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Median Estimation Using Auxiliary Information

GLEN MEEDEN!

ABSTRACT

The problem of estimating the median of a finite population when an auxiliary variable is present is considered.
Point and interval estimators based on a non-informative Bayesian approach are proposed. The point estimator
is compared to other possible estimators and is seen to perform well in a variety of situations.
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1. INTRODUCTION

The problem of estimating a population mean in the
presence of an auxiliary variable has been widely discussed
in the finite population sampling literature. The ratio
estimator has often been used in such situations. For
the problem of estimating a population median the situa-
tion is quite different. Only recently has this problem
been discussed. Chambers and Dunstan (1986) proposed
a method for estimating the population distribution
function and the associated quantiles. They assumed that
the value of the auxiliary variable was known for every
unit in the population and their estimator came from a
model-based approach. Rao et al. (1990) proposed ratio
and difference estimators for the median using a design-
based approach. Kuk and Mak (1989) proposed two other
estimators for the population median. To use the Kuk
and Mak estimators one only needs to know the values
of the auxiliary variable for the units in the sample and
its median for the whole population. The efficiencies of
these estimators depend directly on the probability of ‘con-
cordance’ rather than on the validity of an assumption of
linearity between the variable of interest and the auxiliary
variable.

Recently Meeden and Vardeman (1991) discussed a
non-informative Bayesian approach to finite population
sampling. This new approach uses the ‘Polya posterior’
as a predictive distribution for the unobserved members
of the population once the sample has been observed.
Often it yields point and interval estimates that are very
similar to those of standard frequentist theory. Moreover
it can be easy to implement in problems that are difficult
for standard theory. In this note we show how this method
can be used for the problem of estimating a population
median when an auxiliary variable is present and compare
it to some of the other proposed methods.

2. ESTIMATING THE MEDIAN

Consider a finite population containing N units. For the
unit with label i let y; denote the characteristic of interest
and x; the auxiliary variable. We assume that both y; and
Xx; are real numbers and each is known for every unit in the
population. Let s denote a typical sample of size n which
was chosen by simple random sampling without replace-
ment. We assume simple random sample for convenience,
since in many problems of this type the sampling will often
be more purposeful. Before considering the problem of
estimating the median of the population we review some
well known facts about the problem of estimating the mean.

Consider the super population model where it is
assumed that for each i, y; = bx; + u;e;. Here b is an
unknown parameter while the #,’s are known constants
and the e;’s are independent identically distributed
random variables with zero expectations. Since the popu-
lation mean can be written as N ™' ( Xjespi + Tjesy)) We
would expect N~V (i + b YjesX;) to be a sensible
estimate of the mean whenever b is a sensible estimate of
b. One particular choice of b is the weighted least squares
estimator where the weights are determined by the u;’s.
For example if for all i, u; = J)?,-, the resulting estimator
is just the usual ratio estimator. While if for all i, u; = x;,
then b = n~! Y, (¥;/x;) and the resulting estimator is
one that was discussed by Basu (1971). (See also Royall
(1970).) Using this super population setup it is easy to
generate populations where the ratio estimator has smaller
mean squared error than the Basu estimator and vice versa.
A somewhat limited simulation study on a variety of
populations found that the performance of the Basu
estimator is quite similar to the performance of the ratio
estimator although in the majority of the cases the ratio
estimator performs better than the Basu estimator. This
is not unexpected, given the wide use of the ratio estimator.

! Glen Meeden, School of Statistics, University of Minnesota, Minneapolis, MN 55455, U.S.A.



72

In Meeden and Vardeman (1991) a non-informative
Bayesian approach to finite population sampling, based
on the Polya posterior, was developed. For the simple
problem where no auxiliary variable is present, given the
observed values in the sample, it introduces a Polya urn
distribution as a pseudo posterior distribution over the
unobserved members of the population. This pseudo
posterior distribution can be used to obtain point and
interval estimates of a variety of population quantities. It
is related to the Bayesian bootstrap of Rubin (1981) and
the Dirichlet process prior of Ferguson (1973). When
estimating the median it yields results similar to those of
Binder (1982). A theoretical justification for it is a step-
wise Bayes argument which yields the admissibility of the
resulting estimators. See for example Meeden and Ghosh
(1983). There the admissibility of the Basu estimator was
demonstrated. In that case the Basu estimator was shown
to arise from a ‘posterior’ which treats the known and
unknown ratios, r; = y;/x; as exchangeable. Note that
this is very similar in spirit to the super population model
justification for this estimator given above, where the
ratios r; = y;/x; were independent and identically distrib-
uted. We shall see that the stepwise Bayes logic underlying
the Basu estimator for the mean carries over in a straight
forward way to point and interval estimators for the
median. Unfortunately this is not the case for some of the
other estimators. One natural but perhaps naive estimator
which mimics in some sense the ratio estimator of the mean
is just the ratio of the median of the y values in the sample
to the median of the x values in the sample multiplied by
the median of the x values in the population. There is no
known model based theory which underlies this estimator
as is the case for the ratio estimator of the mean.

In the Bayesian approach to finite population sampling
one needs to specify a prior distribution. Then given a
sample, inferences are based on the posterior distribution,
which is the predictive distribution for the unseen members
of the population given the units in the sample. In the
stepwise Bayes approach, given the sample one always has
a ‘posterior’ distribution but it does not arise from a single
prior distribution. However this ‘posterior’ distribution
can be used in the usual Bayesian manner to find point and
interval estimators of parameters of interest. We now will
show how the stepwise Bayes model which yields Basu’s
estimator for the mean can also be used when estimating
the median. In this setup, given a sample, the predictive
distribution for the unobserved ratios treats the observed
and unobserved ratios as ‘exchangeable’.

For definiteness suppose our sample contains the first
n units of the population. We construct an urn which
contains n balls where ball i is given the value of the i-th
observed ratio, say r;. We begin by selecting a ball at
random from the urn and the observed value is assigned
to the unobserved unit # + 1. This ball and an additional
ball with the same value is returned to the urn. Another
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ball is chosen from the urn and its value is assigned to the
unobserved unit # + 2. This ball and another with the
same value are returned to the urn. This process is con-
tinued until all of the unobserved units have been assigned
aratio. Once they have all been assigned a value we have
observed one realization from our ‘posterior’ distribution
for the unseen ratios given the sample of seen ratios. If in
this process the unobserved unit j has been assigned the
ratio with value r we then assign its y; value to be rx;.
Hence using simple Polya sampling we have created a
predictive distribution for the unobserved units given the
sample. We call this predictive distribution the ‘Polya
posterior’. It is easy to check that this predictive distribution
gives the Basu estimator when estimating the population
mean under squared error loss.

Given the sample the ‘Polya posterior’ yields a predictive
distribution for the unobserved members of the population
and hence a predictive distribution for the median as well.
From the decision theory point of view the usual loss
function is absolute error when estimating a median. For
this loss function the Bayes estimate is just the median of
the posterior or predictive distribution for the population
median. If one were using squared error loss for estimating
the median then the Bayes estimate is just the mean of the
predictive distribution for the population median. The
admissibility of these estimators under the appropriate loss
function follows from a stepwise Bayes argument in the
same way as the proof of admissibility for the Basu esti-
mator of the population mean. In Meeden and Vardeman
(1991) and Meeden (1993) the following somewhat sur-
prising fact was noted. For many common distributions
the mean of the predictive distribution for the population
median performed better than the median of the predictive
distribution for the population median under both loss
functions. Similar results hold for this problem. Hence our
estimator will be the mean of the predictive distribution
for the population median even though we will follow
standard practice and use absolute error as our loss
function. We will denote this estimator by estpp. This
estimator cannot be found explicitly. However we will find
it approximately by simulating observations from the
posterior or predictive distribution for the population
median. Under the Polya sampling scheme for the ratios
described above we can simulate a possible realization of
the entire population. For this simulated copy we can then
find its median. If we repeat this process R times then we
have simulated the predictive distribution of the population
median under the ‘Polya posterior’. When R is large the
mean of these R simulated population medians yields,
approximately, the estimate estpp.

In what follows we will compare the estimator estpp to
several other estimators. Another estimator we consider
is just the sample median of the y;’s. This ignores the
information contained in the auxiliary variable and is used
as a bench mark. It will be denoted by estsm. Another
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estimator is the natural analogue of the ratio estimator of
the population mean. This is discussed in Kuk and Mak
(1989) and denoted by estrm. It is just the ratio of the
median of the y values to the median of the x values in the
sample multiplied by the median of all the x values in the
population. They proposed two other estimators for the
median. We will consider just the first one and denote it
by estkm. This estimator has a plausible intuitive justifi-
cation and can be found in their paper. Rao, Kovar and
Mantel (1990) considered a designed based estimator for
the median. We will denote this estimator by estrkm.
Since this estimator can be time consuming to compute we
will find it approximately using a method due to Mak and
Kuk (1993). Finally we will consider the estimator pro-
posed in Chambers and Dunstan (1986) and denote it by
estcd. Actually Chambers and Dunstan propose a whole
family of estimators and we will only consider one special
case which is appropriate when u; = J)?,- in the super
population model described at the beginning of this section.
We now briefly outline the argument that leads to their
estimator of the median. Let F denote the cumulative
distribution function associated with the y values of the
population. That is F puts mass 1/N on each y; in the
entire population. The first step is to get an estimator of
F(¢) for an arbitrary real number ¢. If s denotes our sample
of size n then given the sample we can write

F(1) = N"‘{ YA -y) + LAU- y,-)}

ies Jjgs

where A (z) is the step function which is one whenz = 0
and zero elsewhere. Since the first sum in the above
expression is known once we have observed the sample,
to get an estimate of F(¢) it suffices to find an estimate
of the second sum. Now under our assumed super pop-
ulation model the population ratios (y; — bx;) /\f)?,- are
independent and identically distributed random variables.
Since after the sample s is observed a natural estimate of
bis b = Yieyi/ YiesX; one could act as if the n known
ratios (y; — bx;) /Jx; for i € s are actual observations from
this unknown distribution. Under this assumption, for a
fixed ¢ and a fixed unit j not in the sample s an estimate of
A(t — y;) is just the number of the n known ratios incor-
porating b less than or equal to (¢ — ij)/\/)?j divided
by n. Finally if we sum over all the unobserved units j these
estimates of A(¢# — y;) we then have an estimate for the
second sum in the above expression for F(¢) which then
yields an estimate of F(¢). Once we can estimate F(¢#) for
any ¢ by say F(¢) then the estimate of the population
median is inf{#: F(¢) = 0.5}.

3. THE POPULATIONS

We will compare these estimators using several different
populations. We begin with three actual populations. The
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first is a group of 125 American cities. The x variable is
their 1960 populations, in millions, while their y variable is
the corresponding 1970 populations, again in millions. The
second is a group of 304 American counties. The x variable
is the number of families in the counties in 1960, while the
y variable is the total 1960 population of the county. Both
variables are given in thousands. The third population is
331 large corporations. The x variable is their total sales
in 1974 and the y variable their total sales in 1975. The sales
are given in billions of dollars. We denote these three
populations by ppcities, ppcounties and ppsales. For the
three populations the correlations are .947, .998 and .997.
These populations were discussed in Royall and Cumberland
(1981). Our ppcounties is similar to their population
Counties60 except we have taken the x variable to be the
number of families rather than the number of households.

We have also considered six artificial populations. In each
case the auxiliary variable x was chosen first and then the
y variable was generated from it. In some cases we followed
the super population model described at the beginning of
the previous section for some choice of the u;’s. In some
other cases we violated the assumption that conditional
on the value x; the mean of y; is bx;. In all cases the errors,
the e;’s, were independent and identically distributed
normal random variables with mean zero and variance one.

In the first population, ppgamma20, the x;’s were a
random sample from a gamma distribution with shape
parameter twenty and scale parameter one. Then given x;
the conditional distribution of y; was normal with mean
1.2x; and variance x;, i.e., ; = J[x;.

In the second population, ppgammasa, the x;’s were ten
plus a random sample from a gamma distribution with
shape parameter five and scale parameter one. Then given
x; the conditional distribution of y; was normal with mean
3x; and variance x;.

In ppgammash the auxiliary variable was the same as
in ppgamma5a. Then given x; the conditional distribution
of y; was normal with mean 3x; and variance x2.

In ppstskew the auxiliary variable was strongly skewed
to the right with mean 42.63, median 39.29 and variance
204.59. Then given x; the conditional distribution of y;
was normal with mean x; + 5 and variance 9x;.

In ppin the auxiliary variable was a random sample
from a log-normal population with mean and standard
deviation (of the log) 4.9 and .586 respectively. Then given
x; the conditional distribution of y; was normal with mean
Xx; + 2 logx; and variance xt.

In ppexp the auxiliary variable was fifty plus a random
sample from the standard exponential distribution. Then
given x; the conditional distribution of y; was normal with
mean 80 — x; and variance (.6 log x;)2.

All the populations contain 500 units except ppstskew
which has 1,000. The correlations between the two variables
for these last six populations are .76, .87, .41, .61, .58 and
— .28 respectively.
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In most examples where ratio type estimators are used
both the y;’s and x;’s are usually strictly positive. In
population ppstskew 13 of the 1,000 units have a y value
which is negative. In the original construction of popula-
tion ppln quite a few more of the y values were negative.
The population was modified so that all the values are
greater than zero.

Note that these populations were constructed under
various scenarios for the relationship between the x and
y variables. Ppgamma20 and ppgammaSa satisfy the
assumptions of the super population model leading to
estcd, while ppgamma5hb is consistent with the assumptions
underlying estpp. In ppstskew the conditional variance of
¥; given x; is consistent with eszcd while for the unmodified
ppln it was consistent with estpp. In both these cases the
assumption for the conditional expectation is not satisfied.
For the populations ppcounties, ppgamma5a and ppin we
have plotted y against x and y/x against x. The results are
seen in Figures 1 through 3.
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Figure 1. For ppcounties the plot of y versus x and y/x versus
x where x is the number of families (thousands) living
in a county and y is the total population (thousands)
of the county for 304 counties.

The estimator estpp is based on the assumption that
given the sample s our beliefs about the observed ratios,
i.e., the ratios y,/x; for i € s and the unobserved ratios,
i.e., the ratios y;/x; for j ¢ s are roughly exchangeable. In
particular this means that one’s beliefs about a ratio y; /x;
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Figure 2. For ppgamma5a the plot of y versus x and of y/x
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Figure 3. For ppin the plot of y versus x and of y/x versus x.
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should not depend on the size of x;. In fact ppgamma5b
was constructed so that this would indeed be true. On the
other hand, under the super population model leading to
the estimator estcd we would expect the variability of the
ratios to get smaller as the size of the x variable increases
while the average value of the ratios in any thin vertical
strip remains roughly constant as the strip moves to the
right. This is seen clearly in the plot of the ratios for
population ppgammaSa. For the rest of the populations,
except for ppgamma20 the values of the ratios do in fact
depend on size of x. This is seen clearly in the plots for
ppcounties and ppin. Hence they should make interesting
test cases for the estimator estpp. Ppexp was included as
a test case to see what would happen if the underlying
assumptions of estpp and estcd were strongly violated.

4. SOME SIMULATION RESULTS

To compare the six estimators 500 simple random
samples of various sizes were taken from the nine popula-
tions. For each sample the values of the six estimators were
computed. For the estimator estpp this meant finding it
approximately by simulating R = 500 realizations of the
predictive distribution for the population median induced
by the ‘Polya posterior’. In each case the average value and
average absolute error of the estimator were computed.
In Table 1 the average values of all the estimators except
estsm are given. All the estimators are approximately
unbiased except in one case, estcd for the population pplin.
We did not include the results for estsm since it is well
known that it is unbiased. In Table 2 the average absolute
error for all six estimators are given. We see from Table 2
that estcd and estpp are the clear winners. They both
perform better than the other four estimators in every
case but one. In ppexp they are both beaten by eszsm, but
this is one case where neither would be expected to do well.
For the first seven populations their performances are
nearly identical while for population ppln the estimator
estpp is preferred and for population ppstskew the opposite
is true.

In practice one often desires interval estimates as well
as point estimates for parameters of interest. Kuk and Mak
(1989) and Chambers and Dunstan (1986) each suggested
possible methods for finding interval estimates based on
their estimator using asymptotic theory. But in each case
they did not actually find any interval estimators. Meeden
and Vardeman (1991) noted how approximate 95% credible
regions based on the ‘Polya posterior’ can be found approx-
imately. If we let ¢(.025) and ¢(.975) be the .025 quantile
and the .975 quantile of the collection of 500 simulated
population medians under the ‘Polya posterior’ then
(g(.025), g(.975)) is an approximate 95% credible interval.
(See Berger 1985 for the definition of such intervals.)
Table 3 gives the average length and relative frequency of
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coverage for these intervals. We see that for these popula-
tions the intervals have reasonable frequentist properties.
Perhaps this is not unexpected given the discussion in
Meeden and Vardeman (1991). But on the other hand only
one of the populations was constructed so that the ratios
¥;/x; are exchangeable. These results suggest that point
and interval estimators of the median based on the ‘Polya
posterior’ for the ratios are fairly robust against the
exchangeability assumption and should work well in a
variety of situations. This will be discussed further in
section 5.

Table 1

The Average Value of Five Estimators of the Median
for 500 Simple Random Samples

Population Sample Average Value of the Estimator

(median) Size estrm  estkm estrkm ested  estpp
ppcities 25 197 .196 .193 195 195
(1.90)
ppsales 30 1.21 1.25 1.23 1.25 1.24
(1.24)
ppcounties 30 18.21 18.60 18.66 18.26 18.39
(18.33)
ppexp 30 29.03 29.05 29.00 29.03 29.05
(29.02)
ppgammasa 30 43.82 43.88 4391 43.99  43.89
(43.90) 50 43.90 43.91 43.85 44.06 43.90
ppgammasb 30 43.84 43.96 44.19 44.15 43.61
(44.17) 50 44.28 44 .37 44.18 44,18 43.98
ppgamma20 30 23.47 2328 2314 2346 23.77
(23.15) 50 23.34 23.18 23.17 23.43 23.18
ppin 30 171.15 169.38 168.12 185.01 170.61
(170.25) 50 169.15 167.54 167.65 185.03 169.61
ppsiskew 30 43.66  40.27 45.88 4550 45.11
(46.12) 50 44.04 40.70 46.01 45.43 45.37

Table 2

The Average Absolute Error of Six Estimators of the Median
for 500 Simple Random Samples

Average Absolute Error of the Estimator

. Sample

Population Si
1Z€  estsm estrm estkm estrkm estcd estpp
ppcities 25 .0326 .0161 .0162 .0155 .0075 .0072
ppsales 30 1797 .0770 .0797 .0870 .0244 .0245
ppcounties 30 3.12 .586 .964 1.34 215 214
ppexp 30 43 .49 .48 .47 .48 .46
ppgammasa 30 1.36 96 1.03 .89 .54 .53
50 .95 .74 .78 .65 .44 43
ppgammaShb 30 2.84 274 271 2.58 2.37 2.38
50 2.08 204 2.01 1.89 1.80 1.85
ppgamma20 30 1.08 1.06 1.05 .88 .67 .64
50 .94 7 .78 .73 .51 49
ppin 30 259 258 242 21.62 214 170
50 18.0 20.1 17.9 16.46 17.7 12.7
ppsiskew 30 3.86 4.26 6.69 3.21 272 3.14
50 2.92 363 582 255 220 251
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Table 3

The Average Length and Relative Frequency of Coverage
for a .95 Credible Interval for the Median Based on the
‘Polya Posterior’ for 500 Simple Random Samples

- Sample Average Frequency

Population Size Length of Coverage
ppcities 25 .041 .968
ppsales 30 .141 .964
ppcounties 30 1.44 .994
ppexp 30 2.26 .944
ppgammasa 30 2.70 .950
50 2.15 956
ppgammasb 30 11.67 932
50 8.86 942
ppgamma20 30 3.24 .960
50 2.51 .964
ppin 30 84.8 934
50 65.4 .956
ppstskew 30 15.52 .936
50 12.00 .938

5. DISCUSSION

The motivation for the estimator estpp is based on the
assumption that the population ratios y; /x;’s are exchange-
able. This assumption can be described mathematically in
two separate but related ways. The first is the super popu-
lation model given earlier while the second comes from the
‘Polya posterior’ which is based on a stepwise Bayes argu-
ment and gives a non-informative Bayesian interpretation
for the estimator. This second approach can be used no
matter what parameter is being estimated. When esti-
mating the mean it leads to Basu’s estimator which
performs very much like the ratio estimator although the
ratio estimator usually does a bit better. When estimating
the median it leads to the estimator discussed in this note.
Here we have argued that the ‘Polya posterior’ for the
ratios leads to good point and interval estimators for the
median when an auxiliary variable is present and seems to
be reasonably robust against the assumption that the ratios
yi/x;’s are exchangeable.

Royall and Cumberland (1981) gave an empirical study
of the ratio estimator and estimators of its variance. They
argued that given a sample an estimate of variance based
on the super population model, which leads to the ratio
estimator, often made more sense than a design based
estimate based on a probability sampling distribution. In
Royall and Cumberland (1985), they demonstrated that,
conditional on the sample mean of the auxiliary variable,
the conditional coverage properties of the usual designed
based confidence interval for the population mean were
‘hopelessly unreliable’.
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We now wish to address the question of the conditional
behavior of the intervals for the median based on the Polya
posterior which were developed in this note. In the simula-
tion studies given earlier simple random sampling was used
for convenience. To get some idea of the conditional
behavior of the ‘Polya posterior’ we considered five of
our populations. In each case we ordered the population
using the values of the auxiliary variable x. We then took
500 random samples from the first or smallest half of
the population, then 500 more random samples from
the second or largest half of the population and finally
500 more random samples from the middle third of the
population. We then calculated the .95 credible interval
for the median based on the ‘Polya posterior’ which
assumes the exchangeability of the ratios y;/x;’s. In
Table 4 we give the results for the ‘Polya posterior’ esti-
mators for the median. (We also computed the average
value and average absolute error of estcd for these
examples. We did not include these results since they match
closely the results of the ‘Polya posterior’.) We see that
their conditional behavior, at least in these cases, is very
much like their unconditional behavior. In short, interval
estimates for the median based on the ‘Polya posterior’
should have reasonable frequentist properties, no matter
how the sample was selected, as long the population approx-
imates our beliefs that the ratios are roughly exchangeable.

Table 4

The Average Value and Absolute Error for the Point
Estimator and the Average Length and Relative
Frequency of Coverage for a .95 Credible Interval
for the Median Based on the ‘Polya Posterior’
for 500 Simple Random Samples from the whole
Population, the ‘Smallest’ Half, the ‘Largest’
Half and the ‘Middle’ Third

Sample Where Average Average Average Frequency

Population

Size Taken Value Error Length of Coverage

ppcities 25 whole .195 .0072 .041 .968
smallest 2 192 .0047 .033 994

largest 2 .196 .0078 .048 .988

middle Y5 .201 .0114 .055 922

ppcounties 30 whole 19.4 220 1.46 .990
smallest 2 18.6 .305 1.34 942

largest ¥4 18.1 .283 1.59 954

middle Y5 18.5 252 1.35 .964

ppsales 30 whole 1.24 .0072 141 964
smallest V2 1.24 .027 153 966

largest V2 1.23 .020 125 982

middle Y5 1.23 .027 139 .944

ppgammaSa 30 whole 43.9 .53 2.70 .950
smallest V2 43.8 .55 2.82 .948

largest V4 44.0 .53 2.55 .940

middle ¥ 43.9 47 2.63 974

ppgammaSh 30 whole 43.6 2.38 11.7 932
smallest V2 42.2 2.69 11.6 .890

largest 2 45.1 2.25 11.2 950

middle Y5 45.2 2.27 11.3 936
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As can be seen by looking at the plots of y;/x; versus
x; and our simulation results it does not seem to matter
much if the variability in the ratios y; /x;’s decreases as x;
increases. What is crucial however is that the average value
of the ratios in the narrow strip above a small interval of
possible x values remains fairly constant as we move the
small interval to the right. In Figure 2, the plot of the ratios
for ppgammaSa is an example of such a plot. In fact this
is how the population was constructed, since it satisfies the
assumptions underlying estcd. In Figures 1 and 3 we see
for ppcounties and ppin that the average value of the ratios
in a narrow strip tends to decrease as we move to the right
and helps to explain the relatively poorer performance of
the ‘Polya posterior’ estimators in these cases. Overall
however, the performance of procedures based on the
‘Polya posterior’ seem to be reasonably robust against the
exchangeability assumption.

As another alternative we could consider a more balanced
sampling plan which is based on stratifying the population
on the auxiliary variable. For example consider again
population ppgamma5h where it is ordered on the basis
of its x; values. We constructed ten strata where the first
stratum consisted of the units with the fifty smallest x;
values, the second stratum of the units with the next fifty
smallest x; values and so on. We then took 500 stratified
random samples of size fifty where five units were chosen
at random from each stratum. For these samples the
average value of estpp was 43.94 and its average absolute
error was 1.81. The average length of its corresponding
interval estimator was 8.95 with .938 relative frequency
of covering the true value. Note that these figures are very
similar to those given Tables 1 and 2 when simple random
sampling was used.
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