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Bias Corrections for Survey Estimates from Data with Ratio
Imputed Values for Confounded Nonresponse

E. RANCOURT, H. LEE and C.-E. SARNDAL!

ABSTRACT

Most surveys suffer from the problem of missing data caused by nonresponse. To deal with this problem, imputation
is often used to create a ‘completed data set’’, that is, a data set composed of actual observations (for the respondents)
and imputations (for the nonrespondents). Usually, imputation is carried out under the assumption of unconfounded
response mechanism. When this assumption does not hold, a bias is introduced in the standard estimator of the
population mean calculated from the completed data set. In this paper, we pursue the idea of using simple correction
factors for the bias problem in the case that ratio imputation is used. The effectiveness of the correction factors
is studied by Monte Carlo simulation using artificially generated data sets representing various super-populations,
nonresponse rates, nonresponse mechanisms, and correlations between the variable of interest and the auxiliary
variable. These correction factors are found to be effective especially when the population follows the model
underlying ratio imputation. An option for estimating the variance of the corrected point estimates is also discussed.

KEY WORDS: Conditional bias; Monte Carlo simulation; Restoring estimator; Variance estimation.

1. INTRODUCTION

Occurrence of nonresponse is rather a norm than an
exception in surveys. Missing data caused by nonresponse
are often imputed to obtain a completed data set and the
standard estimator is applied to the completed data set
assuming that the underlying response mechanism is
unconfounded. However, a point estimate obtained in
such a way is biased when the response mechanism is
confounded. The bias in this case could be very severe as
pointed out in Lee, Rancourt and Sirndal (1994). A
response mechanism is unconfounded, according to Rubin
(1987, p. 39), if it does not depend on the variable under
study, otherwise it is confounded. (A formal definition
suitable for this paper will be given in Section 2.)

In a Bayesian framework, a concept similar to that of
an unconfounded response mechanism is termed ignorable.
For bias caused by a nonignorable response mechanism,
Rubin (1977, 1987) and Little and Rubin (1987) considered
a method to correct the respondent mean using auxiliary
variables. In this approach, a linear regression is assumed
between the variable of interest y and a vector of auxiliary
variables x. The regression coefficient vector for the
nonrespondents is assumed to have a normal prior with
mean equal to the regression coefficient vector for the
respondents.

Assuming a logistic model for the response probability,
Greenless, Reece and Zieschang (1982) proposed a method
to deal with nonignorable nonresponse using maximum
likelihood estimation. Further, a linear regression model
is assumed for the relationship between y and x, a vector

of auxiliary variables. The logistic model of the response
probability includes y and z, a vector of other auxiliary
variables. Assuming also that the error term of the regres-
sion is normally distributed, they obtain maximum likeli-
hood estimates of the unknown parameters of the regression
model and the logistic model. Finally, for a nonrespondent,
an imputed value is calculated as the mean of the distri-
bution of y conditional on the values of x and z for the
nonrespondents, and the estimated parameters. Such a
method may give good results when all the model assump-
tions are satisfied but is likely to be highly sensitive to the
specifications of the two models. The adequacy of the
response probability model is usually untestable. If data
are available from an external source, however, then it
may be possible to test the response probability model as
Greenless ef al. did in their application to the Current
Population Survey data. This method is highly computer-
intensive.

In the case of categorical data, a few methods have also
been proposed to deal with the problem of nonignorable
nonresponse. For instance, Baker and Laird (1988) try
to model the response mechanism with the help of log-
linear models. As well, causal modeling is discussed in Fay
(1986, 1989).

Ratio imputation is often used at Statistics Canada,
especially in repeated surveys. For instance, in the Monthly
Survey of Manufacturing, a missing value of the current
shipment is imputed by ratio imputation using previous
month shipment as the auxiliary variable value. This
simple method is very appealing to subject matter
specialists because it reflects month-to-month movement.
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In this paper, we investigate the possibility of improving
the estimator applied to data containing ratio imputation
with the aid of simple correction factors. Therefore, we
assume that imputation has already been performed, and
try to correct the estimator. We focus our attention on the
estimation of the mean. The use of simple correction
factors would be very appealing to the user provided it
works reasonably well. Such a procedure is also easy to
implement without resorting to excessive computational
efforts and it enables us to avoid explicit modeling of the
nonresponse mechanism. However, our approach differs
from Rubin’s in that we use sample dependent correction
factors rather than an a priori chosen constant.

In Section 2, we define several simple correction factors
that meet our requirements. In Section 3, we propose a
variance estimator that may be used in conjunction with
the corrected point estimators. The properties of the
corrected point estimators were examined by a Monte
Carlo simulation reported in Sections 4 and 5. Section 6
presents some concluding remarks.

2. SIMPLE BIAS CORRECTION FACTORS

LetU = {1, ...,k, ..., N} denote the index set of a
finite population and let the population mean of the
variable of interest y be denoted by 3, = (1/N) ¥ yv«.
We assume that y, > O for all k € U. From U, a simple
random sample s of size n is drawn without replacement
(SRSWOR). The unbiased estimator that would be used
with 100% response is the sample mean

Js = (1/n) ) w. 2.1)

Let r and o be the sets of the responding and non-
responding units, respectively, sothats = r U o. Wedenote
the SRSWOR sampling plan by p( -) and the response mech-
anism givensby ¢ (- | s). Thatis, p(s) is the probability
that the SRSWOR sample s is drawn, and g (r | s) is the
probability that the set r responds given the sample s. Let
also m and / be the sizes of r and o, respectively. For
simplicity, we assume that the probability of m = 0 is
negligible. We assume that imputation is carried out with
the aid of an auxiliary variable, x, whose value, x;, is
known and positive for all k € 5. If k € o, the missing value
i is imputed by ¥,. The completed data set is denoted as
{y.p:k € s} wherey., = yifk€randy., = y,ifk € 0.

In this paper, we examine ratio imputation. This often-
used imputation method is based on a simple model. That
is, if the value y, is missing, it is imputed by B,x,, where
B, = (X,7:)/(X,x;). The model denoted £, is stating

that, for k € s.
Vi =0Bxe + €, Ec(€x X)) =0, Vil lxy) = oxg,

Eg(EkE, , Xk,X[) = O, k # 1. (22)

Under this model, B,x, is the best linear unbiased predic-
tor of the missing value y,, based on the respondent data
{ (Wksxy) 1 k € r}. The completed data set is then composed
of the values

Y, if ker
w=1: 2.3
VK {B,xk, if k¢€o. (2.3)

The customary procedure is to apply the estimator
formula used for 100% response to the completed data set.
This gives

= Jro_ -
Yo = ; E Yoo = _rxs = Vraimp s 2.4
r

where X, = (1/n) Y x, 9, = (I/m) ¥,y and X, = (1/m)
Y, x;. Note that raimp stands for ratio imputed.

It now becomes necessary to address the question
whether the imputation can restore the full response esti-
mator, y, in the sense that the imputation estimator j.,
is equal to y, in expectation given s. Unless this can be
achieved, the ratio imputation will have introduced bias.
To examine this question, we must consider the response
mechanism. A response mechanism g (- | s) is said to be
unconfounded for the purpose of this paper if it is of the
formg(r | s) = q(r| x), wherex; = {x;:k € s} and
the response probabilities satisfy P(k € r | s) > Oforall
k € s. That is, it may depend on s and on the associated
x-values. If it depends also on the y-values, so that
q(r|s) =q(r| x,y,), thenis is called confounded. In
these definitions, the response mechanism is conditional
on the realized sample s. Slightly different definitions of
““‘confounded’’ and ““‘unconfounded’’ are given in Rubin
(1987, p. 39) where they are unconditional.

An example of an unconfounded response mechanism is

qrls)=J] @ -6 JJ e

ker kes—r

where O, =1 — P(k€r|s) =1 — e 7% for some
positive constant vy, is the nonresponse probability of unit
k. By contrast, if O, =1 — e~ ", then g(r | s) is a
confounded mechanism.

A particularly simple unconfounded mechanism is the
uniform response mechanism defined by g(r | s) =
(1 — ©)"0"~", Here, units respond according to inde-
pendent and identical Bernoulli (1 — O) trials, where ©
is the nonresponse probability common to all units.

Whether an imputation estimator ﬁU of y, including
Fraimp glven by (2.4), is considered good depends in part
on the assumptions made by the analyst about the response
mechanism and in part on the relation between y and x.
Several possible assumptions are discussed later in this
section. For any given s, the goal is that, under specified
realistic assumptions, the expectation of the difference
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Ju — ¥, should be close to zero. That is, under the given
assumptions, the conditional bias of ﬁU, C—bias(f/U) =
E(Jy — ¥, | s), should be small. We call ﬁU a restoring
estimator of y;if C~bias(ﬁU) = Qor = 0, that s, iff)U
is (approximately) equal to y, in conditional expectation.
It follows that if the C-bias is (approximately) zero for any
s, then the unconditional bias over all sample realizations
s is also (approximately) zero.

Different analysts make different assumptions. Let us
consider some typical assumptions and ask the question:
What restoring estimators do these assumptions allow?

Assumption I: The response mechanism is uniform.

Under Assumption I, Ji,imp, iS @ restoring estimator. To
see this, note that

C'bias(y_raimp) = Eq(yraimp | s) — yg = 0,

because, given S, Juimp iS the classical ratio estimator of
7. Assumption I is unrealistic in most surveys. The
response propensity is known to vary with observable
characteristics such as size and industry (for business
establishments), family size and type (for households),
age, sex and income (for individuals). Under this unrealistic
assumption, even a naive estimator such as the respondent
mean, y, = (1/m) ¥, ., is a restoring estimator:

C-bias(y,) = E (5, | 5) — J; = 0.

However, if Assumption I holds, 7,4im, is preferred to y,
because the ratio estimator feature leads to a smaller
variance if the model £ holds.

The analyst clearly needs to consider more realistic
assumptions which allow the response probabilities to vary
with background variables. The following assumption,
composed of two parts, is of this kind.

Assumption II: (II-1): the response mechanism is uncon-
founded but otherwise arbitrary;

(II-2): the ratio model (2.2) holds.

Here (II-1) is a weaker and more realistic requirement
on the response mechanism than the uniformity requirement
in Assumption I. Under (II-1), the response mechanism
can be of any form as long as it is unconfounded. How-
ever, Assumptions I and II are not directly comparable
since II contains a model component, (II-2), which is
lacking in I. Under Assumption II, P,4im, is a restoring
estimator because

C—bias(yraimp) = Eg{Eq(}jraimp) = Js | s}

Yr_ _
E E; <xxs) - E:(¥5)

r

Eq(Bxs) - Bx, = 0.
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Note that changing the order of the expectations, E; E, to
E,E,, is allowed under Assumption II, because the
response mechanism is then of the form g(r | x,), that is,
it does not depend on the y-values. By contrast, the
respondent mean J, is not a restoring estimator because

C'bias(yr) = Eg{Eq(yr) —Js |S} = B{Eq(xrls) _Xs}a

which is generally nonzero under Assumption I1I. We can,
however, transform J, into a restoring estimator by the
use of a multiplicative correction factor. This leads to

LoDE-) e

which is just another way of writing 7, as can easily
be verified. In an example using the Bayesian approach,
Little and Rubin (1987, p. 233) arrive at an estimator iden-
tical to the estimator (2.5).

Let us now consider confounded response mechanisms.
They cause more difficult problems for finding a restoring
estimator.

Assumption III: (ITI-1): the response mechanism is con-
founded but otherwise arbitrary;

(II1-2): the ratio model (2.2) holds.

It is usually difficult, if not impossible, for the analyst
to decide whether Assumption II or Assumption III is
more appropriate. Examining the data will not be of much
help if the only data available relate to the present point
in time, as would typically be the case in a one-time survey.
The assumption made (whether II or III) is then unveri-
fiable. By contrast, if the analyst has experience with a
regularly repeated survey, he or she may have legitimate
reasons to believe, for example, that the nonresponse is
a function of the variable of interest.

In some situations, the assumption of a confounded
mechanism may be made on the following grounds. Sup-
pose in a survey of personal finances that y, the variable
under study is ‘‘savings’’ and that x, the auxiliary variable
is ““income”’, with values x, known for the individuals
k € s. The nonresponse probability of respondent k is
likely to be correlated with the savings figure y, that he
or she is asked to reveal as well as with the income figure
X, known from other sources. But since savings, not
income, is the variable with which the respondent is
directly confronted in the survey, the assumption that the
nonresponse probability is a function of y, may be more
realistic than the assumption that it is a function of x.
Hence a confounded mechanism may be more realistic to
assume than an unconfounded mechanism.

Under Assumption III, neither ¥, nor 4, are restoring
estimators. The C-bias of Pp,im, can be expressed as
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Y
. _ _ r
C'blas(yraimp) = xsESEq E— s
Xk

where €, is defined by the model (2.2). This C-bias is
generally nonzero and can be quite large when the non-
response rate is high and the correlation is not so strong.
However, the C-bias is hard to evaluate, since the exact
form of the response mechanism is left unspecified. Note
that changing the order of the expectations E; and E,, is
not permitted under Assumption III since g (r | s) depends
on the y-values. For example, a negative C-bias is likely
to occur if the respondent residual total, ¥ €, tends to be
negative.

A confounded response mechanism (as in Assumption
I11), introduces bias in the slope estimator B, = (¥, )/
(¥,x,). Consequently, B,x, is a biased imputation for a
missing value y, . To improve the situation, suppose that
a missing value y, is imputed by CB,x, instead of B,x,,
where Cis a quantity to be specified. Then the data after
imputation are given by

s if ke
yo =1 S ’ 2.6)
CB,x;, if keo

and denoting the sample mean of these data as y.., =
(1/n) ¥y <k, we get the estimator

Porp = y,l:l n <1 _ ':—z) (ci— - 1)] 2.7)

A simple correction of the type used in (2.6) was mentioned
in Rubin (1986; 1987, p. 203) in the context of multiple
imputation. Rubin views C as a fixed constant chosen by
the user according to his or her prior knowledge. If such
a choice happens to be well founded, the bias of (2.7) may
be small.

Here, we shall examine choices of Cthat are adaptive,
that is, they reflect the realized sample s and the realized
response set r. Ideally, C should be such that the imputa-
tion will exactly restore the estimator y, = (1/n) Yy,
that would be used with 100% response. This C-value is
determined by the equation

1 1

1 .
Vs == EJ’k = - E)’-Ck = (EJ’k + E CBer>-
n N n A n r o]
A simple calculation shows that the optimal C-value is

Copt =

| °W>

-

where B, = ¥, 3./ ¥, is the slope estimate if the model
(2.2) could be fitted to nonrespondents. The imputed
values would then be J, = B,x, for k € 0. Obviously,
Cope and B, cannot be computed since they depend on
missing y,-values. For an unconfounded mechanism (as in
Assumption II), we can expect Cy, = 1, given s, because

B
EEEq(COpt | S) = Equ <B?o | S) = 1.

r

But for a confounded mechanism (as in Assumption III),
Copt can be distinctly away from unity. Suppose that
Copt > 1. Note that Cy,; > 1if and only if ¥, e, < 0
with e, = ¥ — Boxy, where By = (¥,yx)/ (LX) is the
unknown slope estimate with 100% response. That is,
Copr > 1 implies that respondents’ residuals e, are
negative on the average. An illustration of this is shown
in figure 1, wheren = 10,/ = n — m = 5, and all five
respondents’ residuals e, are negative.

A
BO

>

Nonrespondents

Respondents

]

Figure 1. Example of data plot (yi, x;) for a confounded
response mechanism.

Assuming that C,,, > 1, one approach for the analyst
working under Assumption Il is to choose a computable
C likely to satisfy C > 1 and then use this C to construct
the estimator (2.7). Factors C that will sometimes work
in this manner are

L =20 @8
w

N

X-O
G =—> &=

Xr

) C3=

s |

|
Rl |Q
3

They are based on the logic that if the response mechanism
is confounded in such a way that the nonresponse proba-
bility is a function of y (for example, O, = 1 — e~ %



Survey Methodology, December 1994

withy > 0), then both C,,, > 1, and %, > &, are likely
to occur, as Figure 1 illustrates. Conversely, if nonresponse
is a decreasing function of yy, then both C,, < 1, and
X, < X, are likely to occur.

One important feature of such correction factors is that
they can, but need not, be calculated during the imputation
phase. For instance, if the usual ratio imputation B,x,
was carried out at the imputation phase, it is then possible
to calculate a suitable correction factor at the estimation
phase without changing the originally imputed values.

Note that ¢, implies a somewhat milder correction than
¢:if¢; > 1, wehavel < ¢, < ¢;. The choices C = 3
and C = ¢4 are calculated on the ranks of the x-values,
rather than on the x-values themselves, to dampen the
effect of extreme x-values. More specifically, letting w,
be the rank of x, in the data set {x; : k¥ € s}, the w-means
incyand cyare w, = (1/n) Y wy, w, = (1/m) ¥ ,w, and
w, = (1//) ¥ ,wi. The four estimators obtained by
letting C = ¢;in (2.7) according to (2.8) will be denoted

as ye.so L =1, ...,4.In particular, we have
_ . m %o\’
s =1 +H{1 — = - -1 , 2.9
n X,
and

22
Vezos = )—}rI:l + (1 - %l> {;; - l}jl . (2.10)

The correction factors given in (2.8) are not ideal when
the correlation between x and y is close to 1. In this case,
we have B, = B, = B,, provided that the model (2.2)
holds. Therefore, the correction factor C should be close
to 1. However, the correction factors given in (2.8) could
be very different from 1 and using them would bring bias.
For this reason, it may be preferable to work with a
correction factor Cin (2.7) that takes the correlation into
account. Correction factors of this kind are

ki=1— {(; = )(R, — D}, (2.11)
where ¢;, i = 1, ..., 4, are the four correction factors

given in (2.8), and I?Xy is the estimated correlation coef-
ficient based on the respondent data. In our Monte Carlo
simulation we also included the estimator (2.7) corre-
sponding to the four choices C = k;, i =1, ..., 4.
These estimators will be denoted as Tkjeso i=1,...,4.

3. VARIANCE ESTIMATION

Since we are interested in variance estimators based on
single value imputation, the variance estimation method
proposed in Sdrndal (1990, 1992) is of interest. Assuming
unconfounded nonresponse and that the model £ in (2.3)
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holds, the variance estimator for the point estimator
Fraimp 0 (2.4) obtained by this method is given by

I}(_ _ 1 1 ; (y'k - .)_)‘S)Z
yraimp) = <I’1 N)

= Voua + Vziif + I/;mps (3 1)
where
1 E x/% XS E Xk
Ao = 1 Exk bt 2 + 0 N
" o E Xk Z Xk
r r
A, = Xs_fo
Xr
and
E e,%/(m - 1)
62 = L 5 , (3.2)
Xr{l - (Cer) /m}
where

\/ Y (=52 (m— 1)

e = Yr — Bxy, vy =

%

The variance of pp, has two components, namely,
the sampling variance and the variance due to imputation.
The first term in (3.1) (denoted by V,,,) is an estimate of
the sampling variance calculated using the ordinary
variance formula assuming that imputed data are as good
as real observations. Since this assumption does not hold,
V,.q underestimates the true sampling variance. To correct
this underestimation, the second term Vj;in (3.1) is added.
The last term I7imp in (3.1) is an estimate of the variance
due to imputation.

If we compute the mean of the y-values from the com-
pleted data set {y<,:k € s} given in (2.6), we get the
estimator (2.7). Its variance estimator should take the
correction factor C into account. If we can assume that
the expectation E;E,E, is equal to E,E E; (this is true
under unconfounded nonresponse), we can use Sarndal’s
(1990, 1992) method to obtain a variance estimator which
takes Cinto account. However, we are mainly interested
in confounded cases. We are therefore proposing a variance
estimator based on the following heuristic argument.
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The estimator 62 in (3.2) uses the respondent data only.
It will certainly be biased for confounded mechanisms and
some correction is needed in order to use formula (3.1) for
the corrected estimator (2.7). We suggest to replace 6% in
(3.1) by C?%42, to obtain the following variance estimator
for the estimator J.., in (2.7):

I7()—)(‘-5) = I75rd + Cz([;ziif + V;mp)’ (3.3)

where V¢, is computed using the data after imputation
with the bias correction factor C. Replacing C? by ¢? or
k?, we obtain the variance estimators corresponding to
Fei-s OF Py The resulting variance estimators work quite
well in many of the cases covered in the simulation reported
in Section 5.

4. SIMULATION STUDY

We are considering eight corrected estimators corre-
sponding to the eight correction factors given in (2.8) and
(2.11). A simulation study was conducted to determine
whether the corrected estimators succeed in restoring y
under different response mechanisms, in particular, con-
founded mechanisms. For comparison, we also included
the uncorrected estimators p, and Jzimp = X, J,/X, given
by (2.2). Our primary objective was to examine the cor-
rected estimators when the finite population follows the
ratio model £ given by (2.3). However, we also wanted to
see how the corrected estimators behave under relationships
other than linear regression through the origin.

We also studied the coverage rates associated with the
different estimators when the confidence intervals are
computed with the aid of the variance estimators proposed
in Section 3.

For the simulation, we generated 12 different finite
populations, each of size N = 100, by specifying in differ-
ent ways the constants a, b, ¢, and d in the regression
model:

'y =a + bxy + oxf + €, Ez(€) =0,

I

Va(€p) = d’x,  (4.1)

where the €, are assumed to be independent. Four differ-
ent regression types were created by four different speci-
fications of (a, b, ¢). These types are called RATIO
(¢ = ¢ = 0,b > 0, thus conforming to the ratio model
£in(2.3)), CONCAVE (¢ = 0,b > 0,c < 0), CONVEX
(a =0,b > 0,c > 0)and NONRATIO (¢ = 0,b > 0,
¢ = 0). For each regression type, three different levels of
the model correlation p,,, 0.7, 0.8 and 0.9, were obtained
by a suitable choice of d. This resulted in 12 specifications
of (a, b, ¢, d) as shown in Table 1.

Table 1
Characteristics of the Populations

POP TYPE a b ¢ d Ry M(EAN
y

I RATIO 0 15 0 612 0.69  70.95
2 RATIO 0 L5 0 450 0.8  69.92
3 RATIO 0 15 0 291 090 7267
4 CONCAVE 0 3  —00l 678 071 117.27
S CONCAVE 0 3  —001 483 081 11457
6 CONCAVE 0 3  —001 280 090 112.11
7 CONVEX 0 025 001 598 071  35.89
8§  CONVEX 0 025 001 422 081  37.06
9  CONVEX 0 025 001 235 090 43.92
10 NON-RATIO 20 1.5 0 612 071 9525
11 NON-RATIO 20 1.5 0 450 081 9446
12 NON-RATIO 20 15 0 291 090 93.32

For each of the 12 specifications, we generated 100
population values (y,,xz), K = 1, ..., 100, by a two
step process. We used the I'-distribution with parameters
o and B. Its density is

1 -1
— x*"exp(— x for x > 0. 4.2
()3 p(— x/B) fo > (4.2)

First, we generated 100 values x;, &k = 1, ..., 100,
according to the I'-distribution with parameters « = 3,
8 = 16, implying that the mean is a3 = 48 and the
variance 8> = 768. Then, for each fixed x;, k = 1,
..., 100, we generated one value y; according to the
I'-distribution with parameters

_ {,u(x)}2 (e + bx + cx?)?

ol (x) d*x ’ *-3)
_oi(x) d*x @.4)
_u(x) _a+bx+cx2’ '

where x = x; and (a, b, ¢, d) is one of the 12 vectors
fixed in advance. This implies that Ex (v, | ¢} = o8 =
a + bx, + cxf and Vi(ye | xx) = aB? = d*x;, as
required under the model (4.1). The same x-values were
used for all 12 populations. For the populations generated
by this process, Table 1 shows the values of the population
correlation R,, and the population mean of y. Note that
the values of a, b, ¢, and d were chosen so as to obtain
realistic types of populations that can be encountered in
practice.

To simulate nonresponse, we used five different
nonresponse mechanisms, each defined by independent
Bernoulli (6,) trials, where the probability of non-
response O, for unit k£ was specified as follows:
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(M1) 6, is constant and independent for all k € U. This
is the uniform response mechanism, therefore un-
confounded.

(M2) 6, is a decreasing function of x; specified as O, =
exp ( — yx;). This is an unconfounded mechanism.

(M3) O is an increasing function of x; specified as 6, =
1 — exp(—vyx;). This is also an unconfounded
mechanism.

(M4) 6,is a decreasing function of y, specified as ©, =
exp (— vY;). This is a confounded mechanism.

(MS5) ©, is an increasing function of y, specified as
0, = 1 — exp(—vy). This is also a confounded
mechanism.

Note that since we assume x and y to be positively
correlated, both (M2) and (M4) are mechanisms such that
large units respond more often than small units. The
smaller units will be underrepresented in the response set r.
Conversely, (M3) and (M5) are mechanisms such that
small units respond more often than large units. The larger
units will be underrepresented in the response set r.

The first mechanism corresponds to the naive Assump-
tion I discussed in Section 2. (M2) and (M3) correspond
to Assumption II while (M4) and (MS5) represent fairly
simple examples of the confounded mechanisms discussed
~ in connection with Assumption III. For (M2), (M3), (M4)
and (M5), the constant y was determined in such a way
that the average nonresponse probability & = (1/N)
Y u O is equal to one of the values 10%, 20%, 30%
and 40%. Therefore, for each population, there were
5 x 4 = 20 different combinations of nonresponse
mechanism and nonresponse rate.

For each of the 12 populations, 1,000 samples of size
n = 30 were drawn. Then for each realized sample,
50 response sets were generated using independent
Bernoulli (O, ) trials according to one of the 20 combina-
tions of nonresponse mechanism and nonresponse rate.
Thus 50,000 response sets were realized for each of the
12 X 20 = 240 combinations resulting from cross-
classifying the 12 populations with the 20 combinations
of nonresponse mechanism and nonresponse rate.

5. RESULTS

We studied the two uncorrected estimators ¥, (justified
under Assumption I) and Py, = X.7,/%, (ustified under
Assumption II) and the 8 corrected estimators y.;., and
Frios» i = 1, ..., 4 (justified under Assumption II). (We
call both ¥, and J,4im, uncorrected even though (2.5) shows
that we can view J,imp as a corrected version of the naive
estimator p,. Recall that our principal aim is to correct
the bias of J4im, when the mechanism is confounded.)
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The performance of the 10 estimators is judged by the
magnitudes of the relative bias (RB), the relative root mean
square error (RRMSE), and the coverage rate (CVR). The
RB and the RRMSE of a point estimator y, for y are
defined respectively as,

E,E,(Jy) — J
RB(7) = 100 x “2Eav) = Ju
Ju

EE (3 —7y)?
RRMSE (j) = 100 x 2LpEaPv =Ju)”

The expectations E,E, (§y) and E,E,(Jy — Py)* were
estimated by Monte Carlo simulation using the 50,000
realized response sets for each of 240 combinations. With
this number of replicates, the Monte-Carlo error was less
than 0.1%, assuming that the distribution of the y;;’s is
approximately normal. We will use the abbreviation ARB
to denote the absolute relative bias, | RB(¥7) |.

We will also discuss the coverage rate (CVR) of the 95%
confidence interval constructed as

v+ 1.96JV (), (5.1)

<

where j, is one of the 10 estimators and V(J;;) the corre-
sponding variance estimator. FOI J,4m, and the 8 corrected
estimators, we used the variance estimators described in
Section 3. For y,, we used the variance estimator

) 1 1
Voo = (- - ) Y -7 - 1.
J) <m N> ,~ (e — )/ (m )

The CVR is calculated as 100 times the proportion of the
50,000 response sets such that the interval computed in the
manner of (5.1) includes the true mean y,.

For the following discussion, we group the corrected
estimators into two groups: s-corrected estimators, which
are based on correction factors involving X, or wg, that is,
¢, ¢4, Kk and k4 and r-corrected estimators, which are
based on correction factors involving X, or w,, that is, ¢y,
¢y, ki and k.

The nonresponse mechanism is the key to the perfor-
mance of the various estimators. Therefore, Tables 2 and 3
show the behavior of the estimators separately for each
of the five mechanisms. We noted that the correlation level
and the nonresponse rate do not have a very pronounced
effect on the ranking of the estimators. Thus the perfor-
mance measures ARB, RRMSE and CVR were averaged
over 12 cases (three correlation levels X four nonresponse
rates). These averages are shown in Table 2 for the RATIO
type regression and in Table 3 for the CONCAVE,
CONVEX and NONRATIO regression types.
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Table 2
Average ARB, RRMSE (RM) and CVR of Ten Different Estimators for the RATIO Type Populations
For each mechanism, 12 cases were averaged (four nonresponse rates X three correlation levels)

M1 M2 M3 M4 M35
(uniform) (decreasing-x) (increasing-x) (decreasing-y) (increasing-y)
Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av.

ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR

¥, 0.2 13.9 92.5 12.9 19.1 86.0 9.5 16,5 8l1.1 19.1 23.6 72.3 149 199 68.2
Fraimp 0.2 12.3  92.7 0.6 11.8 93.0 04 129 924 5.3 13.0 92.5 6.0 13.9 85.6
Feaes 1.0 133 924 44 12.6 88.9 8.9 18.3 93.0 1.8 11.8 924 3.6 153 92.2
Fea-s 0.9 13.2 923 4.7 12.6 88.6 8.4 17.7 93.0 1.7 11.7 923 34 149 922
Yi2-s 1.1 13.2  92.8 2.4 12.0 90.9 8.0 18.5 935 1.7 11.7 93.3 2.2 153 92.0
Fra-s 1.0 13.1 92.7 2.6 12.0 90.8 7.3 17.7 93.5 1.6 11.7 93.2 1.8 14.7 91.9
Feles 1.7 14.7 91.4 59 13.4 864 15.7 26.2 87.6 1.9 12.2 909 8.9 21.3 89.8
Pez-s 1.6 14.4 914 6.2 13.5 86.1 149 25.1 87.8 2.1 12.2  90.7 8.3 204 90.0
Fk1-s 2.0 147 923 3.1 123 90.0 159 29.6 88.9 1.1 11.7 92.8 8.3 23.8 90.7
Pr3es 1.7 14.3 92.3 3.2 124 89.8 14.6 27.6 89.3 1.0 11.7 92.7 7.1 21.9 91.0
Table 3

Average ARB, RRMSE (RM) and CVR of Six Different Estimators for CONCAVE, CONVEX,
and NONRATIO Populations

(For each mechanism, 12 cases are averaged as in Table 2)

Ml M2 M3 M4 M5
Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av, Av. Av. Av.
ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR
CONCAVE
7, 0.2 10.4 929 10.5 14.8 82.3 7.3 12.7 823 12.3 16.0 78.3 8.7 134 788
Fraimp 0.2 9.4 94.5 1.4 9.1 934 2.6 105 949 1.9 9.2 949 2.1 9.7 929
Feaes 1.1 11.4 92.4 6.3 11.4 84.7 11.8 18.8 88.4 3.2 102 90.0 5.5 142 923
Vea-s 1.0 11.1  92.8 6.6 11.5 84.3 11.4 18.0 88.8 3.6 10.3 89.8 5.5 13.7 92.7
Fr2-s 1.0 10.7 93.7 4,5 10.1 89.1 9.5 16.8 91.6 1.7 9.3 93.0 3.7 12.8 93.7
Tka-s 0.9 10.5 93.8 4.6 10.1 89.0 9.0 16.0 91.8 1.8 9.3 928 3.5 123 939
CONVEX
r 0.9 23.7 909 19.0 31.6 923 15.0 26.5 76.1 33.2 41.7 764 37.1 414 375
Fraimp 0.6 21.4 906 5.8 21.7 928 7.0 22.1 85.6 14.0 25.0 90.0 27.6 33.5 52.0
Jez-s 1.2  21.1 91.8 0.4 19.8 91.8 2.0 222 924 7.3 20.8 934 17.8 28.2 71.7
Fea-s 1.2 21.3 91.5 0.3 199 091.5 1.8 223 924 6.7 20.6 934 18.5 28.5 70.5
Fia-s 1.6 21.2 91.9 3.0 21.0 920 3.0 222 926 9.8 22.7 91.7 16.2 27.6 74.0
Fka-s 1.4 213 91.6 2.9 21.0 91.8 2.6 220 923 9.5 227 91.7 17.6 27.7 72.6
NON-RATIO

¥, 0.1 10.7 92.9 9.7 14.6 86.5 7.3 12.6 81.3 11.9 16.1 80.8 8.8 13.5 77.8
Fraimp 0.2 9.6 94.5 2.1 9.5 924 2.6 105 953 2.1 9.6 944 1.6 9.9 93.3
Feres 1.1 11.4 92.5 7.0 11.9 83.5 11.9 18.8 89.2 2.6 10.0 909 53 145 925
Fed-s 1.0 11.3 924 7.3 12.1 82.8 11.5 18.1 894 2.7 10.1 90.6 49 13.8 92.7
Fr2-s 1.3 11.2 934 5.0 10.9 86.9 11.3  19.0 90.7 1.3 9.6 92.8 4.7 143 935

Frd-s 1.1 10.9 934 5.2 11.1 86.5 10.6 17.8 91.1 1.3 9.7 92,6 4.1 134 938
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We now comment on the tables. A conclusion of general
character is that the respondent mean 7, has, as expected,
alarge bias and a very poor CVR for all of the nonuniform
mechanisms. Its performance is satisfactory only for the
uniform mechanism (M1). Thus we can focus on the
comparisons between the uncorrected yiy, on the one
hand and the eight corrected estimators on the other. For
both of the criteria ARB and RRMSE, we noted that the
s-corrected estimators generally gave better results than
the r-corrected ones. This is clearly seen in Table 2, where
s-corrected and r-corrected estimators are displayed in
two separate groups. Given this better behavior of the
s-corrected group, we deleted the r-corrected group in
Table 3.

5.1 RATIO Type Regression
From Table 2, we draw the following conclusions.

(i) The mechanism (M1) (uniform nonresponse).

When the mechanism (M1) holds, the uncorrected
estimator Jp,im, is essentially bias free, and there is no
need to correct. However, if the analyst, suspecting a
confounded mechanism, has nevertheless chosen one of
the corrected estimators, the penalty is not severe. The
eight corrected estimators show only a small increase in
ARB and in RRMSE compared t0 Pgimp.

(ii) The mechanisms (M2) and (M3) (unconfounded,
nonuniform and x-value dependent).

For these mechanisms, the ARB is seen to be very small
for the uncorrected estimator J,imp, as theory would lead
us to expect. Our interest is instead focused on the
behavior of the eight corrected estimators, since it is
important to know if a penalty is associated with an incor-
rect decision to use one of these estimators. Such a decision
would be brought about by an incorrect assumption that
the response mechanism is confounded (when in fact it is
unconfounded but nonuniform). Table 2 shows that there
is indeed some penalty in the form of both increased ARB
and increased RRMSE. The penalty is less severe for the
s-corrected group. For both groups, the penalty is less
severe for the mechanism (M2) than for the mechanism
(M3).

(iii) The mechanism (M4) (confounded and y-value
dependent).

For this mechanism, a striking feature of Table 2 is that
all eight corrected estimators give a substantial bias reduc-
tion compared to the uncorrected estimator paim, (and a
very large reduction relative to the naive estimator j,).
The corrected estimators also show some improvement in
RRMSE compared t0 P4, . The s-corrected estimators
perform better than the r-corrected ones. Within the
s-corrected group of estimators, the differences are minor,
as is the case within the r-corrected group.
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(iv) The mechanism (M5) (confounded and y-value
dependent).

Table 2 shows that the s-corrected estimators have a
smaller ARB than the uncorrected Pyyimp; their RRMSE is
slightly higher. By contrast, the r-corrected estimators
“‘overcorrect’’ so that both the ARB and the RRMSE
exceed the levels observed for imp. The r-corrected
group does not perform well for this mechanism.

In summary, Table 2 shows that if the ratio model (2.2)
holds and the assumption of a confounded mechanism is
correctly made, the decision to use one of the corrected
estimators may lead to a reduced bias. The main difficulty
facing the analyst is to accurately predict the nature of the
response mechanism causing nonresponse. In particular,
it may be difficult for the analyst to separate a confounded
mechanism (e.g., one with ©, = e~ ") from a similar
nonuniform unconfounded mechanism (e.g., one with
O, = e~ Y¥*). Yet this subtle difference has a marked
effect on the bias of Jy,im, and on the decision whether or
not to use a corrected estimator. When the nonuniform
unconfounded type applies, we have seen that there is
a penalty associated with the corrected estimators, in
particular with the r-corrected group.

5.2 Other Regression Types

Table 3 shows the performance of six estimators
(the two uncorrected and the four s-corrected) for the
CONCAVE, CONVEX, and NONRATIO regression
types. As in Table 2, there is little to choose between the
estimators when the uniform mechanism (M1) holds. For
the two confounded mechanisms, the results in Table 3 do
not send a clear message that s-corrected estimation should
be attempted even if the assumption of a confounded
mechanism is correctly made. Compared to the uncorrected
Fraimp» the s-corrected estimators show a clearly improved
performance (in terms of smaller ARB and smaller
RRMSE) only for the CONVEX population type. Even
in this case, a substantial bias remains after the attempt
at correction. For the two unconfounded nonuniform
mechanisms (M2) and (M3), it is @ priori clear that one
would not expect improved performance on the part of the
s-corrected estimators when compared to Jiaip,,. Oddly
enough however, we find that the s-corrected estimators
work very well for the CONVEX population. These
conclusions leave the analyst with a difficult choice if a
RATIO type population cannot be assumed. Then it is
difficult on the basis of our findings to recommend the use
of one of the corrected estimators.

5.3 Coverage Rates

Tables 2 and 3 also show that the variance estimation
procedure suggested in Section 3 generally works well.
Indeed the coverage rates for the corrected estimators are
uniformly good whenever the ARB is small. In particular,
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Table 4
Average ARB, RRMSE (RM) and CVR of the Two Uncorrected Estimators and the
¢4 - and k4 — Corrected Estimators
(Averaged Over All Population Types)
Ml M2 M3 M4 M35 Overall
Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av. Av.
ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR ARB RM CVR
7 0.3 14.7 923 13.0 20.0 86.8 9.8 17.1 80.2 19.1 244 77.0 17.4 22.1 65.6 11.9 19.6 80.4
Fraimp 03 13.2 93.1 2.5 13.0 92.9 3.1 14.0 92.0 5.8 14.2 93.0 9.3 16.7 81.0 42 142 90.4
Fea-s 1.0 14.2 92.3 4.7 14.0 86.8 8.3 19.0 90.8 3.7 13.2 91.5 8.1 17.7 87.0 5.2 15.6 89.7
Jra-s 1.1 140 929 3.8 13.6 89.5 7.4 18.4 922 3.6 13.3 92.6 6.7 17.0 88.0 4.5 152 91.0

for the unconfounded mechanisms (M2) and (M3), the
coverage rates for the corrected estimators are about equal
to or better than those for the uncorrected estimators.

5.4 Overall Comments

From the summary Table 4, we note that, as expected,
Jrand Jp,im, show the best performance for the uniform
response mechanism (M1). The uncorrected estimator
Fraimp 18 the best one for the unconfounded mechanisms
(M2) and (M3), while the corrected estimators are the best
ones for the confounded mechanism (M4) and (M5).

Finally, on the average over all 240 cases included in
our study, we note from the overall column of Table 4 that
Fraimp and P4 . perform similarly with the former having
a slightly smaller bias and the latter having slightly better
coverage rate.

6. CONCLUSIONS

It has long been recognized that nonresponse causes
bias in survey estimates, except in rare cases. Imputation
is a widely used practice to handle nonresponse, because
it is convenient to work with a complete data set. There
are many imputation rules as well as some softwares that
can be used in large scale surveys. Imputation is sometimes
applied without critical questioning, and, although widely
used, imputation does not solve the critical problem of bias
caused by nonresponse.

In this paper, we have examined ratio imputation. The
ordinary ratio imputation B,x, is justified (that is, it
produces no bias) if two conditions hold: (a) the regression
model behind the ratio imputation rule holds (that is, a
linear regression through the origin); (b) the response
mechanism is unconfounded.

The results of our simulation give some idea of the
magnitude of the bias of the usual ratio imputation esti-
mator P,imp when one or both of the two conditions
break down. We considered several nonuniform response
mechanisms, confounded as well as unconfounded mech-
anisms. We also considered breakdown of the regression
model behind ratio imputation.

We argued that a confounded mechanism can sometimes
be realistically assumed in a survey. We showed that if an
assumption of confounded response mechanism is correctly
made, and if the model behind the ratio imputation is
valid, one can make some progress toward bias reduction
using the s-corrected estimators in this paper. They have
substantially less bias than the uncorrected estimator
Fraimp- The s-corrected estimators are generally more effec-
tive than the r-corrected estimators for reducing the bias.

Suppose the analyst is working under the assumption
that the ratio model (2.2) holds. Our simulation study then
leads to suggested estimators according to the following
Table 5, depending on the assumed nature of the response
mechanism and on the nonresponse rate. The entry ‘‘any”’
means any of the 10 estimators in Table 2.

Table 5
Suggested Estimators for Each Nonresponse Mechanism

Suggested Estimator

Nonlr{esponse Response Mechanism
ate
Uniform Unconfounded Confounded
(= 10%) any any but y, any but y,
(> 10%) any! Fraimp s-corrected

Note 1: Jraimp as a slight advantage over the others.

If the regression model behind ratio imputation fails,
the situation is less clear. Unless the naive assumption of
a uniform response mechanism holds (which is unlikely),
the uncorrected ratio imputation estimator ., can
have considerable bias. We found that yy,;n, is partic-
ularly prone to bias for the CONVEX type population
where the s-corrected group of estimators usually have
smaller bias than J.,im,. On the other hand, for the
CONCAVE and the NONRATIO type populations, Praimp,
is generally more resistant to bias than the s-corrected
estimators.
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