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Outlier Robust Horvitz-Thompson Estimators

BEAT HULLIGER!

ABSTRACT

The Horvitz-Thompson estimator (HT-estimator) is not robust against outliers. Outliers in the population may
increase its variance though it remains unbiased. The HT-estimator is expressed as a least squares functional to
robustify it through M-estimators. An approximate variance of the robustified HT-estimator is derived using a kind
of influence function for sampling and an estimator of this variance is developed. An adaptive method to choose
an M-estimator leads to minimum estimated risk estimators. These estimators and robustified HT-estimators are
often more efficient than the HT-estimator when outliers occur.

KEY WORDS: Outlier; M-estimator; Adaption; Population mean; Sampling; Sensitivity curve.

1. INTRODUCTION

The mean of a variable over a finite population is an
important indicator. Examples are the mean salary of
employees in a branch of the economy or the mean yield
of corn of the farms in a region. Due to its connection to
the sum the mean cannot be easily replaced by other indi-
cators. But the population mean is a sensitive characteristic
because a single large observation may determine its value.
The Horvitz-Thompson estimator (HT-estimator) is a natu-
ral estimator of the population mean if the sample design
has unequal inclusion probabilities and is without replace-
ment. It is the sample mean in simple random sampling.
It is always unbiased whatever the population distribution
of the investigated variable is. But the HT-estimator is not
robust against outliers because it is linear in the observed
values like its estimand, the population mean. Large obser-
vations together with small inclusion probabilities have a
particularly large influence on the HT-estimator.

Suppose there is an outlier in a sample. The outlier may
be a correct observation from the target population.
Discarding such a correct outlier makes the HT-estimator
biased. But keeping it with full weight makes the HT-esti-
mator highly variable because typically the outlier would
show up only in a few of the possible samples. Thus there
is a tradeoff between bias and variance in this case, which
in particular includes asymmetric distributions with one
heavy tail.

The outlier may also be an incorrect observation, e.g.,
due to a measurement or coding error or stemming from an
element outside the target population. In that case keeping
the outlier with full weight may entail a large bias of the
HT-estimator in addition to high variability. Thus discard-
ing incorrect outliers reduces both bias and variance.

Since it is often difficult to detect outliers and to decide
whether it is correct or not one would like to have esti-
mators that perform well in terms of bias and variance

irrespective of the nature and the detection of possible
outliers. HT-estimators which are robustified through
M-estimators are promising candidates for this difficult
task.

In the survey sampling literature the problem of outliers
or aberrant values is often treated under the heading
‘‘skew populations’’. Kish (1965, sec. 11.4 B) describes the
problem in economical surveys and surveys of individuals.
He proposes the formation of separate strata for outliers
if possible, truncation, transformation or modelling. The
idea of forming a separate class for large units and com-
bining the class means is investigated for example in
(Glasser 1962) and (Hidiroglou and Srinath 1981).

The truncation idea is made more precise by the win-
sorized mean proposed by Searls (1966). Fuller (1991)
proposed a preliminary-test-estimator which reduces the
impact of the largest data values only when a test for
extreme values is significant. Rivest (1993) studied the
behavior of various winsorization schemes under simple
random sampling. Shoemaker and Rosenberger (1983)
derive exact formulae for the expected value and variance
of the median and trimmed mean under simple random
sampling without replacement. Oehlert (1985) proposes
the random average mode estimator to estimate the mean
of finite populations in an outlier robust way. Smith (1987)
emphasises that it is as important to detect and treat
influential observations if the inference is based on the
randomisation provided by the sample design as if the
observations are considered realisations of random
variables. He proposes an influence measure for linear
estimators based on case deletion, which involves both the
variable of interest and its weight.

The prediction approach in sampling theory uses
stochastic models for the population to predict the total
of the present realisation. Linear models and (nonrobust)
linear estimators are used. Aspects of the sensitivity and
robustification against model misspecification are reviewed
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in (Iachan 1984). Chambers (1986) develops an outlier-
robustification of the prediction approach using M-esti-
mators. He distinguishes representative and nonrepresen-
tative outliers in a sample. Representative outliers must
be included with full weight in an unbiased estimate of the
population mean while nonrepresentative outliers should
be downweighted or discarded.

Little and Smith (1987) treat outliers and missing data
in certain positive multivariate continuous data by a robus-
tified EM-algorithm. Gwet and Rivest (1992) investigate
resistant ratio estimators under simple random sampling
without replacement.

M-estimators form a class of flexible and simple robust
estimators. An M-estimator 7 of location is defined implic-
itely by the estimating equation

Y X -1 =0
i=1

for a predetermined function ¢, e.g., Ypuw(x,k) =
max( —k,min(k,x)), where k is a tuning constant. An
M-estimator may be written as a functional of the empir-
ical distribution function. The influence function of an
estimator is a functional derivative of the estimator
(Hampel 1974). It describes the reaction of the estimator
to a small contamination in the data. An M-estimator with
bounded y-function usually has a bounded influence
function such that outliers cannot disturb the estimator
too much. For the estimation of the mean of asymmetric
finite populations M-estimators must be adapted.

In this article we develop design-based M-estimators for
samples with unequal inclusion probabilities. The simple
linear model which implicitely is the basis of the Horvitz-
Thompson strategy is made explicit and the HT-estimator
is expressed as a functional of an empirical distribution
function which accounts for the complex sample design.
This establishes the link to classical robust statistics and
allows a straightforward robustification of the HT-estimator
(Section 2). We define an influence function for sampling
which clarifies the outlier-sensitivity of the HT-estimator
and leads to an approximation of the sampling variance
of the robustified HT-estimator. An estimator of this
variance is presented. In Section (3) we briefly comment on
stratification, domains, robust designs and one-step esti-
mators. In Section (4) an adaptive robustification of the
HT-estimator is developed. The method chooses from a class
of robustified HT-estimators the one which minimizes an
estimate of the mean squared error. The resulting estimator
is called minimum estimated risk estimator (MER-estimator).
A Monte-Carlo simulation is presented in Section 5.
Robustified HT-estimators and MER-estimators outper-
form the HT-estimator in many outlier situations. The
premium to pay is a moderate loss of efficiency in situa-
tions where the HT-estimator is optimal.
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2. ROBUSTIFICATION OF HORVITZ-THOMPSON
ESTIMATORS

2.1 The HT-Estimator as a Least Squares Functional

A finite population U = {1, ...,N]Jof 0 < N <
distinct elements is sampled. We are interested in a variable
y which takes the values y; for i € U. The sample design
p(S) on the space of samples S of fixed size n has inclusion
probabilities 7; = P[i € S] = Yg5,0(S). These =; are
proportional to some known positive auxiliary variable
x; (i € U). Such sample designs are called IPPS designs
(inclusion probability proportional to size) because often
x; is some size measure. Denote by 7; the joint inclusion
probability P[i € S, j € 8] (i, j € U). The vector of all
y-values is denoted y;: = (¥, ..., ¥n) | and x;is defined
in an analogous way. The vector of the y-values of a
sample S is denoted yg: = (Yigs - - .,y,-n)T (ir € S). The
goal is to estimate the population mean of the variable
Y:iJu: = Licv)i/N.

The HT-estimator for y;;is Tyr: = ¥iesyi/ (Nx;). The
variance of Ty is estimated by the well known estimator

Var(Tyr) =

1 ¥ v ¥
]VZI:E (1 _Wi)ﬁ + E (1 —7l',‘7l'j/7l','j7r—l7r_j. ’

ieS I ixjes Y
¢}

which is due to Horvitz and Thompson or by the variance
estimator due to Yates, Grundy and Sen (see Cochran
1977, p. 261).

The rationale behind the HT-estimator given in the
survey sampling literature is that it has sampling variance
zero if the inclusion probabilities =, are exactly propor-
tional to y;. Then Ty (ys) = yy for every sample S. The
HT-estimator is bias-robust but not variance-robust with
respect to deviations from proportionality between y; and
«; (¢f. Rao 1966).

How can the HT-estimator be formulated in a way
which allows the derivation of an influence function
analogue and a variance estimator? The key idea is to
express the HT-estimator as a least squares (LS) functional
of an estimate of the population distribution function in
such a way that the design is incorporated in the estimator
of the population distribution function while the propor-
tionality of y; and x; is taken up by the LS-functional.

The joint population distribution function of two
variables (x;, y;) is defined as F;(r,t) = ¥ ;e 1{x; < r}
1{y; = t}/N, where1{y; < t} = lify; < rand 0 else-
where. There are various possibilities to estimate F;; but
the easiest and most generally applicable estimator is the
sample distribution function
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Fs(r) = ¥ —1(x = rj1{y = t}/ Y- o

ies ! ies i
The estimator Fy is a distribution function itself.

To derive a LS-functional the following superpopulation
model for the proportionality between y; and x; is used:
We assume that y, is a vector of realisations of independent

random variables ¥; with expectation Bx; and variance oXx;.

Definition 1. The LS-estimator 8;5(Fs) of §in the above
model with respect to the sampling distribution function
Fgof (x;,;) (i € S) minimizes {(y — Bx)?%/x dFg(x,y) or
equivalently solves

1 [y — Bx X _
L CE) R

i€S

The following statement is well known and its proof is
easy. If S is a sample drawn according to an IPPS sample
design with inclusion probabilities 7; = nx;/ Y e X; (i € U)
then the HT-estimator is Tyr = Xy Brs(Fs), where
B.s(Fs), the LS-estimator defined by (3):, is given by

YiesYi/ i
Fg) = ——.
Brs(Fs) s X0/

Note that the expression Tyr = Xy Brs(Fs) = Xy
(TiesYi/m)/ (L esxi/m;) does not depend on the super-
population model. However the superpopulation model
clarifies the role of the HT-estimator: The slope 8, s(F%s)
involved in the HT-estimator is a weighted least squares
estimator that incorporates the information in the design
through Fg as well as the information in the auxiliary
variable through the regression.

2.2 The Robustified HT-Estimator

After the separation of design and auxiliary information
and its expression as a LS-functional the robustification
of the HT-estimator is analogous to the robustification of
LS-estimators in linear models for infinite populations
through M-estimators (¢f. Hampel et al. 1986, Chapter 6):
The estimating equation (3) now involves some function 7
which depends on the standardized residuals (y; — 8x;)/
x}’* and on x;. For ease of notation denote by a prime the
division by x'/2 and let r'(8) = (y —Bx)/x"".

Definition 2. Let 8(Fs,n) be a solution of the equation
1 ’ ’ 14
Y —nx/ i (B) X/ = 0. @
. LY
i€S
The robustified HT-estimator (RHT-estimator) is

Trur(Fs) : = XyB(Fs.m)-
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B(Fg,n) is called the slope of the RHT-estimator.

In general useful choices of n are of the form  (x,r) =
w(x)W(r - u(x)), where w(x) and u(x) are two weighting
functions and y is a defining function for a location
M-estimator (¢f. Hampel et al. 1986, p. 315). In the following
we use the so-called Mallows form, which sets # (x) = 1.
Mallows-type regression downweights outlying x-values
and outlying residuals independently. A well-known
example, which also sets w(x) = 1, is the Huber-function
7(x,r) = Yuuw(r,k) = max(—k, min(k,r)) for some
constant k. The RHT-estimator with defining function
n(x,r) = rV xisthe HT-estimator. Thus by adjusting the
tuning constant k in the Huber-function a smooth transition
of estimators from the HT-estimator to more and more
robust estimators is possible.

Scale estimates are needed in w(x) and ¢ (r) to make
B(Fg,n) scale equivariant. While for the weighting function
w(x/) preliminary scale estimators are available, e.g.,
the median of the x/, the scale of the residuals must be
estimated simultaneously with the slope 8. The median of
the absolute residuals may be used. In the following theo-
retical development (Sections 2.3 to 4) scale is assumed
known to simplify the treatment.

The RHT-estimator is a nonparametric estimator. The
model Ey = Bxis merely used to motivate the expression
of the HT-estimator as a least squares functional. Neither
the HT-estimator nor the RHT-estimator need this model
or symmetry of errors with variance proportional to x in
order to be applied.

Other formulations of the HT-estimator as least squares
functionals may be appropriate in certain conditions.
Suppose that in spite of the [PPS-design y; is not correlated
with ;. Then one would probably choose the unweighted
sample mean g = Y ,sy;/n as an estimator of the popu-
lation mean (cf. Rao 1966). A robustification of yg could
be a solution j of ¥,s¥(¥; — n) = 0. This s a location
M-estimator. If the HT-estimator is in fact appropriate
due to the correlation between y; and =; then this robus-
tification is not efficient.

A third robustification would assume y; proportional
to x; but with variance proportional to the square of x;.
This is in fact the situation where the HT-estimator is
optimal. The corresponding robustification would be a
solution B of ¥sn(x;,¥i/x; — B) = 0. Obviously this
robustification does not account for the IPPS-sample
design. If the design is put back into the estimating equation
by solving ¥ csn(x;,y:/x; — 8)/m; = 0 then we do not
get back the HT-estimator when 5 (x,r) = r.

One may argue that in fact the HT-estimator is never
used in its pure form for estimating population means. The
usual estimator is (¥ esVi/m)/ (Yies 1/7;), sometimes
called the H4jek-estimator. The estimating equation of the
Hijek-estimator, ¥,s(¥; — T)/#; = 0, makes obvious
that the Hajek estimator is not robust against outliers in y.
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But the residual y; — T does not involve the auxiliary
variable x;. Therefore the Hdjek-estimator does not suffer
from a possible combined effect of large y; together with
small x;, which may be a leverage point for the regression
model underlying the HT-estimator.

2.3 A Sampling Sensitivity Curve

The derivation of an approximate sampling variance of
the RHT-estimator (see Section 2.4) uses a finite population
analogue to the influence function for infinite populations
(Hampel 1974). For finite population sampling with design
based inference it is appropriate to develop a sensitivity
curve (SC) (¢f. Hampel ef al. 1986, p. 93) for 8 (F,y) at the
population distribution function F;,. In other words, the
slope of the RHT-functional is linearized around Fy,.
Denote by U+ the population U augmented by a unit with
characteristic (x,y). Denote by A(B,F) the function
Yiecun(x/ ,r{ (8))x/ /N, such that the defining equation
for B(Fy,n), the M-estimator at the population distribu-
tion function, is N(B3,Fy) = 0. Clearly

(N + D) [MNB(Fys, ), Fys) = NB(Fy,m),Fy)] =0.

Using a linear approximation to 5 (x, - ) and neglecting
terms in 1/N the sensitivity curve of 8 (F;;,n) can be iso-
lated from this equation:

(N + 1)(B(Fys,m) — B(Fy,n)) =

n(x’,r')x’
Yiev ma(x! r] )x{*/IN

=. Sc(xay’FU:n)s (5)

where 1, (x,r) = 95 (x,r)/dr and both r’ and r/ are eval-
uated at 8 (Fy,n). This SC may be extended to the case
of a p-dimensional explanatory variable (cf. Hampel et al.
1986, p. 316 and Hulliger 1991, p. 183).

Since units usually are not independently included into
an IPPS sample, the reaction of the RHT-slope to a partic-
ular observation must be investigated by conditioning on a
particular sample. The deviation of the estimator 8 (Fy,7)
at a particular sample S from 8 (Fy,1) may be approx-
imated by integrating the SC of 3(F, ) with respect to
the sampling distribution function Fg (¢f. Hampel et al.
1986, p. 85):

B(FS’n) - 6(FU’77) = S Sc(x’y,FU’n)dFS' (6)
The influence of unit / in sample S may then be defined

as the contribution of the unit / to the deviation due to the
sample S, i.e.,

SC((X,‘,T,’,_YI') | S’FUJI) =

n(x/,rl)x{/m;
(Ljes 1/m;) Ljeuna(xf,rf )x/*/N

M

Hulliger: Outlier Robust Horvitz-Thompson Estimators

The SC may be studied theoretically to discuss the
properties of the RHT-estimator and to choose a good
y-function. And it may be estimated by replacing the
standardization factor N/ (¥ jeyma (X .1/ )X/ %) by an appro-
priate estimator. The estimated SC may be used as a tool
for outlier detection.

The influence of unit / in sample S on the HT-estimator is

XIUSC((X,',’K'I',_)’,') |S’FU,TI = r) =

i — ﬁLS(FU)Xi)/(l + m; E 1/'”1')-

JESNi

This SC is unbounded in y; such that the HT-estimator
is not robust against outlying y;. The y; influences the
HT-estimator through the residual y; — 8;5(Fy)x;. This
makes clear why a large y; combined with a small x; (or
small 7;) has a large influence. If =, is directly propor-
tional to x;, as the IPPS design in principle requires, then
the SC of the HT-estimator is bounded in x;. In other
words the HT-estimator is robust against outlying x;.
However the bound may be quantitatively too high to be
efficient and further downweighting of outlying x; may be
necessary.

2.4 Approximate Expectation and Variance

Along the lines of the proof of proposition 2.1 in
Gwet and Rivest (1992) it can be shown that 8(Fs,y) is
consistent for 8(Fy,n) in the sense that for a growing
and nested sequence of populations and IPPS samples
limy, Pl | B(Fs,n) — B(Fy,m)| < €] = 1ve > 0.

Due to the consistency of 3 (Fg,n) the sampling expec-
tation Eg 3 (Fg,n) is approximately 8 (Fy,5). Of course
Xy B(Fy,nm) may be different from the population mean
and then Xy 8 (Fg,n) has a bias as an estimator of §;; . In
particular if the population distribution is not symmetric
then %;; 8 (Fg,n) is in general a biased estimator for y;; but
nevertheless consistent for X, 8(Fy,n). The important
question then is how large is the bias of ¥, 3(Fs,n), in
particular when compared with the variance.

The SC (5) may be used to derive a variance approx-
imation. The derivation is analogous to the case of inde-
pendent identically distributed random variables with the
influence function replaced by the sampling SC. Taking
the expectation of the square of (6) one gets after some
approximations

Varg 8 (Fs,n)
= Es[(,B(FS;n) - B(FUaﬂ))Z]

L Varg(Ysn(x/,ri )X/ /)
(Lievma (X! ri)xi®)?
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1 ! ’ ’ 7r” ’ ’ I ’ ’ ’
Zieu<_ - l)n(xi )X+ Ei;éjeU<__U - l)ﬂ(xi )X (x] 1) )X
T T (8)

2,4 2 2
Yievm(xi,ri)2x]* + Tiwjeuna (X 11X “ma(Xf 1)) X{

where r{ is evaluated at 8(Fy ,n). Denote this approximate
variance by V.. An important difference to the case of the
asymptotic variance of an M-estimator with independent
identically distributed random variables is that the cross-
product terms in the numerator of ¥, do not vanish. If
n(x,r) = r then V, yields the correct variance of the
HT-estimator.

2.5 Estimation of the Variance

The numerator of V, is the variance of ¥gn(x/,r/)
(8(Fy,n))x/ /m; which is a HT-estimator apart from the
unknown r/ (8(Fy ,n)). Therefore the variance estimator
(1) for the HT-estimator may be used. After replacing
B(Fy,n) by the estimator 8(Fs,n), the estimator of the
variance of the RHT-estimator becomes

Yies

1
LY

Therefore different robustifications may be appropriate
for estimating stratum means and overall means.

This is a general problem for robust estimation in sub-
populations (domains) since the definition of an outlier
depends on the reference population. An observation may be
an outlier in a particular subpopulation but may be harmless
in another one. Thus a robust estimator may be suited for
one subpopulation but perform poorly in another subpopula-
tion. Often no robustification is needed or wanted for overall
means but subpopulation means need to be robustified
because of outliers that turn up. Luckily the sample size is
often considerably smaller in a subpopulation than in the
whole population and then the bias component of the MSE
of a robust estimator is often smaller than the variance
component. Thus robust estimators may be more efficient
than the HT-estimator when used in domain estimation.

1
2,02
0 (xi )% %+ Tisjes — (X1 )X (x],rj )X}

= : ©

VeHT = — xlzl )
Zies -
i
The minus sign in (9) is in order. The (negative) cross-
product terms in the numerator usually dominate. Never-
theless v, y7 may become negative as can the HT-variance
estimator (1) itself (¢f. Cochran 1977, p. 261). The variance
estimator v, ;7 does not yield the variance estimator (1) if
n(x,r) = r. Of course the Yates-Grundy-Sen estimator may
be used to estimate the numerator of ¥,. A third variance
estimator may be derived by writing the RHT-estimator
as a weighted least squares estimator whose weights depend
on the estimate (cf. Hulliger 1991, p. 166). Since the MER-
estimators (cf. Section 4) performed slightly better with
v, yrthan with the other variance estimators the simulations
of Section 5 were done with v, gyr.

3. EXTENSIONS

3.1 Stratification and Domains

The stratified mean under stratified random sampling
is a HT-estimator. The stratified mean may be written as
the mean of predicted values under a one-way analysis of
variance model. The corresponding robustification is
straightforward. It amounts to the separate robustification
of the stratum means (Hulliger 1991). However, if the
stratum sample size is 1 or 2 no outlier can be down-
weighted without the help of further assumptions. Further-
more the biases of the robustified stratum means may add
up to a large overall bias (¢f. Rivest 1993, Section 4).

1
4 2 2 2
M (i 1 )2xE + Tijes — 0 (1 )X " ma (X7, 1/ )X]

y

3.2 Hansen-Hurwitz Strategy

When sampling is done with replacement and with
unequal drawing probabilities the Hansen-Hurwitz estimator
is used instead of the HT-estimator. The Hansen-Hurwitz
estimator may be robustified analogously to the HT-
estimator (see Hulliger 1991, section 4.4) since the underlying
model is the same. The variance approximation for the
robustified HH-estimator is simpler than for the RHT-
estimator because the crossproduct terms vanish due to the
drawing with replacement of the Hansen-Hurwitz design.

3.3 Robustified IPPS Design

The ratios y;/m; in the HT-estimator act like the sum-
mands of an arithmetic mean. Small 7; together with large
y; inflate the HT-estimator. To robustify the design against
very large and very small inclusion probabilities we may
put 1'r,~ = n)?,/ ZU)?,-, Where)?,- = -fU + ll/Hub(x,‘ - fu,k).
Thus the auxiliary variable x; is ‘“Huberised”’ from its
mean to prevent too high and too low values. Now an
IPPS sample is drawn with inclusion probabilities ;. The
HT-estimator is still Tyr = (1/N) ¥ sy;/%; and it is still
unbiased. Of course it is not robust against outliers in y
and it may loose efficiency if the expectation of the y; is
not proportional to #;. The weighted LS-estimator under
the superpopulation model for the HT-estimator (see
Section 2.1) with inclusion probabilities #; and unmodified
auxiliary variable x; is
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Ysyi/ 7

s 10
YsXi/7; {19

Brs(Fs) =

with corresponding estimator for the population mean
Xy Brs(Fs). This B; ¢ may be robustified against outliers
in y; like the HT-estimator. Ratio estimators in IPPS
samples are of the same form with the original =; instead
of #;. Thus ratio estimators may be robustified anal-
ogously to HT-estimators, too (¢f. Gwet and Rivest 1992).

3.4 One-step Estimators

It is not advisable to express robust estimators as weighted
means with fixed weights attached to the observations
because the notion and the effect of an outlier depend on
the particular domain and variable to be analysed. How-
ever, so-called one-step estimators, which are expressed
as weighted means, reduce the computational complexity
of robust estimators. The one-step RHT-estimator is

v EzeSWzJ’:/xé /7"1’ 1)

YiesWix{ °/m;
with weights w; = (x/,»/ — Brsx/)/(»/ — Brsx/).In
fact this is the result of the first step of the iteratively
reweighted least squares algorithm, which is often used to
calculate M-estimators. The one-step RHT-estimator
inherits much of the good properties of the fully iterated
RHT-estimator and is simpler to implement and faster to
compute.

4. MINIMUM ESTIMATED RISK ESTIMATORS

The RHT-estimator is in general biased. A convenient
performance criterium is the sampling mean squared error
(MSE) Eg[ (%, 8(Fs,n7) — #y)?]1. For small to moderate
samples the gains of RHT-estimators over the HT-estimator
are not very sensitive to the particular robustification
chosen if there are outliers in the sample (¢f. Hulliger 1991,
Chapter 3). But with well-behaved data or for moderate
to large samples the losses in MSE of certain RHT-esti-
mators may be considerable. The question arises how to
choose a good RHT-estimator. Minimum estimated risk
estimators (MER-estimators), which adapt the tuning
constant of a RHT-estimator to the sample, are a possibil-
ity. MER-estimators for the expectation of a univariate
random variable are investigated in Hulliger (1991,
Chapter 2). The idea is to take a simple M-estimator like
a Huber M-estimator, to estimate its MSE for a set of
tuning constants &, and to choose the tuning constant with
least estimated MSE.

Huber’s (1964, p. 97) proposal 3 and Jaeckels (1971)
adaptive trimmed mean aim at symmetric random variables
and therefore use a variance estimate instead of an estimate
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of the MSE. MER-estimators are similar but their aim is
to estimate the mean of asymmetric distributions.

Here we introduce MER-estimators for IPPS designs.
Consider a parametric set of functions {7, (x,r) : k € K},
where K C R# is the set of parameters. Usually p = 1
or 2 to make minimization feasible and to keep the effi-
ciency loss due to the estimation of the nuisance parameter
klow. We do not call £ a parameter but a tuning constant
to avoid any confusion with the concept of parameters in
probability distributions. A suitable set of y-functions
inducesasetB : = {8(Fs,n;) : k € K}, where 8(Fs,n;)
is the slope of an RHT-estimator. To ensure consistency
of the MER-estimator let limy _ ,n,(x,r) = rv(x,r)
such that the HT-estimator is an element of B. The MSE
of B8(Fs,n;) may be estimated by

r(Fg,k) = max(v,(Fs,k),0) + (B(Fs,k) — B5(Fs))?,
(12)

where v, (Fg,k) is the variance estimator (9) or some other
estimator of the variance of 8(Fs,n,). We use max(v,,0)
in r(Fg,k) because the variance estimator (9) may become
negative. Typically the function »(Fg,k) with k € R, has
amaximum at or close to k = 0 which stems from a large
bias. Then it drops to a minimum where bias and variance
are both small. For large tuning constants r(Fg,k)
approaches the variance of the HT-estimator, usually
from below.

Definition 3. Suppose r(F5,.) has a global minimum at
k,,(Fs) € K. Then the MER-estimator of the population
mean is M(Fg) = )?U,B(Fs,nkm).

MER-estimators with suitable defining functions are
scale equivariant and do not need a scale estimator.
MER-estimators are in general consistent estimators of the
population mean. A proof of the strong consistency of
MER-estimators of the expectation of a random variable
is in Hulliger (1991, Chapter 2).

Problems with nonuniqueness of the minimum or when
the minimum is not attained on X are easily resolved in
practice by inspection of the function r(Fg,k). (If there
are several global minima choose the one with smallest
tuning constant to obtain more robustness.) The bias part
of r(Fg,k) involves the slope 3; ¢(Fs) of the HT-estimator.
By this term the sensitivity of the HT-estimator is trans-
ferred to MER-estimators and thus the robustness of
RHT-estimators is lost again. But if the MER-estimator
should be consistent for the population mean there is no
way around a consistent and therefore nonrobust estimator
in the bias part of the risk estimator. Nevertheless MER-
estimators are quantitatively less sensitive to outliers and
more efficient than the HT-estimator if outliers occur (see
Section 5).

It is even possible to bound the influence of outliers on
the MER-estimator for finite samples without loosing its
(asymptotic) consistency. This is achieved by downweighting
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the bias part in the estimated risk of the HT-estimator in
an appropriate way (MER2-estimators, (Hulliger 1991,
Paragraph 2.4.1)).

MER-estimators may be more efficient than the HT-
estimator because their bias is more than compensated
by the variance reduction due to the downweighting of
outliers. How much can be gained quantitatively is explored
in Section 5.

5. A SMALL SIMULATION STUDY

Simulations with populations of size N = 128 and with
samples of size n = 16 are presented here. The sample
design in Dey and Srivastava (1987) is used (Note that there
is a factor 2 missing in their formula (2.3)). Dey and
Srivastava propose to form m > n/2 groups. The group
totals Eujx,-(j = 1, ..., m) must fulfill the inequality
Eij,-/ZUxi > (n — 2)/(n{(m — 1)). Thus the group
totals are allowed only little variability and the groups are
difficult to form in particular for larger samples (Hulliger
1991, p. 179).

The x;(i = 1, ..., N) are independent realisations
according to a 5%-scale contaminated exponential distri-
bution with origin at 1, i.e., (X; — 1) ~ 0.95Exp(1) +
0.05 Exp(3), where Exp () denotes the exponential distri-
bution function 1 — exp(—x/8#). The shift + 1 is intro-
duced to lower the probability of negative responses in the
regression through the origin model with symmetric errors.

The first response y{!’, with acronym GODA, is a
realization of independent normal variables distributed as
Y, ~ N (100x;,x?). This is the model under which the
HT-estimator is optimal (¢f. Godambe 1955). The response
y{¥ (HTLS) is a realization of independent variables
distributed as Y; ~ oV (2x;,x;/4). This is the ideal model
that yields the HT-estimator as LS-estimator. A third
response y{?’ (HTG) is created by the model ¥; ~
0.95N (2x;,x;/4) + 0.05V(2x;,9x;/4). The residual
outliers have 3 times larger scale. The response y{; (HTE)
has asymmetric outliers which are not related to the
x-variable. The bulk of the data (120 observations) stems
from the distribution Y; ~ N (2x;,x;/4) of y{? but
8 randomly chosen observations stem from Exp(2.5). The
population y{’ (HMT) stems from a distribution with
expectation 0.4 + 0.25x; and has a Gamma distribution
with variance proportional to x*/2. Thus the variable y
has the distribution proposed in Hansen, Madow and
Tepping (1983, p.781). Finally a population y{%
(HMTE) is generated with 120 observations from the same
distribution as y{?’ but with 8 randomly chosen observa-
tions from the distribution Exp(2). The six populations
above are chosen to be realistic. They all use the same
population of x-values (see Figure 1).

The RHT estimator in the simulation uses

n(x/,r’) = w(x{, k) ¥uw(r{ .k, medg | r/|),
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Figure 1. Populations of the Monte-Carlo Study.

with w(x/,k,) = min(l,k, medy | x/ |[|x/ |)and k, =
k, = 2. The weighting function w(x;, k) corresponds to
an asymmetric Huber-function ¢y, = min(x/,,),
which downweights large x;/ only. The scale medg | r/ | is
the median of the absolute residuals evaluated at the solu-
tion of the preceding iteration of the iteratively reweighted
least squares algorithm. The MER-estimator uses the same
n with tuning constants &, ,k, evaluated at 20 points which
lie on the diagonal of the range of k, and k,. S-PLUS
functions for the calculation of the estimators may be
obtained from the author.

For each of the populations a set of 400 samples was
drawn to evaluate the estimators. The obtained precision
is sufficient to draw conclusions (see the standard errors
of the efficiencies in Table 1).

The results are presented in Table 1. The relative bias
of the RHT-estimator is always larger than the relative bias
of the MER-estimator. The biases of the two estimators
have the same sign, except when they are very small. With
the exception of populations HTE and HMTE the variance
of the RHT-estimator is larger than the variance of the
MER -estimator. While the RHT-estimator looses 9% effi-
ciency at population GODA, where the HT-estimator
should be optimal, the MER-estimator looses little. With
population HTLS, where the HT-estimator is the least
squares estimator, the RHT-estimator looses about 12%.



86
Table 1
Monte-Carlo simulations with RHT- and MER-estimator
Populations

GODA HTLS HTG HTE HMT HMTE
MC-mean of HT 6.996  4.531  4.483 2271  1.068  0.991
Rel. bias of RHT —0.002 -0.001 —0.009 -0.009 0.006 -0.052
Rel. bias of MER 0.000 -0.001 —0.007 —0.008 -0.002 -0.035
Rel. SE of HT 0.067 0.041  0.044  0.098 0.107 0.170
Rel. SE of RHT 0.070  0.044  0.040 0.087 0.117 0.144
Rel. SE of MER 0.068 0.042 0.040 0.091 0.107 0.146
Eff. of RHT 0911 0.876 1.110 1310 0827 1.234
Eff. of MER 0.969 0981 1.158 1.194 0.989  1.284

MC-SE of eff. RHT 0.020  0.017 0.073 0.009 0.018 0.001
MC-SE of eff. MER 0.003 0.009 0.037 0.002 0.013 0.002

NOTE: Relative bias and relative standard error (rel. SE) are biases and standard
errors divided by the MC-mean of the HT-estimator. Efficiencies (Eff.)
are MSE of the HT-estimator divided by the MSE of the estimator.
Estimated standard errors of these Monte-Carlo estimates of efficiency
are given in the last two lines.

The efficiency loss of the MER-estimator is once again
small. Population HTG contains symmetric residual
outliers. The RHT-estimator gains about 11% (but see the
‘error of 7.3%) and the MER-estimator about 16%. Under
the asymmetric outliers of population HTE the gain of the
RHT-estimator is 31% while the MER-estimator gains
19%. If neither the regression through the origin, nor the
symmetry of errors or the proportionality of their variance
to the explanatory variable holds, i.e., for population
HMT, then the RHT-estimator looses 17% compared with
the HT-estimator while the MER-estimator looses practi-
cally nothing. If in such a population a few asymmetric
outliers turn up like in population HMTE then both robust
estimators gain considerably against the HT-estimator,
namely 23% and 28% respectively.

In conclusion from this limited simulation the MER-
estimator looses little in terms of MSE, compared with the
HT-estimator, when there are no outliers in the population.
It gains moderately in populations with symmetric outliers
and considerably when the outliers are asymmetric. The
RHT-estimator looses more under ideal situations than the
MER-estimator. The adaptivity of the MER-estimators
pays off.

Extensive simulations with infinite populations in
Hulliger (1991) confirm these conclusions and show that
the gains of robust estimators may be very large for skew
populations with outliers. However the possible efficiency
gains with robust estimators vanish for large samples since
then the bias dominates MSE. On the other hand if the
outliers that turn up in a sample are not representative,
e.g., if they are uncorrected coding errors, then the robust
estimators are much more efficient than the HT-estimator
for all sample sizes.

Hulliger: Outlier Robust Horvitz-Thompson Estimators
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