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Dual System Estimation of Census Undercount in the Presence
of Matching Error

YE DING and STEPHEN E. FIENBERG!

ABSTRACT

Dual system estimation (DSE) has been used since 1950 by the U.S. Bureau of Census for coverage evaluation of
the decennial census. In the DSE approach, data from a sample is combined with data from the census to estimate
census undercount and overcount. DSE relies upon the assumption that individuals in both the census and the sample
can be matched perfectly. The unavoidable mismatches and erroneous nonmatches reduce the accuracy of the DSE.
This paper reconsiders the DSE approach by relaxing the perfect matching assumption and proposes models to
describe two types of matching errors, false matches of nonmatching cases and false nonmatches of matching cases.
Methods for estimating population total and census undercount are presented and illustrated using data from 1986

Los Angeles test census and 1990 Decennial Census.
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1. INTRODUCTION

The problem of undercount in the U.S. census has been
of special concern since the first census of 1790 (Jefferson
1986). The DSE (or capture-recapture) approach has been
used in conjunction with the census to evaluate population
coverage as part of what is called the post-enumeration
survey (PES) program. Ericksen and Kadane (1985) and
Wolter (1986) describe the use of the DSE approach in the
context of the 1980 decennial census. A new design for the
PES was planned for the 1990 decennial census and
refinements in methodology were examined in connection
with a 1986 test census in central Los Angeles County,
referred to as the Test of Adjustment Related Operations
(TARO). Diffendal (1988) discusses methodology, opera-
tions, and the results of TARO, and Hogan and Wolter
(1988) and Schenker (1988) provide evaluation of the oper-
ations and assumptions underlying the DSE approach.

The PES approach to dual-system estimation uses two
samples, called the P-sample and the E-sample. The P-sample
which is drawn separately from the census, helps to measure
census omissions; the E-sample drawn from the census
enumerations, helps to measure census €erroneous enumer-
ations. For the 1986 TARO, the dual-system estimator for
the population size, N, which combines the information
from the P-sample and the E-sample takes the form:

N = (CEN — EE — SUB) - N,/M,

where CEN is the unadjusted census count; EE is the esti-
mated number of erroneous enumerations and unmatchable

persons included in the census; SUB is the number of
whole-person substitutions in the census; N, is the number
of people in the P-sample; M is the estimate of the number
of people in both census and the P-sample. For details see
Diffendal (1988) or Wolter (1986). For the variation on
this formula as used in conjunction with the 1990 census,
see Hogan (1992, 1993).

DSE and the matching problem gained considerable
attention in the 1970’s due to its use in estimating births
and deaths in developing countries, and it is thought by
some that perhaps the greatest problem with the dual-
system estimation approach used in 1980 census was the
rate of matching error (Fienberg 1989). Jaro (1989)
describes the technological innovations for matching
introduced by the Bureau of the Census for 1990 and the
test of the related matching methodology in a 1985 pre-
test. Biemer (1988) considers models for evaluating the
impact of matching error on estimates of census coverage
error without attempting to correct for the matching bias
in the usual dual-system estimate. The actual procedure
used in the 1990 census included not only a computer mat-
ching algorithm and various clerical follow-ups but also
logistic regression models for unresolved cases in both the
P-sample and E-sample (see Belin er al. 1993).

Matching is used to determine the census enumeration
status of the people enumerated in the P-sample. Specifi-
cally, those people in the P-sample who are matched to the
census are considered to have been enumerated. People
in the P-sample who do not match are, for the most part,
considered to have been missed by the census. Matching
errors can occur for two general reasons:
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1. The information reported by the respondents/inter-
viewers was incorrect.

2. Correct information was reported, but it was not cor-
rectly used.

Moreover, two types of errors can occur: false matches of
nonmatching cases and false nonmatches of matching cases.
False matches of nonmatching cases may be divided into

(a) instances in which a P-sample case was erroneously
matched to the enumeration of another person, but a
match to that actual E-sample case should have been
made, and

(b) instances in which no match should have been made.

The former case is not ‘‘serious’” for the purposes of
estimating NV, since such false matches would have been,
in fact, correctly classified as a match to the census. Inthe
second case, however, the number of nonmatches becomes
understated. False nonmatches to the census, on the other
hand, have the effect of overestimating the nonmatch rate.
Fay, Passel, Robinson and Cowan (1988) note that false
nonmatches probably represent a greater concern than
false matches. False matches are less common than false
nonmatches because matches can be reviewed easily.

In Section 2, we propose models for matching errors
and then, in Section 3 and 4, we present a systematic
procedure for the estimation of the population total and
thus the census undercount. In Section 5, we analyze the
data from 1986 Los Angeles test census and 1990 Decen-
nial Census to show how our method accounts for mat-
ching errors in the undercount estimates.

2. MODELING MATCHING ERRORS

For simplicity, we assume that the matching mechanism
is constrained, in the sense that no individual in one sample
can be matched with more than one individual in another
sample. Moreover, we implicitly assume a version of
simple random sampling, within strata, and this yields a
standard multinomial sampling model for dual system
estimation. This simplification allows us to focus on the
impact of matching and its mechanisms. In what follows,
we provide a way to view the recapture data, for the
purpose of setting up models for matching.

Let Zn, be the characteristic vector for the whole
population, such that the i-th component of Zy; contains
the characteristics for the i-th individual, where 1 < i < N.
Not all the components in Zy,; can be observed in any
one sample. The object is to estimate N, the size of the
population, from information from two samples. One
could view drawing a sample from the population as
drawing some components in Zy; at random to form a
new vector Y. Then, missing or misreporting of certain
characteristics in those components drawn may cause
matching errors. Henceforth we will refer to the first

sample as Y| and the second sample as Y5, and in the
following discussion they will be the two capture-recapture
samples for dual system estimation.

Two types of matching errors can occur: false non-
matches of matching cases, and false matches of non-
matching cases. We will refer to the former as a type 1 error
and the latter as a type 2 error. We can focus on modeling
one or both types of error. Under perfect matching, each
component in Y; or Y, contains the same information as
in Zy 1, and the number of matches will be the number
of elements common to Y; and Y,. When faced with uncer-
tain matching, we consider the following simple model:

Model (A):

(i) Assume that those matched pairs of components under
perfect matching will still be matched, each with
common probability o, 0 < o < 1.

(ii) All those unmatched will remain unmatched, i.e.,
no false matches.

Model (A) characterizes a mechanism for type 1 matching
error with error probability 1 — «, assuming that type 2
matching error is negligible.

To develop a model for both types of matching error,
we need to consider carefully all the possibilities that lead
to false matches. When there is no matching error, one can
write Y| = (M|, Ny) and Y, = (M,, N,), so that sets
M and M, have the same size and every individual in M,
is correctly matched with one individual in M, and vice
versa, N, is the set of those in sample Y, who are not
matched with any one in sample Y5, and N, is the set of
those in sample Y, who are not matched with any one
in sample Y;. When matching errors are present, false
matches can occur in the following ways:

(a) A person in M| is matched incorrectly with a person
in Mz.

(b) A false match occurs between M, and N,.

(c) A false match occurs between M, and N;.

(d) A false match occurs between N; and N,.

We note that each of (a), (b), (¢) happens only when at
least 2 errors are made, that is, the correct match is not
made and an incorrect match is made. Since such errors
occur with small probability, we assume for simplicity that
cases (a), (b), (c) have negligible probability of occurrence
in the next model.

Model (B):

(i) Assume, as in model (A), that matching pairs between
M, and M, will still be matched, but with probability
a, 0 < o< 1.

(ii) Assume that false matches of types (a), (b), (c) are
negligible.

(iii) Assume that each person in N, will be matched
with someone in N, with a common probability 3,
0=p< 1.
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Even though, in theory, both « and 8 can vary from0to 1,
in the census context we expect that o = 1, and 8 = 0.

We can also consider instances in which the matching
error probabilities and capture probabilities potentially
vary over identifiable population subgroups. In other
words, the population can be divided into strata, by demo-
graphic (e.g., age, race, sex) and geographic variables,
within which the matching error probabilities and capture
probabilities could be assumed to be more homogeneous
than in the whole population. Suppose the whole popula-
tion consists of / strata. Let Z?v,-xl be the characteristic
vector for the population of the i-th stratum with unknown
size N;, and let Y}, Y, be two samples taken from the i-th
stratum which are used to get an estimate N;. Then we
can form an estimate of the overall population size by
setting N = Y {_, N;. We can refine models (A) and (B)
as follows:

Model (A'):

Assume model (A) holds within each stratum, and let
o, be the probability of a match for matching components
instratum, 0 < oy = 1,1 =i = [.

Model (B'):
Assume model (B) holds within each stratum, and let

the two probability parameters for i-th stratum be o, 83;,
l=<=i=<l

For 1990 PES, the P-sample matching was conducted
using the sample blocks plus a ring of surrounding blocks
(Hogan 1993). Geocoding errors may lead to false matches
across geographically defined post-strata, and false matches
are possible for demographically defined post-strata.
Models (B') implicitly assumes that there are no false
matches across post-strata. Further, all of the models
represent a simplification of the underlying sample design
of the PES.

3. ESTIMATE THE POPULATION TOTAL

In this section, we consider estimation of the population
total under the various matching models, (A), (A"), (B),
and (B’), assuming the validity of usual assumptions of
independence of the two samples and homogeneous prob-
abilities of inclusion in the samples. For models involving
heterogeneous catchability and/or dependence, see the
three-sample approach in Darroch et al. (1993) and the
approach in Alho et al. (1993).

Let N be the number of individuals in the population
under consideration, x, .. the number of indjviduals in Y,
X, the number of individuals in Y5, and x;, the number
of individuals in both samples. The number of individuals
observed in Y; but not Y, is x,; = x,; — x;; and the
number observed in Y| but not Y, is x1; = x;4+ — Xy5.
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One can arrange the capture-recapture data ina 2 X 2
contingency table with one missing cell:

Sample Y,
present absent
present X X12
Sample Y, )
absent X1 -
where we use symbol < —’ to indicate the missing cell, and

standard notation for marginal totals: x; . = X1 + Xi2,
X4 = X1 + Xy,. There is a corresponding 2 X 2 table of
probabilities, p;; = Pr[any individual falls into (i,j) cell],

Sample Y,
present absent
present P P2
Sample Y, ,
absent D2 Dx

with the usual linear constraint
2 2

E pij = L
=1 j=1

Let # be the number of observed different individuals
in the two samples, i.e., n = x|, + X2 + X;. If we
assume that the samples are randomly selected with homo-
geneous selection probabilities, then the numbers of indi-
viduals in the four cells have a multinomial distribution

i=1

(X1, X12: %21, N — 1) ~ Mult(N, pyy, Pr2s Pa1> P22) -

We use the conditional likelihood approach developed
by Sanathanan (1972). For fixed n, (X1, X;2, X2) has a
multinomial distribution with likelihood function

X1 X12, X2]
n! P11 P12 Pai
Ly(p11, P12 P21) = T -
xilxpla!  (po + P2 + pa)

(M

Then # is viewed as being binomially distributed with
sample size N and probability p;; + pi» + p»i, and the
corresponding likelihood is

!

N! ( + + )
AN — n)! P P2 P

[1 — (py + P2 +P2) 1V

Ly(N) =

In the conditional approach we derive maximum likelihood
estimates for the cell probabilities based on the likelihood
(1), then find the value of N which maximizes (2), given
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the values of the cell probabilities. Sanathanan (1972) has
shown that under suitable regularity conditions both
conditional and unconditional likelihood estimates of
N are consistent and have the same asymptotic multi-
variate normal distribution. The conditional approach
is particularly suitable for a large sample problem like
ours.

Under the equal catchability assumption, we let p; be
the probability that any individual in the population is
included in Y, and similarly we let p, be the probability
of inclusion in Y,. The probabilities p; and p, are usually
referred to as capture probabilities and they do not depend
on how the matching mechanism operates. Then the prob-
ability that an individual is in both samples is p; p,, and
the probability of being in set N, is p; (1 — p,). Since
model (A) is a special case of model (B) with 8 = 0,
we focus on formulating the problem under model (B).
To do this, we first need to work out the parametric
specification of the cell probabilities. An individual will
fallinto the (1,1) cellinthe 2 X 2table onlyin two cases,
i.e., the individual is actually in both samples and a match
ismade, or, using the notation in the last section, an indi-
vidual who is actually in N, is incorrectly matched with
some one in V,. Here the matching direction from N, to
N, is implicitly assumed in (iii) of model (B). The probabil-
ity that the former case occurs is ap,p,, and the probability
that the latter case occurs is Sp; (1 — p,). Furthermore,
the two cases are mutually exclusive. Thus, we have
pn = apipy + Bpi(1 — p), and, p;; = py — pyy =
p1 — appy — Bpi(l — p2), poy = P2 — Pu = Py —
appy — Bpi(1 — py). Rao (1957) studied regularity
conditions under which there exist unique maximum
likelihood estimates of parameters in a multinomial distri-
bution. His conditions are satisfied by the parameterization
of {p;] here.

Fora = 1,8 = 0, this setup reduces to the usual two
sample problem and there exist well known solutions in
closed form for resulting likelihood equations for the
conditional likelihood (1) (¢f. Bishop er al. 1975, chap. 6,
p.232), leading to the usual dual-system estimator,
Npsg = Xi4X41/X;;. Otherwise, the maximum likelihood
estimates cannot be written in closed form. Once we have
P and p,, however, the conditional maximum likelihood
estimates for p, and p,, the conditional maximum like-
lihood estimate for NV can be written as

n
b1+ P — (a — BYp1Pr — BP ’

N = 3)

(¢f. Chapman 1951). Under model (A ") or (B"), for the
i-th stratum, one can use the estimates of the parameters
computed under model (A) or (B) for the data of that
stratum, and then sum over strata for an estimate of the
population total.

4. ESTIMATE MATCHING ERROR RATES BY
REMATCH STUDY DATA

In what follows, we give estimates of the matching error
rate parameters « and 8 using the data from the Matching
Error Study (rematch study), one of the operations
conducted by the Census Bureau in the 1986 Los Angeles
test census to evaluate the PES. Briefly, the rematch
typically operates for a sample of cases, using more exten-
sive procedures, highly qualified personnel and reinterviews
to obtain estimates of the bias associated with the previous
matching process. For further details, see Childers,
Diffendal, Hogan and Mulry (1989). In their discussion
of the Matching Error Study in Los Angeles TARO,
Hogan and Wolter (1988) state that ““The rematch was
done independently of the original match, and the discrep-
ancies between the match and the rematch results are
adjudicated. Because of this intensive approach to the
rematch, we believe the rematch results represent true
match status, while differences between the match and
rematch results represent the bias in the original match
results.”

The data collected in a rematch study can be displayed
as in the following table

Rematch Study Data

Rematch
Classification
Not
Matched Matched

. Match

Original atched s i
Classification Not

Matched | 22 2

To estimate o and 8, we assume that in the original
matching process, errors are made according to model (B)
and that errors in the rematch process can be disregarded,
i.e., the rematch is assumed to be perfect. It then follows
that y;; + ¥, is the true number of matches, and thus is
fixed, while y;; is a random variable having a binomial
distribution, i.e., ¥;; ~ ®&(¥;; + ¥21,a). Thus the max-
imum likelihood estimate of a is & = y1 /(¥ + Y1),
and the maximum likelihood estimate of the false nonmatch
rateyisy = 1 — & = y5/(¥;1 + Y21). By the same argu-
ment, ¥, ~ & (¥12 + ¥»,8), and the maximum likelihood
estimate of the false match rateis 8 = yi»/ (V1> + y»).

We can use the estimates of the matching error rates
derived here to analyze the data from the rematch study
from the Los Angeles test census. Very often, in addition
to estimating the size of a population, it is of interest to
estimate the size of a subpopulation such as black, white,
or a subpopulation at a certain geographical location. In
such case, it is more appropriate to allow for heterogeneity
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of matching error rates across various population strata
by using estimates of matching error rates for each stratum
of interest. Such estimates can be obtained by conducting
a rematch study within each stratum and then using the
derived estimates. Data for applying model (B’) are
available from 1990 Census and are analyzed here.

5. APPLICATIONS

5.1 Application of One Stratum Model to 1986 TARO

Hogan and Wolter (1988) present the rematch data
from the 1986 Los Angeles TARO. The rematch results
for the P-sample are given in Table 1 in the form of a cross-
tabulation of match statuses as assigned from the original
TARO match and the rematch. Table 2 presents the two
way table of data for the 1986 TARO, with no post-
stratification. The estimate of the number missed by both
systems, 5,870 is approximately the same order of magni-
tude as census substitutions 5,259 and erroneous enumera-
tions 6,426 (Hogan and Wolter 1988). Rematch results for
the E-sample are presented in Table 3. Let CP, EP be the
total correct enumeration and erroneous enumeration by
production classification, and let CR, ER be the total
correct enumeration and erroneous enumeration by
rematch classification, then based on the data in Table 3,
Hogan and Wolter (1988) conclude that the original rate
of erroneous enumerations (EE), EP/(CP + EP) =
325/(325 + 19,269) = .016 should be increased to about
ER/(CR + ER) = 411/(411 + 19,334) = .021.

Table 1

Results of 1986 Los Angeles Test Census Rematch Study:
P-Sample. Source: Hogan and Wolter (1988)

Rematch Classification

Original
Match
e Not Un-
Classification Matched Matched  resolved Total
Matched 16,623 18 55 16,696
Not matched 88 2,164 56 2,308
Unresolved 17 0 132 149
Total 16,728 2,182 243 19,153
Table 2

Data and Dual-System Estimate for 1986 Los Angeles Test
Census. Source: Hogan and Wolter (1988)

PES
Counted  Missed Total
Counted 298,204 45,463 343,667
Correct Census  pfigeeqd 38,503 5870 44,373
Enumerations*
Total 336,707 51,333 388,040

* Correct Enumerations = Total Census Enumerations — Substitutions —
Erroneous Enumerations.
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Table 3

Results of 1986 Los Angeles Test Census Rematch Study:
E-Sample. Source: Hogan and Wolter (1988)

Rematch Classification

Original

Match Correct  Erroneous

Classification Enumer-  Enumer-  Unresolved Total

ation ation

Correct

enumeration 19,153 28 88 19,269
Erroneous

enumeration 41 283 1 325
Unresolved 140 100 223 463
Total 19,334 411 312 20,057

We now reanalyze the data in Table 2 using model (B),
but ignoring the unresolved cases in Table 1 because their
classification status are unavailable to us. From the data in
Table 1 we estimate 4 = 1 — & = 88/(16,623 + 88) = .53%,
and 3 = 18/(18 + 2,164) = .82%. In Table 4, we present
the estimates and associated standard deviations under
model (B) and those from the traditional DSE. The standard
deviations are computed using asymptotic normality,
for details, see Ding (1990, 1993a, 1993b). The esti-
mated undercount is then defined to be undercount =
(N — CEN)/N x 100%, and CEN is the total census
enumerations, i.e., CEN = Correct Census Enumeration +
Substitutions + EE = 343,667 + 5,259 + 6,426 =
355,352. The estimates on the last row of Table 4 indicates
that the undercount estimate provided by the DSE should
be reduced by 8.42% — 8.05% = .37%. We recall that
Hogan and Wolter (1988) argue that the original rate of
EE should be increased by 2.1% — 1.6% = .5% as a
result of information in the rematch study. This then gives
an additional adjustment to the estimated undercount of
about .5%. Overall, we estimate that the undercount
estimate was biased upward by about .9% (assuming the
overlapping is negligible, even though two components are
not strictly additive).

Table 4
Comparison of Estimates for 1986 Los Angeles Test Census
MLE from
Parameter DSE (SD) Model (B) (SD)
J 2 .8856 (5.48 x 107%)  .8892 (5.51 x 1074
J 2 .8677 (5.78 x 1074 .8712(5.86 x 1074
N 388,040 (87) 386,470 (79)
Undercount (%) 8.42% 8.05%
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Table 5
13 Evaluation Post-strata (EPS) for 1990 PES

Northeast, Central City, Minority
Northeast, Central City, Nonminority
U.S., Noncentral City, Minority
Northeast, Noncentral City, Nonminority
South, Central City, Minority

South, Central City, Nonminority

South, Noncentral City, Nonminority
Midwest, Central City, Minority
Midwest, Central City, Nonminority
Midwest, Noncentral City, Nonminority
West, Central City, Minority

West, Central City, Nonminority

West, Noncentral City, Nonminority + Indian

0 1 N s W N =

—
W N = O O

Table 6
Dual System Data for 13 EPS of 1990 PES
EPS x4 (Census) X 1 (P-sample) X1
1* 5,966,529 4,656,305.09 4,284,132.78
2 9,235,705 8,685,235.79 8,626,362.34
3% 24,255,611 22,628,349.88 21,068,045.55
4 31,173,378 30,150,266.34 29,966,142.62
5% 9,985,055 8,809,620.02 8,249,407.92
6 13,977,529 13,582,482.34 13,278,614.01
7 47,548,548 44,059,397.93 42,987,517.59
8* 4,060,286 3,714,168.27 3,520,314.04
9 11,826,352 10,058,288.52 9,854,052.95
10 39,343,787 38,358,735.32 38,031,852.01
11* 7,283,885 5,743,998.39 5,365,961.67
12 11,073,872 10,512,339.59 10,222,147.69
13 26,415,232 26,721,116.28 26,025,370.25

*Corresponds to minority post-stratum.

Table 7
Results of Rematch Study for 13 EPS of 1990 PES: P-Sample

EPS i 1 Y2 Y22
1#* 14,301 124 31 2,773
2 15,051 36 16 1,136
3* 28,784 293 49 4,166
4 32,753 703 27 2,058
5* 28,674 189 18 3,738
6 21,757 69 36 1,156
7 48,061 47 20 3,278
8* 14,800 58 21 2,527
9 16,527 39 20 874

10 43,721 120 107 1,664
11* 12,522 133 11 2,097
12 15,122 59 8 1,078
13 43,356 232 108 4,583

Table 8
Results of Rematch Study for 13 EPS of 1990 PES: E-Sample

EPS CP EP CR ER
1% 17,027 1,415 17,106 1,645
2 15,821 879 15,631 932
3% 32,420 2,430 32,322 2,446
4 33,369 1,242 32,922 1,665
5% 32,412 1,880 33,030 2,044
6 24,392 1,225 24,336 1,284
7 51,107 2,908 50,929 3,047
8* 17,174 1,518 17,133 1,526
9 18,279 648 18,228 656
10 44,450 1,604 44,584 1,631
11* 13,644 985 13,693 909
12 15,647 522 15,590 583
13 49,647 2,062 49,545 2,334

5.2 Application of Multiple Strata Model to 1990 Census

We now analyze stratified data from the evaluation of
the PES carried out as part of 1990 decennial census.
Hogan (1993) describes operations and results for the 1990
PES, Mulry and Spencer (1991, 1993) present total error
analysis, and Davis ef al. (1991) report on the PES
Matching Error Study (MES). The MES was conducted
for each of 13 Evaluation Post-strata (EPS) by geographic
region and ethnic group. Of the 13 EPS listed in Table 5,
five correspond to substantial minority populations
(Blacks and Hispanics), i.e., EPS 1, 3, 5, 8 and 11. In
Table 6, we present the dual system data for each of the
13 EPS, and we give, in Table 7 and Table 8, relevant
rematch data for the P-sample and E-sample. These data
are drawn from the final reports on PES evaluation
projects P7 and P10 by the Census Bureau (Davis and
Biemer 1991a, 1991b). The P-sample for the 1990 PES
consisted of about 172,000 housing units (Hogan 1992).
The P-sample data are weighted to get estimates of x|
(P-sample total) and x,; (total matches) in the usual
analysis of the dual system data and the analysis presented
here. Nevertheless, the actual unweighted P-sample data
can be used to make inference, see Appendix for compar-
ison between estimates from actual P-sample data and
estimates from weighted P-sample data.

In Table 9, we give the usual dual system estimates and
standard deviations of the capture probabilities (i.e., cov-
erage rate by Census or P-sample) for each of the 13 EPS.
Estimates in Table 10 indicate that there is significant
variation in matching error rates across the EPS. Among
three EPS with 4 larger than .01%, EPS 3 and EPS 11 are
minority post-strata. This suggests that the nonmatch rate
may be higher for minority post-strata than for the
remainder. On the other hand, there is no clear evidence
from the estimates of (3 that the false match rate is higher
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Table 9

Usual Dual System Estimates and Standard Deviations
for 13 EPS of 1990 PES
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Table 12

Undercount Percentage and Bias Estimates
for 13 EPS of 1990 PES

EPS P (SD) P (SD) N (SD) EPS UC(DSE) UC(P) UC(E) UC(T) Bias(P) Bias(E) Bias(T)
1*  0.92007 (12.57 »x 10~5) 0.71803 (18.42 x 10~5) 6,484,855 (470) 1% 6.40 599 530 4.89 0.41 1.10 1.51
2 0.99322 (278 x 10-5) 0.93402 (8.17 x 10-5) 9,298,737 (67) 5 069 —08 -1.05 —120 014 036 0.5
3+ 0.93105 (5.33 x 10-5) 0.86858 (6.86 x 10~5) 26,051,987 (540) g% 5.59 479 553 472 080  0.06 087
4 0.99389 (1.42 x 1075) 0.96127 (3.46 x 1075) 31,364,919 (88) 4 011  —2.17 -133 —3.39 .06 1.23 3.99
;om0 o ) SeOn S sn e e s 08 0% a

e 6 1.22 1.06 0.99 0.83 0.16 0.23 0.39
7097567 (2.32 x 10-5)  0.90408 (4.27 x 1073) 48,734,156 (359)
8% 0.94781 (11.54 x 10-5) 0.86701 (16.85 x 10-5) 4,283,875 (190) ! 177 173 150 147 0.03 026 0.29
9 0.97969 (4.45 x 1075) 0.83322(10.84 x 10~5) 12,071,466 (224) 8 3.52 326 3463200 026 0.06 0.32

10 0.99148 (1.48 x 10-5) 0.96665 (2.86 x 10~5) 39,681,946 (108) 0 1.03 1260 1.00 121 -022 0.05 -0.17
1% 0.93419 (10.35 x 1075)  0.73669 (16.32 x 10~5) 7,797,041 (443) 10 0.41 034 036 029 007 005 012
12 0.97240 (5.05 x 10°5) 0.92309 (8.01 x 10 5) 11,388,243 (164) 1= 5.26 4.43 377 494 0.83 -0.51 0.32
13 0.97396 (3.08 x 10-5) 0.98524 (2.35 x 10-5) 27,121,400 (104) 12 1.89 156 151 119 032 038 070

13 1.79 1.29 1.28 0.78 0.50 0.51 1.01
Table 10
Estimates of Matching Error Rates for minority post-strata, or the other way around. In Table 11,
for 13 EPS of 1990 PES we give maximum likelihood estimates and standard devia-
EPS 4 (%) B(%) tions under model (B ). Heterogeneity in the capture prob-
abilities is significant. This heterogeneity together with the
1= 0.009 0.011 variation in the matching error rates suggests that model
2 0.002 0.014 (B’) is more appropriate than model (B). The asymptotic
3 0.010 0.012 standard deviations in Table 9 and 11 appear unusually
:* g:gé; g:géz small comparing to the sample size of N. Ding (1993b)
6 0.003 0.030 shows that this is a typical feature of the dual system
. 0.001 0.006 problem when the capture probabilities are very high, as
g* 0.004 0.008 it is the case in census application. Despite very narrow
9 0.002 0.022 confidence intervals, simulation studies in Ding (1993b)
10 0.003 0.060 show that the asymptotic normal approximation being
11% 0.011 0.005 used is highly accurate in terms of coverage probability.
12 0.004 0.007 Table 12 provides estimates of matching bias of various
13 0.005 0.023 sources in the undercount estimate by the usual DSE.
UC(DSE) is the undercount estimate from the DSE defined
in the same way as for the 1986 TARO estimate; UC(P)
Table 11 . .

o is the undercount estimate computed by MLE from
MLEs from ?/IOC}‘;IS%/S) a?%%g%‘géd Deviations matching error model to adjust for matching bias in
o ° P-sample, and Bias(P) = UC(DSE) — UC(P). Again,
EPS Py (SD) P2 (SD) N (SD) following Hogan and Wolter (1988), we define the bias in
E-sample operation by Bias(E) = ER/(CR + ER) —

1% 0.92406 (12.68 x 10-5) 0.72114 (18.79 x 10~5) 6,456,833 (446) . .
2 099464 (279 x 10-5) 093536 (830 x 10-5) 9,285,474 ©2) EP/(CP + EP), and the undercount estimate corr'ectlng
3% 093896 (5.38 x 10-5) 0.87597 (7.01 x 10-5) 25,832,352 (279) for E-sample error by UC(E) = UC(DSE) — Bias(E).
4 099999 (2.65 x 10-5) 0.98070 (3.64 x 10-5) 30,731,889 (781) Finally the total matching bias by both P-sample and
S* 0.94166 (8.28 x 10-5) 0.83080 (12.13 x 10~5) 10,603,717 (306) E-sample is Bias(T) = Bias(P) + Bias(E), and the under-
6  0.97922 (4.03 x 10-5) 0.95154 (6.03 x 10-5) 14,274,182 (64) count estimate correcting for both sources of error is
7 0.97600 (2.32 x 1073) 0.90438 (4.30 x 10-5) 48,717,792 (338) UC(T) = UC(DSE) — Bias(T). Note that it is possible,
8% 0.95034 (11.59 x 1075) 0.86933 (17.06 x 10-3) 4,272,459 (159) as observed for EPS 2 and 4 in Table 12, that undercount
9 0.97756 (447 x 107%)  0.83141 (1112 x 1073) 12,097,806 (285) estimate is negative, thus indicating an overcount instead.

10 0.99217 (1.50 x 107%) 0.96733 (3.06 x 107%) 39,654,306 (90) This happens when the DSE (or MLE) is less than CEN,
11%  0.94239 (10.46 x 10~5)  0.74316 (16.58 x 10-5) 7,729,158 (359) the total census enumeration. The dual system data
12 0.97561 (5.07 x 1075) 0.92614 (8.10 x 107%) 11,350,674 (10 represents ‘‘corrected’’ census counts with erroneous and
13 0.97895 (3.10 x 10—5) 0.99029 (2.42 x 10-5) 26,983,168 (355)

other incorrect enumerations excluded from CEN.
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For each of Bias(P), Bias(E) and Bias(T), a positive
estimate indicates a upward bias in the undercount esti-
mate from the DSE by ignoring the corresponding source
of error, that is, UC(DSE) should be reduced by the
estimated bias to account for that source of error. For each
of UC(DSE), UC(P), UC(E) and UC(T), we get signifi-
cantly higher undercount figures for each of the five
minority post-strata, i.e., EPS 1, 3, 5, 8 and 11. For both
Bias(P) and Bias(E), all the bias estimates are positive
except for Bias(P) for post-stratum 9 and Bias(E) for post-
stratum 11. This supports the common belief that there
is usually an upward bias attributable to matching errors
in the undercount estimate by the DSE, except for some
non-minority geographical areas where in fact there is
disproportionately large share of erroneous enumerations.

The effects of the two types of matching errors are well
understood. False nonmatches results in upward bias and
false matches produce downward bias. The nature of the
overall matching bias is then dependent upon which type
of matching error dominates. By computing undercount
estimates for 1980 Census data with selective pair of y and
8, Ding (1990) concludes that due to high capture prob-
abilities in the census application of the capture-recapture
technique, the matching bias is dominated by the false
nonmatch rate when the false nonmatch rate (y) and the
false match rate (8) are about the same magnitude. This
point can be easily confirmed here. EPS 4 has the largest
estimate of y, ¥ = .021% and results in the largest
Bias(P) = 2.06%. EPS 3 and EPS 4 have about the
same estimate of 3, 8, .012% and .013%, respectively,
but EPS 3 has much smaller Bias(P) = .80%, due to
smaller estimate of v, 4 = .010%. About a .01% dif-
ference in 4 gives dramatic difference in Bias(P). For
matches and nonmatches with complete data, Fay ef al.
(1988, p. 53) state ‘‘Because of sometimes difficult nature
of the matching work, false nonmatches probably repre-
sent a greater concern than false matches’’. The data
analyzed by our methods include both complete data and
data produced as a result of the Bureau’s imputation
procedure. The sensitivity of our estimates to v lends
some support to the statement by Fay et al. when both
matching for complete data and matching for imputed
data are considered together. On the other hand, a down-
ward bias can be observed when § is much larger than 7.
For EPS9, 5 = .022%, about 10 times as large as
4 = .002%. Thus false matches dominate false non-
matches for this stratum, and we see the only negative
(downward) bias, Bias(P) = —.22%.

For a specific matching procedure there is an inevitable
trade-off between matching errors and unresolved cases.
Depending on the extent of unresolved cases and the
imputation algorithm used, the resolution process might
yield a significant number of false matches. The empirical
evidence accumulated by the Bureau of the Census, as we
note above, lends some support for the ‘‘unbiasedness’’

of the missing data mechanism used in the imputation
process in our example, but further evidence on the issue
is desirable.

6. SUMMARY

In this article, we have presented models and methods
for the estimation of population total and census under-
count that corrects for matching bias of the usual dual-
system estimate in the presence of matching errors. Two
sources of information are combined in the estimation
procedure, the dual-system or capture-recapture census
data, and the data from a matching error study (rematch
study). The accuracy of our estimates relies on the assump-
tion that the rematch is error free. Matching error rates
are likely not to be homogeneous over different population
strata. Model (B”) allows for heterogeneity of matching
error rates across various population strata but requires
stratified rematch data to estimate the error parameters
within strata. The methods presented here generalize the
standard theoretical framework for the use of maximum
likelihood estimation to accommodate matching errors.

We can adjust for erroneous enumerations in the esti-
mate of EE by the use of rematch data for the E-sample.
We obtain an overall matching bias in the DSE by adding
two bias components from the P-sample and the E-sample.
Our analysis of the 1986 Los Angeles test census data
indicates that the upward bias of the DSE in the estimate
of the census undercount is just under 1%, thereby lending
support to the 1% value used by Hogan and Wolter (1988)
in their evaluation study. For the analysis on 1990 Census
data, the computational results not only agree with under-
stood aspects of matching bias, but also offer findings that
were not previously known.

For simplicity, we have assumed that the PES is (allowing
for stratification) based on simple random sampling. The
models still need to be adapted to account for the complex
sampling design actually used (see Hogan 1992, 1993).

It has been known that the perfect matching assumption
does not hold in the application of dual system estimation
in the U.S. census. The matching problem in the use of
the DSE has two components. The first component involves
the missing P-sample enumeration status. The second
involves errors in classifying P-sample people as enu-
merated or not. The present paper provides a method to
address both components using dual system data adjusted
for imputed enumeration probabilities, and can be of
possible value in future censuses provided that the models
are adapted to handle the complex survey design of the
PES. Ding (1993c¢) develops estimates to directly address
the first component by modifying the usual DSE method
and describes the relationship between the proposed esti-
mates and those that result from the application of the
Census Bureau’s imputation scheme for missing P-sample
enumeration status (Schenker 1988, Belin ef al. 1993).
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APPENDIX

Comparison of Estimates from Weighted and Unweighted
P-Sample Data

For simplicity, we assume a weight & > 1 for the
P-sample and consider the usual dual system estimation
problem. Let {x;} be the cell counts in the 2 x 2 table
for weighted P-sample data and census enumerations,
i,j = 1,2and §j # 22. One could make inference with
unweighted P-sample data and census enumerations
deflated by a factor of k to get cell counts {y;},7,/ = 1,
2andij # 22.Thenx; = ky;, §j # 22,andx;, = ky 4,
x41 = ky,,. Let the usual dual system estimates derived
from {x;} be p,, p, and N,,, and estimates from {y;) be
g,, g, and N,. The estimates are (Bishop er al. 1975,
chap.6) py = X11/X41 = yulyer = Gy, Py = Xn/Xiy =
yulvie = Go Ny = X1x01/x1 = kyipya/yn = kN,.
Thus if one considers the unweighted P-sample data and
uses N» = kN, to estimate the population total, then G,
g, and N give the same point estimates as 4, p, and N,,
from weighted P-sample data. From the asymptotic
normal distribution of the estimates (Ding 1993b), we
have Var(N,) = kVar(N,), Var(g,) = kVar(p,),
Var(§,) = kVar(p,). Then Var(N.) = kVar(N,),
and §,, §, and N» have larger variance than p,, p, and
N,,, respectively. To compute estimates with unweighted
P-sample data, one needs to know k and {y;}. We empha-
size that the trivial case of a constant sampling weight for
all cases in the same post-stratum is assumed here for
simplicity of discussion. However, the real situation can
be complex. For example, Blacks may be sampled at a low
probability in a White stratum and are then combined with
other Blacks sampled with much higher probabilities.
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