Survey Methodology, December 1994
Vol. 20, No. 2, pp. 165—-169
Statistics Canada

165

Matrix Masking Methods for Disclosure
Limitation in Microdata

LAWRENCE H. COX!

ABSTRACT

The statistical literature contains many methods for disclosure limitation in microdata. However, their use by
statistical agencies and understanding of their properties and effects has been limited. For purposes of furthering
research and use of these methods, and facilitating their evaluation and quality assurance, it would be desirable
to formulate them within a single framework. A framework called matrix masking - based on ordinary matrix
arithmetic - is presented, and explicit matrix mask formulations are given for the principal microdata disclosure
limitation methods in current use. This enables improved understanding and implementation of these methods by

statistical agencies and other practitioners.
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1. INTRODUCTION

In this Information Age critical activities of society are
fuelled by data. Users of statistical data rely especially
upon government statistical agencies to collect reliable
data and disseminate it in a timely and broadly useful way.
Prior to the 1950s, data were released only in printed,
tabulated form. Beginning in the 1960s, data at the indi-
vidual respondent level - statistical microdata - began to
be released by the U.S. Government.

At present, use of microdata outside statistical agencies
for research and policy analysis is often curtailed because
appropriate data are not released to users due to confiden-
tiality concerns. For three decades statistical agencies have
wrestled with policy and technical issues in microdata
release, many of which remain unresolved (Federal
Committee on Statistical Methodology 1994). The purpose
of this article is to present a class of matrix transforma-
tions of microdata intended to help deal with this issue.

Duncan (1990) and Duncan and Pearson (1991) charac-
terized several disclosure limitation methods for microdata
- microdata masks — by means of matrix addition and
multiplication, and named such characterizations ‘‘matrix
masks.”” Cox (1991) generalized the concept of matrix
masks, and extended the characterization to other micro-
data masks. The characterization of microdata masks as
matrix masks offers conceptual and statistical advantages.
Matrix masking provides a simple language to represent,
compare and evaluate microdata masking methods. Matrix
masking expresses complicated, diverse methods in a
form presentable to a wide audience including statisticians
and data users, and offers a standard format to develop
and optimize the efficiency of transportable microdata
masking software.

In this paper, the concept of matrix masks is developed
in a mathematically rigorous way. Explicit matrix mask
formulations are provided for the principal microdata
masking methods in current use, extending those presented
in Duncan and Pearson (1991) and Cox (1991). This enables
straightforward implementation of these methods in soft-
ware, and facilitates closer examination and use of microdata
masks by statistical agencies. This should lead to improved
understanding of the properties of microdata masks and
much needed understanding of their effects on data use.

2. MATRIX MASKS

2.1 Definitions

A microdata file containing p attribute values for each
of n (respondent-level) data records can be represented as
ann X p matrix X whose entries are denoted x;;. Unless
stated otherwise, X contains no missing values. A matrix
mask (A, B, C) is a transformation of X of the form:
X = AXB + C, with 4, B # 0, involving ordinary
matrix addition and multiplication. As A operates across
the rows of X, A is called a record transforming mask. B
is an attribute transforming mask, and C is a displacing
mask (Duncan and Pearson 1991).

An elementary matrix mask of X is a matrix mask of
the form AX, XB, or X + C. Iterations of (elementary)
matrix masks of X are also matrix masks of X. Therefore,
a matrix mask of X has the form X = AXB + C, where
ecither X = X or X has been obtained from X by applica-
tion of a sequence of elementary matrix masks. Animpor-
tant advantage of this definition is to enable different
statistical disclosure limitation methods to be applied selec-
tively to arbitrary subsets of the records and attributes
of X (Section 4).
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The matrices 4, B, C are not necessarily fixed. For
example, a common mask for numeric attributes involves
addition of random noise (Tendick 1991), so that Cis a
random matrix. The matrices 4, B, C may depend upon
X. For example, to displace X by additive random noise
proportional to size, draw the ¢; randomly from a normal
distribution with mean zero and standard deviation a multiple
of | x; |, and set X = X + C. Or, with 4 = X',
M = AXissufficient for ordinary least squares regression
(Duncan and Pearson 1991).

2.2 Notation

I denotes the identity matrix. Z denotes the matrix all
of whose entries are zero, and J the matrix of all ones. U;;
denotes the matrix all of whose entries equal zero, except
u; = 1. Iis always a square matrix; Z, J and Uj; need not
be. The U; matrix, when used as a pre-(post-)multiplier
retains the values of only one row (column) of the matrix
it multiplies. The dimensions of submatrices may vary
between or within individual formulations and will be
specified for clarity.

3. REPRESENTATIONS OF DATA MASKS AS
ELEMENTARY MATRIX MASKS

3.1 Removing and Selecting Microdata

The most intuitively obvious method for limiting dis-
closure is to withhold certain microdata from release to
data users. Typically, these data are associated with the
highest disclosure risk and may require suppressing attri-
butes (columns) or suppressing records (rows) of X prior
to release.

Attribute suppression of the k-th attribute can be
represented as an attribute transforming mask X = XB,
where Bis the p X (p — 1) block matrix:

1 7
Supp(k) = zZ |,
zZ I

whose upper [-matrix is of dimension (k — 1) X (kK — 1),
whose lower I-matrix is of dimension (p — k) X (p — k),
and whose central Z-matrix is of dimension1 X (p — 1).
An alternative formulation is Supp(k) = ¥, U +
Yis>w«Uj—u-

Suppression of several attributes can be represented as
a product of B-matrices of this form. For example,
Supp(k) Supp(y) first suppresses the k-th attribute of X,
and then suppresses the j-th attribute of the resulting
n X (p — 1) dimensional matrix XSupp(k). The dimen-
sions of Supp(k) and Supp(j) are p X (p — 1) and
(p—1) X (p —2).

It is sometimes necessary to delete individual records
from X. For example, a respondent may have high iden-
tification risk, or a record may be out of scope or spurious.
Record deletion of the h-th record can be represented as
a record transforming mask X = A4X, where A4 is an
(n — 1) x ndimensional block matrix identical in struc-
ture to Supp(h), except: the central Z-matrix of A is of
dimension (n — 1) X 1 and the dimensions of the upper
and lower I-matrices of A are (A — 1) x (h — 1) and
(n — h) X (n — h). This A-matrix is denoted Del(h).
An alternative formulation is Del(h) = ¥, ,U; +
YisnUi-y,i-

Deletion of more than one record is represented as a
product of 4-matrices Del(h). For example, to delete the
h-th and i-th records of X, with i > h, use Del(i — 1)
Del(#). For i < h, use Del(/)Del(#). The dimensions of
Del(i — 1) and Del(h) are (n — 2) x (n — 1) and
(n — 1) X n.

The A-matrix that systematically deletes every h-th record
(for n = rh; ran integer) is a block matrix comprising r
vertical blocks Del(h), each of dimension (A — 1) X n.
This generalizes to nonsystematic deletion.

The complement of record deletion is record sampling.
The A-matrix that systematically samples every A-th record
of X, forn = rh, is an r X n matrix whose g-th row is
the 1 X n dimensional U-matrix Uy,g,. More generally,
to draw a sample of size s comprising the records of X
indexed by the set § = {s,: v =1, ..., 5}, use the
A-matrix Sam(X, .S) of dimension s X n, each row of
which is a U-matrix Uy, of dimension 1 X n.

3.2 Aggregating and Grouping Microdata

The risk of a respondent being identified and confiden-
tial data disclosed tends to decrease as data are more highly
aggregated. Attribute aggregation and other microdata
masks are based on this principle.

The aggregation mask that replaces the first of two
attributes (the j-th attribute) by the sum of the two attri-
butes, and deletes the second attribute (the k-th attribute)
from X, for j < k, can be represented as an attribute
transformation X = XB, where B is thep X (p — 1)
dimensional block matrix:

1 7
Agg(j.k) = Uy;
zZ I

The upper I-matrix of Agg(j,k) is of dimension (k — 1) X
(k — 1), the lower I-matrix is of dimension (p — k) X
(p — k), and the central U-matrix Uj; is of dimension
1 X (p — 1). Alternative formulations are

Agg(j.k) = Supp(k) + Uy,  for j < k, and

Agg(j,k) = Supp(k) + U, for j> k.
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Aggregation-deletion over more than two attributes can
be represented as a product of B-matrices of this form.
Construct By as above to aggregate the first two attributes
to a subtotal, replace the first attribute by the subtotal, and
delete the second attribute. Proceed iteratively forming

B,, ..., B._, until all summand attributes have been
incorporated into the total and deleted. Then B = By - - -
B._;.

An alternative formulation for aggregation of the j-th
and k-th attributes, replacement of the j-th attribute, and
deletion of the k-th attribute, is given by the B-matrix
product Add(j, k) Supp(k). Aggregation and replacement
of the j-th attribute without deleting the k-th attribute can
be accomplished using the p X p dimensional B-matrix:
Add(j,k) = I + U,;. This generalizes to more summands
v by adding more U,;. To create a new totals attribute
(attribute p + 1) from the j-th and k-th attributes without
replacing either attribute, form the p x (p + 1) dimen-
sional B-matrix [[ | Uy + Uy, whose I'matrix is of
dimension p X p, and whose right-hand submatrix is of
dimension p x 1. Aggregating another attribute v amounts
to adding additional U, to the right-hand submatrix.

Grouping categorical data, sometimes referred to as
collapsing categories, is representable as attribute aggrega-
tion. Represent each of the ¢ mutually exclusive categories
of a categorical variable by a column of X. The absence
(presence) of the corresponding trait is represented in each
column by 0 (1). Grouping the ¢ attribute categories to
form one combined category is simply aggregation across
the ¢ attributes, replacing one attribute by the aggregate
and deleting the remaining attributes, using B-matrices in
the manner described above.

It is sometimes desirable to aggregate attribute values
across microrecords. For example, if microrecords can be
grouped according to some notion of “‘similarity’’ (e.g.,
age or profession, or total value of shipments or size of
work force for businesses in a particular industry), then
an alternative to releasing high risk microrecords is to
release a microdata file whose records are microaggregates
or microaverages of subsets of the original records.

Record aggregation can be performed in several ways.
A typical case is to replace all summands by the correspon-
ding totals. Assume that the records to be microaggregated
are arranged consecutively, and denote the respective
sizes of the record groups by ny, #y, ..., ng, where
n=mn +n + .... + ng. Microaggregation can be
accomplished using a diagonal block A-matrix of dimen-
sion n X n. The main diagonal of 4 is comprised of an
ordered block of square J-matrices of dimension n, X n,,
v = 1, ....,s;the remaining entries of A are zero. Under
microaggregation (microaveraging), original values are
replaced by microaggregates (microaverages) in each
record of the aggregation group. Alternatively, in each
group one record may be replaced by the microaggregated
record while the other records are deleted. This may be
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accomplished using J-matrices of dimension 1 X n,, in
which case the dimension of 4 is s X n. To construct
microaverages in lieu of microaggregates, each J-matrix
is replaced by its corresponding (1/n,)J.

3.3 Scrambling Record Order

A microdata file X being prepared for public use is
typically derived from a larger data file (e.g., by sampling)
or from a more detailed file (e.g., by removal of directly
identifying information such as name, address, and social
security number). The larger file is often maintained in a
prescribed sort order, such as by geography or social
security number, and X is apt to inherit this ordering. To
reduce disclosure risk, the order of the microrecords of X
must be scrambled. Record scrambling can be accom-
plished using a stochastic A-matrix. Given a reordering of
the rows (records) of X (i.e., a permutation P of the row
numbers {1, ..., n}), thenfor P(i) = h,setthei-throw
of A equal to the U-matrix Uy, of dimension 1 X n. 4 is
denoted Reo(P). An alternative formulation is Reo(P) =

Y =1 Ui pgiy-

3.4 Rounding and Perturbing Microdata

Data rounding is used by statistical agencies for several
purposes, including disclosure limitation. Integer variables
such as age or years worked, or number of children,
presented exactly, could be used in combination with other
information to identify respondents (Bethlehem, Keller
and Pannekoek 1990). Conventional rounding (e.g., base
5, remainders 0, 1, 2 are rounded down; remainders of 3,
4 are rounded up), does not preserve additivity to totals,
and controlled rounding, designed to preserve additivity
to totals in one and two way tabulations, may be preferred
(Cox and Ernst 1982). Methods are also available for
unbiased controlled rounding in one- or two-way tables
(Cox 1987).

Data perturbation limits disclosure by introducing
slight changes to microdata values. Additive perturbation
amounts to adding appropriate perturbation values to
original values. Additive perturbation values are often
drawn randomly from a distribution with mean zero and
variance small relative to that of the data. Nonrandom
perturbation is also used.

Rounding and additive perturbation can be represented
as displacing masks. For each value x;;, the displacement
¢;; to x;; is computed according to the rounding or pertur-
bation algorithm, with ¢; = 0 for those values not subject
to change. Then, X = X + C is the matrix of rounded
(perturbed) values.

3.5 Attribute Topcoding

Attribute topcoding is a method by which, given a
predetermined (large) value 7; of the j-th attribute, all
values x; > T;are replaced by T;. Given x; = fi T + ry,
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for fj; the integer quotient, and r; the remainder, 0 <
ryj < T;, compute 1; = (Max{r;, (T + DTV — 1})
mod(7; + 1). To topcode X, use the displacing mask
Teo(X) = (t; — xz).

4. REPRESENTATIONS OF DATA MASKS
AS MATRIX MASKS

4.1 Selecting and Modifying Attribute-Record
Combinations

The formulations of the preceding section, based on ele-
mentary matrix masks, are applied to the entire microdata
file X, and do not enable selective masking of arbitrary
subsets of records (rows) and/or attributes (columns) of
X. The ability to selectively manipulate microdata values
within subsets of X (i.e., to apply data masks selectively
to submatrices of X) is important for disclosure limitation
purposes. This can be accomplished by combining elemen-
tary matrix masks that enable subset selection along rows
and columns, or both, in X with elementary matrix masks
as presented previously. This is accomplished in three
stages.

At the first stage, apply the ignoring mask Ign(Q, R) =
AXB, where A isthe n X n dimensional matrix 4 = ¥ ;¢
Ui, and Bis the p X p dimensional matrix B = ¥ j.gUj;.
A leaves the values in the selected rows Q of X unchanged,
and replaces all other values by zeroes; B has similar effect
on the columns R. At the second stage, apply the appro-
priate mask or combination of masks M of Section 3 to
Ign(Q, R) to effect the desired changes, yielding X =
M(Ign(Q, R)). As M is designed to change only the selected
values, then all ignored values — which Ign(Q, R) replaced
by zero - remain zero after applying M. To preserve the
dimensions of X, deletion operations are modified to
replace values to be deleted by zero. Finally, restore the
ignored original values of X by means of

X = M{gn(Q,R)) + X — Ign(Q, R).

4.2 Blurring

When the operation M is microaveraging, the formula-
tion of Section 4.1 provides a matrix mask for the data
mask blurring of Strudler, Oh and Scheuren (1986).

4.3 Data Swapping

Data swapping is a method whereby selected data
values are exchanged between selected sets of records, in
a manner that ensures that certain one, two and higher-
way tabulations remain unchanged (Dalenius and Reiss
1982). Setting M = Reo(P), where the swapping rule
is given by a permutation P of the affected records,
Section 4.1 yields a matrix mask for data swapping.

5. CONCLUDING COMMENTS

A formulation based on matrix algebra for representing
the principal statistical disclosure limitation methods for
microdata has been developed. Computational issues,
such as for large files, are not addressed. However, the
partitioning methods of Section 4.1 could be used to
reduce effective computational size when working with
extremely large files.

Matrix masks offer a comprehensive framework in
which statistical agencies can develop, evaluate and use
reliable microdata disclosure limitation software. Such
software could be shared among agencies. Exploration
of the uses of matrix masks by U.S. statistical agencies
has been encouraged by an expert panel (Federal Com-
mittee on Statistical Methodology 1994, p. 82). The poten-
tial effect of the widespread use of matrix masks would
be to standardize the microdata disclosure limitation
methods available for use by agencies, while expanding
each agency’s options to evaluate and apply these
methods.
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