Survey Methodology, June 1995 63
Vol. 21, No. 1, pp. 63—-70
Statistics Canada

Markov Chain Designs for One-Per-Stratum Sampling

F. JAY BREIDT!

ABSTRACT

Classical results in finite population sampling tell us that systematic sampling is the most efficient equal-probability
one-per-stratum design for certain kinds of autocorrelated superpopulations, but stratified simple random sampling
may be much better than systematic sampling if the superpopulation is a trend with uncorrelated errors. What if
the superpopulation consists of a trend plus autocorrelated errors? Intuitively, some sort of ‘‘compromise’’ between
the two designs might be better than either. Such compromise designs are constructed in this paper and are shown
to be examples of Markov chain designs, a wide class of methods for one-per-stratum selection from a finite
population. These designs include as special cases systematic sampling, balanced systematic sampling and stratified
simple random sampling with one sampling unit per stratum. First and second-order inclusion probabilities are
derived for Markov chain designs, yielding the Horvitz-Thompson estimator and its variance. Efficiency of the
Horvitz-Thompson estimator is evaluated using superpopulation models. Numerical examples show that new designs
considered here can be more efficient than standard designs for superpopulations consisting of trend plus auto-
correlated errors. An example of the implementation of Markov chain designs for the 1992 National Resources

Inventory in Alaska is given.

KEY WORDS: Balanced systematic sampling; National Resources Inventory; Systematic sampling.

1. INTRODUCTION

A stratified sampling design, in which a finite population
is divided into non-overlapping strata and samples are
drawn from each stratum, is a common and effective
technique for reducing sampling error. In practice, strat-
ified sampling designs with only one sampling unit per
stratum are widely used. Examples include stratified
simple random sampling and systematic sampling with its
variants (e.g., Murthy and Rao 1988).

Systematic samples are susceptible to systematic errors.
In large-scale spatial samples, for example, sources of
systematic error could include roads, powerlines, irrigation
systems, and so forth. A favorite example is the system of
‘“‘section roads’’ in areas of the United States covered by
the public land survey. This grid-based system is built up
from square tracts of land called sections, each one mile
on a side, which are often bounded by roads in midwestern
agricultural regions. A systematic sampler with a one-mile
sampling interval and an unlucky random start might
conclude that Iowa is covered by gravel roads!

Systematic sampling does have the advantage of effi-
ciency when the sampled population is positively auto-
correlated, as is often the case in temporal and spatial
sampling problems, since it forces observations to be as
distant and hence as uncorrelated as possible.

Both autocorrelation and systematic error are of concern
in the National Resources Inventory (NRI), an area sample
of the nonfederal lands in the United States conducted
every five years by the Soil Conservation Service of the

United States Department of Agriculture. NRI data items,
collected by a combination of remote sensing and ground
observation, include soil characteristics, land use, agricul-
tural practices, erosion measures, and so on.

The 1992 NRI sample design for the northwestern
region of the state of Alaska is a controlled version of
one-per-stratum sampling. The region was divided into
twenty-minute bands of latitude. Each band was divided
into 500,000-acre strata. Each stratum was divided into
a10 x 10 grid of cells indexed by latitude and longitude,
and one cell per stratum was selected. Selection moved
from east to west across the strata within a particular
twenty-minute band. The random numbers which deter-
mined the longitude cells of the selected units and the
random numbers which determined the latitude cells
evolved as two independent Markov chains. (Basic results
on Markov chains used in this paper can be found in an
introductory text on stochastic processes such as Taylor and
Karlin 1984). Details of the design are given in Section 2.

How does this ad hoc design compare to more standard
one-per-stratum designs? It turns out, as shown in Section 2,
that simple Markov chain techniques can describe a broad
class of equal-probability designs for one-per-stratum
selection from a finite population. This class includes
standard techniques such as stratified simple random
sampling, systematic sampling and balanced systematic
sampling, as well as the Alaska designs described above.
It is also easy to generate new designs within this class. This
unified treatment of one-per-stratum designs allows for
comparisons of efficiency.
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First and second-order inclusion probabilities for all of
these designs are derived in Section 3, yielding the Horvitz-
Thompson estimator and its variance. As in much of the
relevant literature (Madow and Madow 1944; Cochran
1946; Sedransk 1969; Bellhouse and Rao 1975; Wolter
1985; Bellhouse 1988; efc.) the average design variance of
the Horvitz-Thompson estimator is evaluated under a
variety of superpopulation models. Compact expressions
for model-averaged design variances are obtained. Numer-
ical examples in Section 4 show that designs introduced
in this paper can be more efficient than standard one-per-
stratumn designs for superpopulations consisting of trend
plus autocorrelated errors. Discussion follows in Section 5.

Though our motivating example is two-dimensional,
one-dimensional designs will be considered throughout.
Most proofs and derivations are straightforward and are
omitted for brevity.

2. MARKOYV CHAIN DESIGNS

Consider the problem of sampling from a finite popula-
tion of N = na labeled units, denoted by

U={l,...,N}

{1, ...,a,a+ 1, ...,2a, ...,

(n—1a+1, ..., naj.

The value of a study variable y, = y_1y54; = Yy 18
associated with each label k; the notation y; or y; will be
used for both random variables and realizations of
random variables.

Here n is the sample size and a is the sampling interval.
The n subsets
{fi—Da+1,...,(0(—NDa+a} (=1,...,n)
will be referred to as strata. The goal is to select one unit
per stratum. Often, a stratified sampling design is defined
to be one in which independent probability samples are
selected in each stratum, but the restriction to independence
is not used here.

Given a doubly stochastic transition probability matrix P,
a Markov chain sample is given by

s=f{R,a+ Ry, ..., (n— Da+ R,},
where R, ..., R, is the Markov chain defined by P and
R; ~ uniform (1, ..., a). Formally, then, a Markov
chain design (MC) is a function p( * ;P) such that

p(s;P) =Pris={r,a+r,...,(n—1)a+ r,}}

=Pr{R,=r,Ry=ry ..., R, = r,}
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P,

’n—l”nP’n—Z:’n—l o

) Prl,rz/aa

= for r, ..., r,€f{l, ..., a},

0, otherwise.

MC designs as defined in this paper are related to the
designs given in Chandra, Sampath and Balasubramani
(1992), in whicha 1 x Nvector of initial selection proba-
bilities and a N X N transition probability matrix of
periodicity n determine a without-replacement sampling
scheme. Chandra et al. focus on producing designs with
strictly positive second-order inclusion probabilities. They
do not explicitly consider the one-per-stratum designs of
this paper, which can be imbedded in their structure in a
straightforward way by constructing the appropriate initial
probability vector and transition probability matrix.

The following result is useful in deriving the probabilistic
features of MC designs.

Result1 Consider a Markov chain for which the tran-
sition probability matrix P is doubly stochastic (i.e., all
row sums and all column sums equal one) and R; has a
discrete uniform distribution, with mass 1/a on each of
the states 1, ..., a. Then R; has a discrete uniform distri-
bution on the states 1, . . ., a for all i. In particular, R; has
mean (@ + 1)/2 and variance V(R;) = (a* — 1)/12.

Some special cases of MC designs are of interest.

Stratified simple random sampling. If the transition
probability matrix is

H= [l/a];’,j’:l,
then
Pr{R; =)' | R;=j} = 1/a=Pr(R; =’}
U,j' =1, ..,ai<i),

which, together with the Markov property, implies that
R,, ..., R, are probabilistically independent. In this
case, the MC design is stratified simple random sampling
with one unit per stratum (ST).

Systematic sampling. If the transition probability
matrix is /, the ¢ X « identity matrix, then

s 7 s 1’ ] = ',’

Pr(R; = j lRi=n={ =
0,j#=Jj’,

so that Ry, ..., R, are deterministically related. Thus,
s={R,a+ Ry, ..., (n— Da+ R},

and so the MC design is systematic sampling (SY).
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Compromise designs. Intuitively, ST and SY are at
opposite ‘‘extremes’” in some sense. If p € [0,1], then

G, =pH + (1 — p)I

is doubly stochastic. If p = 0, the design is SY and if
p = 1, the design is ST. Any other choice of p will yield
a sequence consisting of ‘runs’’ of SY samples. Thus, the
class G, includes ST and SY, as well as a continuum of
““‘compromise’’ MC designs.

Other convex combinations of doubly stochastic
matrices could be considered. The class of doubly stochastic
matrices is also closed under matrix multiplication, trans-
position, and row and column permutation, so there are
many ways to create MC designs.

Balanced systematic sampling. Murthy (1967, §5.9d)
describes a one-per-stratum selection method which he
calls balanced systematic sampling (BA). This method
gives samples

s = {Rl,a+ (a+l—R1),...,(n—2)a+R1,

(n—a+ (a+1— Ry}
for n even and

s={R,a+ (a+1—-—R), ..., (n~-2)a+

(a+ 1 _Rl)’ (n— 1)a+Rl]

for n odd. An interesting feature of this design is that
if n is even and the population is perfectly linear (y; =
Bo + B[ (i — 1)a + j]), then the sample mean equals
the population mean for any sample. With the transition
probability matrix,

00 ..0 1)
00..10

J = )
01..00
L10..00)axa

BA is a MC design.

Alaska NRI design. As described in Section 1, the 1992
NRI sample design for the northwestern region of the state
of Alaska used two independent Markov chains in the
controlled selection of latitude and longitude cells. The tran-
sition probability matrix for longitude cells, Pop,, is given
in Table 1. This design, henceforth denoted AK, is a MC
design since Py, is doubly stochastic. Most of the tran-
sition probabilities are close to 0.10, so most “‘step sizes’’
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are approximately equally likely. Note, however, that mass
has been removed from on and near the back diagonal
and placed in the upper left and lower right corners, so
that P, discourages large east to west steps, such as
from cell one to cell ten, and discourages small steps, such
as from cell ten to cell one. On the other hand, Py,
encourages steps of around length ten, such as from cell
two to cell one, two or three. The realized sample of
longitude cells is thus well-dispersed east to west, like a
systematic sample would be, but its additional randomness
guards against systematic error. Similarly, the Markov
chain for latitude cells was set up to give good spatial
dispersion north to south.

Table 1

Transition probability matrix for Markov chain sample
of longitude cells, 1992 National Resources Inventory, Alaska.
Entries are the conditional probabilities of selecting
cell j’ of stratum i + 1 given that cell j of stratum / was selected.

Cell j* of stratum i + 1

Cell j of

stratumi ;5 3 4 5§ 7 8§ 9 10
1 005 0.15 0.5 0.5 0.15 015 0.0 010 0 0
2 0.5 0.5 0.5 0.0 0.0 0.10 010 0.10 0.05 0
3 015 0.5 010 0.0 0.10 0.0 0.05 0.05 010 0.10
4 015 010 010 010 0.10 0.10 0.10 0.05 0.10 0.10
5 015 0.0 0.0 0.0 005 005 0.0 0.10 0.0 0.15
6 0.5 0.0 0.0 010 005 005 0.10 0.10 0.10 0.15
7 010 0.10 005 010 0.10 0.10 010 0.10 0.10 0.1
8 0.0 0.0 0.05 005 0.10 010 010 0.10 0.I5 0.I5
9 0 005 010 010 0.10 0.10 010 0.15 0.I5 0.15
0 0 0 010 010 0.15 015 015 015 0.15 0.5

3. HORVITZ-THOMPSON ESTIMATION
UNDER MC

Write the population total as

n a n a
= EYk = E Ey(i—l)a+j = E Ey'f
U

i=1 j=1 i=1 j=1

For all &, the first-order inclusion probabilities of a MC
design are given by

7, = Prik € s} = Pr{R, = j} = l/a

and for k < [/, the second-order inclusion probabilities are
given by
1/a, for i=i,j=j',
Tk = 0, for i=i,j#j’,

P{ ' "a, for i<i.
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The design-unbiased Horvitz-Thompson estimator
(Horvitz and Thompson 1952) for the population total
is then

n . n a
e =), W/ = ) TI% =a ) X vilwe=p

where

Lo _ L i Ri=,
(Ri=/) 0, if R, #j.

The design covariances of the indicators /¢, are given
by

Cuc(liri=p» Tirie=i1) = Emc[lirg=jy Iirge=i1] =
EMc[I[R,:jl] EMC[I{R,"=/"]

= W(i—Da+j, (i’ =Da+j —

Ti—Dya+j TG =1)a+j" s

and so the design variance of 7, is

n a 1 1
Wac(fy) = a* )] (— - “Z)Yijyij M
; : a a
i=1 j=1
n a l
+d° E E [0 - _Z:Iyijyij’
i=1 j=1 j #j a

Since the design variance depends on all the values of
the study variable in the finite population, (1) is not easily
used for comparing designs. Following Cochran (1946),
assume that the values of the study variable are generated
from the superpopulation model

§:y5 = ny t+ ey,

where the p;; are fixed and the e;; are random variables with
Ele;]l = 0, Vi(e)) = o} and Ci(ey, €y5) = oy, ivj-
Then designs can be compared on the basis of model-
averaged design variance.

Proposition 1 Under the superpopulation model £,
the average design variance of the Horvitz-Thompson
estimator is
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E;[Vac(f)] = anMC[ E #iR,] +
i=1

for any MC design. Note that if u; is independent of /,
then Vuc| X 7-1 pig)] = 0.

The following proposition gives a sufficient condition
under which no MC design has worse average design
variance than SY.

Proposition 2 Consider an uncorrelated additive model,
E:yj=mpyte =0+ B+ ey
where E¢[e;] = 0, Vi(e;) = o,zj and C;(e;; ¢;-;:) = 0.
Then
E;[Vey(i)] = E¢[Wac(f)]

for all MC designs.

Proof From Proposition 1, the only term of interest is
VMC[E ,"lzl [.L,'Ri], which under SY is

VSY[ E ﬂiR,:I = VSY[ E a; + HBRI] = ”2V(3R1),

i=1 i=1

while under a general MC design,

el

i=1

n n
l"iR,:I =Y. ). Cuc(Br;»Br;)-
i=1 i'=1
Since Cyc (BRi’BRi’) < V(BRI), the proposition follows. O
Some specific models are considered in the next five
subsections.

3.1 Random Permutation Model

A model for a population in random order is a permuta-
tion model, in which a realization of the measurements
Y1, - - ., Ynis given by one of the N! equally likely permu-
tations of N fixed values. This model can be written as

£1:y5 =Ju + €,

where 7, = Y yyi/N. See Rao (1975) for more details.
The following result is then a consequence of Theorem 2.1
of Rao and Bellhouse (1978).
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Result 2 Under the random permutation model,

Ey [Vac(f)] =

(N*/n)(1 = n/N) Y, (0 = Ju)*/ (N = 1)
U

for any MC design.

Thus, the average variance over all permutations is
exactly Vg (f,), where SI denotes (unstratified) simple
random sampling without replacement. For SY, this result
is originally due to Madow and Madow (1944). See also
Sedransk (1969).

3.2 Stratification Effects Model

A model for a population with stratification effects is
Ez . yij = + e,»j,

where the o; are fixed constants and e;; are uncorrelated
random variables with mean zero and variance 0. Note
that if o; = p, then £, is an alternative to £; as a model
for a population in random order.

Result 3 Under the stratification effects model,
Ey,[Vac(fy)] = na(a - 1)?
for any MC design.

3.3 Linear Trend Model

A model for a population with a linear trend is
E3:y; = Bo + Bl — Da +j1 + ey,

where B, and 3, are fixed constants and e¢; are uncor-
related (0,6%) random variables.

Result 4 Under the linear trend model £3,

Egy [Vae(F)] = B%aZVMC[L‘ R,] +na(a — 1)o* @)
i=1

for any MC design. Since £; is additive, no MC design has a
larger expected variance under a linear trend model than SY.

The only design-dependent term in (2) is VMC[ p ,R,].
Under SY, ¥ | R; = nR;, so that

n
VSY[ Ri:l = n*V(R)),
i=1

1

while under ST,
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Under BA, for n even,

% Zn:R — Vea| 2R, + 2@ +1 = R)| =0
BA & i LY PR B 1 .
This implies that if the population is perfectly linear
(6?2 = 0), then
EE3[VBA(f1r)] = Oa

so that £, = ¢ for all samples, as noted by Murthy (1967,
p. 165).

Result 5 Under the linear trend model £,
Eg, [Vaa(in)] < Egy [ Var ()]
< By [ Ve, (5]
< Ey, [ Voy(£z)] = maxEg, [Vuc ()],
MC ©)
where the middle term is monotone increasing with

decreasing p € [0,1]. If nis even, the left-hand side of (3)
equals minycE, [ Vmc(5) 1

3.4 Periodic Population Model

A simple model for a population showing a deter-
ministic periodicity with period p is the sine wave model

54:y,-j = asm{%r[(l — l)a +j]} + eij’

where e;; are uncorrelated random variables with mean
zero and variance 2.

Result 6 Under the periodic population model &4,

E¢ [Vmc(fn)] = azanMC[E Sin%lr[(i —la+ Ri]]
i=1

+ na(a — l)a2

for any MC design.

Denote the sine wave model &, with p = a by &,,.
Under £,,,

2i
sin{2—7r[(i - 1a +j]} = sin—ﬂ,
p

a
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so that the model is additive and no MC design has larger
expected design variance under &,, than SY, highlighting
the fact that SY is inappropriate for a population containing
a periodicity with period equal to the sampling interval
(Madow and Madow 1944). This result generalizes as follows.
Result 7 If u; = B in £, then £ is a model for a popula-
tion showing a deterministic periodicity with period equal
to the sampling interval, a. The model £ is additive and

so no MC design has larger expected design variance under
£ than SY.

3.5 Autocorrelated Model

Beginning with Cochran (1946), many authors have
compared ST, SY and simple random sampling under an
autocorrelated superpopulation model. See Bellhouse
(1988, §4) for a review.

Consider the following autocorrelation model due to
Cochran (1946):

Estyy=p+oe
where g;; ;- = y[(i" — Da +j’ — j] fori’ = i.
Result 8 Under the autocorrelated model &5,

a—1

Ei[Vuc(f)] = na(a —1)y(0) —2n Y y(h)(a —h)
h=1

n—

1 a a
. . 1
+22) ¥ Ey(ha+j'__J)(n_h)(Pjyl)_;)
h=1 j=1 j'=1

for any MC design.

Result 9 If, for # = 0, v(A) is non-negative, non-
increasing and convex, i.e.,

y(h) = 0,v(h) = y(h + 1) and
y(h +2) —2y(h + 1) + v(h) = 0,

then Ey [ Vsy (£)] = minycEg [ Ve (£)].

This result is a corollary of a theorem due to Hajek
(1959), given as Theorem 4.1 of Bellhouse (1988); Belthouse
clarified the conditions under which the theorem holds.
H4jek’s theorem generalized an earlier result due to
Cochran (1946), who compared SY, ST and simple
random sampling.

4. EFFICIENCY: SOME NUMERICAL
EXAMPLES

An important class of models for time series and spatial
processes consists of a low-order polynomial trend plus
an autocorrelated error sequence. A simple example is
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£y Yij = Bo+ Bil(i — Da +Jj] + e,

where the autocorrelation structure is that of a first-order
autoregressive (AR) model,

o =yl —Da+j —j] = ot~

for i’ = iand | ¢ | < 1. The average design variance
under this model is obtained from Results 4 and 8. For
different choices of 8, and ¢, the ratio of expected design
variances,

E¢[Vuc(£) 1E¢ [ Vsy (£ 1, 0]

is given in Table 2 for various MC designs. Also tabled is
the optimal G, design, obtained by minimizing (4) with
respect to p. Use of this design is only feasible if super-
population parameters are known, so it is tabled merely
as a benchmark and not as a competitor.

When 8, # 0 and ¢ = 0, the model is £; and the
tabled values agree with Result 5: SY is the worst MC
design and BA is the best, with G, G, and ST falling
between them. Though BA does extremely well for this
model, any non-SY MC design would be a good choice.

When 8, = 0 and ¢ # 0, £, is a special case of
model £5. For ¢ > 0, Result 9 and the table agree that SY
is most efficient since it makes the sample as ‘‘spread out”’
as possible, but for weak autocorrelation, the other MC
designs are competitive. BA is very poor for this model,
because the design ensures that every other pair R;, R;
will be no more than ¢ units apart. (For the same reason,
BA is good for a negatively autocorrelated population.)
AK, G, and G, outperform ST, because each of these
designs encourages state transitions of around length a.

Similar results are obtained for the superpopulation
model

. 27nj
S(a,d,):y,j = asm—;— + €ijy

where o;; ;- is as above. Table 2 gives the ratio of expected
design variances (4) under this model, obtained from
Results 6 and 8.

When a # 0and ¢ = 0, the model is £,,and SY per-
forms badly, asindicated by Result 7. Even for¢ # 0,SY
performs well only when the periodicity is swamped by
highly-correlated noise.

Note that no design dominates Table 2: each of SY, G,
G, ST, BA and AK is the best at least once among those
considered. For a moderate trend and high autocorrelation,
AK, G, and G, can beat standard MC designs. Overall,
Table 2 suggests that some non-standard MC designs, such
as G, and AK, do reasonably well for a variety of popula-
tions: retaining much of the efficiency of SY against an
autocorrelated population, while still guarding against
systematic effects in other kinds of populations.
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Table 2

Ratio of expected design variance under MC to expected
design variance under SY for superpopulation consisting of trend
(line with slope 8; or sine wave with period a and amplitude o)

plus autoregressive (AR) errors (N = 1,000, o = 100,

a = 10). Here G,- is the optimal compromise design,
where p* is a function of superpopulation parameters.
Ratio for the best realizable design in each row
(if not SY) is italicized.

Markov Chain Design

¢ Gy, Gy, ST BA AK Gp‘ (")

—0.5/0.2322 0.2085 0.2001 0.1666 0.2056 0.2001 (1.0000)
0.0/ 0.2220 0.1983 0.1903 0./827 0.1957 0.1903 (1.0000)

'ﬂ;“‘e:“:);m 0.1]0.2187 0.1950 0.1871 0.1825 0.1921 0.1871 (1.0000)
=9 0.5|0.1922 0.1702 0.1645 0.1754 0.1659 0.1645 (1.0000)
0.9]0.0980 0.0778 0.0742 0.0768 0.0762 0.0742 (1.0000)
—0.5|0.4504 0.4328 0.4262 0.3647 0.4304 0.4262 (1.0000)

Line + AR 0-0]04344 0.4172 0.4114 0.4054 0.4153 0.4114 (1.0000)
fr w04 0104291 04121 0.4065 0.4085 0.4094 0.4065 (1.0000)
: 0.5]0.3853 0.3727 0.3724 0.4116 0.3667 0.3719 (0.8320)
0.910.1876 0.1835 0.1914 0.2170 0.1848 0.1821 (0.5223)
—0.5/0.9233 0.9190 0.9163 0.794/ 0.9175 0.9163 (1.0000)

Line + AR 0-0[0.9201 0.9177 0.9169 0.9/60 0.9174 0.9169 (1.0000)
Be o1 0109191 09175 09175 0.9349 0.9156 0.9174 (08156)

0.5]0.9160 0.9289 0.9439 1.0606 0.9185 0.9135 (0.1997)
0.9| 0.8621 0.9787 1.0725 1.2710 1.0017 0.7888 (0.0981)

—0.5]0.9978 0.9956 0.9935 0.8617 0.9942 0.9935 (1.0000)
0.0| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  (---)
Pure AR 0.1]1.0009 1.0019 1.0028 1.0228 1.0001 1.0000 (0.0000)
0.5]1.0179 1.0357 1.0536 1.1852 1.0245 1.0000 (0.0000)
0.9]1.2517 1.4380 1.5814 1.8798 1.4734 1.0000 (0.0000)

—0.5|0.9929 0.9906 0.9884 0.8578 0.9892 0.9884 (1.0000)
0.0 0.9947 0.9946 0.9945 0.9950 0.9946 0.9945 (1.0000)

im: JIAR 0.1]0.9955 0.9963 0.9972 1.0175 0.9945 0.9954 (0.1925)
: 0.5{1.0110 1.0285 1.0462 1.1775 1.0173 0.9977 (0.0364)
0.9]1.2178 1.3980 1.5371 1.8294 1.4322 0.9999 (0.0018)

-0.5]0.6747 0.6634 0.6586 0.6008 0.6604 0.6586 (1.0000)

Sine + AR 0.0 0.6603 0.6499 0.6464 0.6770 0.6477 0.6464 (1.0000)
=10 0.1]0.6554 0.6455 0.6425 0.6863 0.6421 0.6425 (1.0000)
0.5]0.6149 0.6133 0.6196 0.7320 0.604/ 0.6121 (0.5079)

0.9 0.3570 0.3832 0.4126 0.5527 0.3877 0.3560 (0.2852)

—0.5/0.0668 0.0384 0.0287 0.1101 0.0323 0.0287 (1.0000)

Sine + AR 0.0 0.0656 0.0372 0.0275 0.1115 0.0311 0.0275 (1.0000)
« = 10.0 0.1]0.0652 0.0368 0.027/ 0.1115 0.0307 0.0271 (1.0000)

0.510.0622 0.0339 0.0245 0.1106 0.0277 0.0245 (1.0000)
0.9 0.0529 0.0247 0.0154 0.1016 0.0187 0.0154 (1.0000)

5. DISCUSSION

The class of Markov chain designs has been defined and
shown to include systematic sampling, stratified simple
random sampling and balanced systematic sampling as
special cases. Some new designs have been introduced
(G,, AK) and shown to be competitive with standard
one-per-stratum designs under a variety of superpopulation
models. In particular, the new designs work well in numer-
ical examples for trending superpopulations with auto-
correlated errors. This is the kind of population of concern
in many area sampling problems, such as the 1992 National
Resources Inventory in Alaska. A two-dimensional MC
design implemented for that survey shows that one-
dimensional MC designs might be usefully extended to a
spatial sampling context, though further work on this
extension is necessary.
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Further work on variance estimation for MC designs
is also needed. Because these are one-per-stratum designs,
design-unbiased estimation of the variance of the Horvitz-
Thompson estimator is not possible. The problem of
variance estimation for one-per-stratum designs, partic-
ularly for SY, has received much attention. For example,
Wolter (1985) discusses in detail eight different biased
variance estimators for SY and evaluates their biases under
superpopulation models. Work in this direction for the
collapsed strata variance estimator (e.g., Cochran 1977,
p. 139) under general MC designs is in progress.
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