
stratification somewhat finer than reflected in the post-
stratification scheme. To the extent that this geographical
stratification reduces the sampling variance of the state
effect estimates, inferences under the independence model
will be somewhat conservative. Second, there will be
correlations between adjustment factors for different
block parts from the same block (in multi-PSG models).
These will tend to make inferences assuming independence
somewhat liberal. On the balance, we regard the tests
performed here as useful.
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