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Nonparametric Estimation of Response Probabilities
in Sampling Theory

THEOPHILE NIYONSENGA!

ABSTRACT

We deal with the nonresponse problem by drawing on the model of selection in phases that was proposed by Sdrndal
and Swenson (1987). To estimate response probabilities, we use the nonparametric approach first advanced by
Giommi (1987). We define estimators according to the nonparametric estimation (NPE) model, and we study their
general properties empirically. Inference is based on the concept of quasi-randomization (Oh and Scheuren 1983).
The emphasis is on estimating the variance and constructing confidence intervals. We find, by way of a Monte Carlo
study, that it is possible to improve the quality of the estimators considered by using a variant of the NPE approach.
The latter also serves to confirm the performance of regression estimators in terms of variance estimation.

KEY WORDS: Weighting by phases; Regression estimator; Variance estimators.

1. INTRODUCTION

To counter the effect of nonresponse on the estimation
of parameters of a finite population, we consider the
phenomenon of nonresponse as a unit selection process
in three phases. We therefore use weighting by phases.
This adjustment procedure assigns to each unit observed
a weight that is inversely proportional to the probability
of appearing in the sample, to the unit response probability
given the sample, and to the item response probability
given the sample and the set of respondents per unit.

In practice, only the probabilities of inclusion in the
sample are known. The problem facing us is to estimate
individual response probabilities before incorporating
them in formulas for the estimators of interest. The non-
parametric estimation approach is one of the response
probability estimation procedures. It is motivated by the
use of auxiliary variables which are linked with unit and
item response mechanisms (Giommi 1985, 1987), and
which may be correlated with the variables of interest. This
avoids assuming that nonresponse is independent of the
variables being studied (Oh and Scheuren 1983). This
approach also enables us to avoid postulating one or more
parametric models governing response, such as the Logit
and Tobit models (Grosbras 1987b; Chicoineau, Payen
and Thélot 1985) or models of uniform response within
subpopulations (Oh and Scheuren 1983; Sarndal and
Swenson 1985, 1987).

In the Monte Carlo study illustrating certain estimators
according to the nonparametric approach, we consider the
quite specific case in which the two response mechanisms
are governed by the same auxiliary variables. The differ-
ence between items will reside in the degree of correlation
between each item and the auxiliary variables.

2. NONRESPONSE: A THREE-PHASE
SELECTION PROCESS

Consider a finite population U = {1, 2, ..., k, ..., N},
of size V. Let s be a sample of fixed size » drawn from U
according to a plan @ (s) known and characterized by
inclusion probabilities m, > 0,V kandm, > OV k # (.
We want to observe the units & € s in relation to a set of
Qitems yy, ..., ¥g ..., Yo (Q = 1), then estimate the
total peritem ¢, = Yy, foreveryg(qg = 1, ..., Q).
We assume that conditional on s, each unit & has a prob-
ability ¢, > 0 of participating in the survey and that the
probability that two units & and { participate is ¢;; > 0
with ¢4 = ;. We denote the set of units that agree to
participate in the survey by r and the mechanism by which
the set r was obtained by ® (r | s). We further assume that
conditional on s and 7, each unit k£ € r responds to item
Y with probability ¥, > 0 and that the probability that
two units k and { € r respond to item y, i Y, > 0 with
Yok = Yq- We denote by 7, the set of units that, having
agreed to participate in the survey, respond to item y, and
by ®(r, | s,r) the mechanism by which the set r, is
obtained forallg(qg =1, ..., Q).

The sets s, ¥ and r,, are obtained from three selection
phases for which only the probabilities of inclusion in s
are known. The composition of the unit selection mecha-
nisms gives rise to probability outputs that we denote
by 7 B4 where O, = oYy and Oy = @i g With
Ouxk = O, which do not correspond to inclusion prob-
abilities. Nor does the quantity ©4 correspond to an
inclusion probability for the two response phases condi-
tional on s. If we define the probabilities of inclusion in
ry by w3 = IP(k € r;)and the probabilities of inclusion
inr, givens by ©f, = IP(k€r,|s), then () 7} # 7, 0%
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and (ii) 7, ©% # 74O 4. Furthermore, (iii) O%; = Oy if
probabilities ¥, are independent of r, and (iv) 7, =
74O 4 if the ¢, do not depend on s and if the ¥, do not
depend on either r or s.

3. A FEW SPECIAL ESTIMATORS

Assume that there is an auxiliary variable x, (for the
g-th item) strongly correlated with the variable y, and
such that x,, is known v k € sor v k € U. We take the
specific case in which x, = x, V g(g = 1, ..., Q),
and we assume the following linear model £

IEg (qu l xk) = quk
3.1
{ogxk if k=1, 3.1)

Covy VgisYgr | Xix) =
Fdkela 0 otherwise

in which 8, and o, are unknown parameters. The follow-
ing results are extensions of the findings of Sdrndal and
Swenson (1987).

Result 1. If x, is known, V k € s, then the regression
estimator, denoted by /., and defined by:

e (5,25, B 5D B o

rq TiOgi g TkOgr i

is approximately unbiased for #,. Its approximate variance
is a sum of three components V', V, and V; representing
the respective portions of the variance due to the selection
phases, that is:

- E EU Aﬂk{ (Ygu/ 7)) Yge /70) s
=B {E ES Ay (Egp/ o) (Ege /7y <p[)} ,

I [E E, A%kf (Egi/ mcOgit) (Eqe /T Oge) | S:|,

where the E,, are theoretical residuals of model (3.1). An
estimator of V(tReg) is given by V(tReg) =V + V5
(where V5* = V, + V3) with:

-yy (yi") <M> (3.3)
rg The © gkt \ Tk Ty

and

EZ Aeqk& ( €qk )( €40 ) (34)
g equ Wkeqk iy eq(

where Aﬂ'k[’ = Ty — T} Ty, A¢k? = Qe — PiTp, A‘qut' =
Yoo — Yk and Aeqkf = Oy — OuOy, the ey being
the observed residuals obtained from model (3.1).

Result 2. If x; is known, ¥ k € U, then the regression
estimator, denoted by fr,; and defined by:

- - qu Xk
IRegl = NXU( —/ >, (3.5)
N E’q 7'rkeqk E’q 7"-keqk

is approximately unbiased for 7,. Its approximate
variance is also a sum of three components V;, V, and V;.
The expression of V| ({ge) differs from that of V| (fge,)
by the use of the theoretical residuals E, in place of the
raw values y,, whereas the expressions of ¥, and Vs are
identical to those defined above for #g.,. An estimator of
V(fegr) is given by V(fgee) = V) + V5 where:

ak ) (o), 3.6)
Ezrqﬂ'kf qu< k)(ﬂ) (

and where V;” = V, + V, is obtained by the formula (3.4).

Comment 1. If x, = 1,V k € U, the formula (3.5) defines
an estimator, denoted by gy, where:

lﬂ/ ! =£E .G.7)

rg TkOgk rg TOgp N =rgm keqk

fEXp :NE

The estimator fExp is called an ‘‘expansion estimator’’.
An estimator of approximately unbiased variance for
V(fgyp) is derived from formulas (3.4) and (3.6).

Comment 2. If we take O, = 0,(0 < 0,=1), vkeU,
in formula (3.7), we obtain an estimator, denoted by
Fraive » called a ““naive estimator”’. Its expression is given
by:

1

fNaive = NE );_Lk/z - . (3.8)
rq k I,

q Tk

If the 7, are constant, the expression (3.8) becomes iden-
tical to formula (3.5) in which ¢ is assumed that 6, =
0,(0< 0, =), vkeUandx, = 1,vkel.

Comment 3. For the four estimators defined above, the
underlying models are derived from model (3.1) and are the
following: yx = B Xk + €4 E(egr) = Oand Viey) =
agxk for the first two, y,x = B, + €4 Elegr) = 0 and
V(eq) = oz and N is known for the last two. For the
naive estimator, it is necessary to add the uniform unit and
item response model.
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4. ESTIMATORS WITH ESTIMATED RESPONSE
PROBABILITIES

In practice, the response probabilities ¢, and v, as well
as the probability outputs O = ¢y (K € U, g = 1,
..., Q) are actually parameters to be estimated. We
estimate them by &y, Y and O, = & ¥ respectively.
We define estimators having the same form as the pro-
totype estimators /gy, fre, and fpeg seen in section 3,
taking care to replace the unknown parameters by their
respective estimates. We denote these estimators by
Fixpnps [ Regnp @0 [eq1p Tespectively. The variance esti-
mators are obtained from the expressions (3.3), (3.4) and
(3.6), in which the unknown parameters are replaced with
their estimates.

4.1 Estimation of Response Probabilities

In theory, the probabilities ¢, and ¥, are functions of
the auxiliary variables, that is, functions of the form
ox = fi(v,z¢) and Y = fo(pgXge) in which the quantities
vand g,(g = 1, ..., Q) are unknown parameters and
where the pair of vectors (z,x,), thatis, [ (z1,%51), - ..,
(ZisXgk)s - - +» ZNsXgn) 17, contain the auxiliary infor-
mation available for each item y,. The nonparametric
estimation approach uses only the information contained
in (z,x,) to estimate the ¢, and y . We are considering
here the specific case in which the z; = X, = X, ¥V q
(g=1,...,0),and VvV k €s.

Let x, = {x,:k € s}, all the auxiliary information
relating to the sample. We specify 7, = {7,:k € s}, aset
of functions such that 7.:IR” — R', for all k in 5. We
denote by g, = 74(x,), ¥ k € s, the value of the k-th
function evaluated in x,. We subdivide s in n groups sy
not necessarily disjoint, the respective sizes of which are
given by:

me =Y, D(g — &), (k€s),
J€Ss

1 if —gi | = hy,
D(g — g) = { | & — & | k

0 otherwise,

for a given constant /; which may depend on all the values
gk (kes). The set s, = {j:g; € [ge = Iil}, YKk €5,
contains j units, whose values g; vary little from one to
another. This group is called the group whose unit k is the
kernel, or simply the k-th group. In other words, s, is a
subset of s for which the values of x fall within the vicinity
of x = x; in the sense of the Euclidian distance that
specifies d(k,j) = | 7,(x) — 75(xs) | < Ay = h(g),
meaning that s, = {j:d(k,j) < h,}. Let rp, = s, Nr
and ry, = s, N r,. The respective absolute frequencies of
these sets are my and m;, where:
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me =Y, D(g — &), (ker)

JEr

My, = E D(gk — g), (kerg,g=1,...,0).

jErq

Comment 4. In the general case in which nonresponse is
governed by the pair of vectors (z, x,) with z # x,, the
7, functions would be defined in terms of z in order to
estimate the unit response probabilities ¢, and in terms of
X, to estimate the item response probabilities ¥, Note
that this kernel approach can be generalized to more than
one auxiliary variable governing response. For two variables
x; and x, governing nonresponse, we would specify the set
Sk = {U1sJ2): g, € (8, = My ] and g, € [&h, + Ay, 1)

Response probabilities ¢, and y are estimated respec-
tively by the rates:

m - m
po=FVker; yu=—"Svker, &1
Ny my

whereas the output O, = ¢ is estimated by the rate:
Ou = Oxdogp = My/np, (k€rg, g =1,...,0), (4.2

which is nothing other than the response rate in the k-th
group. This simplification of the estimated output éqk =
&y ¥r is, however, possible only when the two response
mechanisms are governed by the same auxiliary variables.

Two approaches are considered here: the one based on
the values of the variable x (npx) and the one based on the
ranks of the values of the variable x (npr). The NPE
(npx), proposed by Giommi (1987), is obtained by taking
g = Te(x;) = x; (k € 5). To offset the possible effect
of excessively large and excessively small values of x,, we
introduce a variant that consists in using the ranks of x,
that is, NPE(npr). We consider the function u such that
u(z) = lifz = 0and u(z) = 0if z < 0. For any unit
kins, let uy = Yu(x, — x;) = the number of com-
ponents of x, that are less than or equal to x, = therank
of x; in s. The NPE(npr) is then equivalent to letting
g = Ti(Xs) = Uk €5).

4.2 Selection of Interval Limits

The main problem in the NPE approach is the optimum
choice of the A, constants that determine the limits of the
intervals [gy — hy; g + hel, ¥ k € s, that is, a choice
of hy = h;(g,) that reduces the bias and mean square
error of any estimator using the estimated outputs éqk
specified in formula (4.2).

According to Giommi (1985, 1987), the terms n,, 7,
and m, that are used to estimate the response probabilities
are, apart from the standardization factors, estimators by
the kernel method of the density function according to the
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approach of Rosenblatt (1956) for the various series of
values of g. As an example, it is easy to demonstrate that:

ne =Y, D(gx — &) = 2nh(m)f, (g0,

Jj€s

where A(n) = h(gy, k € s) is a positive constant that
converges toward zero at a quite appropriate rate. The
theoretical optimum constant, according to the least
mean square error criterion, is given by 4(n) = Kyn~ 173
where Kr, such as defined by Rosenblatt (1956) and
Wegman (1972a and b), is obtained by the expression
Ky = [9f(x)/2 | f"(x)]*]'7.

In practice, 2 (n) can be obtained only by simulation,
since it depends on the density function to be estimated.
Giommi (1985) used 4 (n) = 2EI,n~"3 where EI is the
interquartile range in the sample. Kraft, Lepage and
van Eeden (1983) chose #(n) = C(n)EI, where C(n) =
(K;/EIs)n~'>. As our choice, we shall adopt h(n) =
C(n)S,,, where C(n) = (K;/S,)n~"/° and where S, is
the corrected standard deviation of the values g, (k € s).
Basing ourselves on the study of Kraft, Lepage and
van Eeden (1983), we will empirically determine a value
C, of Cthat is optimal according to the criterion of least
bias and least mean square error of the estimator fﬁxpnp
and compare the two versions of the NPE approach.

4.3 Expansion and Regression Estimators

Calculation of the approximate bias and variance of the
estimators gy, freg and freg is simplified by the fact that
the probablhtles ¢ and 4 are assumed to be known. For
estimators IEXW,, tReg,,p and ZReglnp, these probabilities
are estimated by ¢, and llqu These probability estimators
do not respond to any probability model that would enable
us to calculate the bias and the variance conditional on
this model. In other words, the sets r, are generated by
unknown response mechanisms for which we estimate the
response probabilities by an approach that does not allow
for inference conditional on any model underlying the
estimation of probabilities.

We would be tempted to resort to Taylor’s serial
development of the function 1/ éqk to justify the approx-
imation of 1/eqk by 1/8,. In this case, the bias and the
variance of tExp,,p, tRegnp and lReomp would be approached
by the approximate bias and variance of IEXW,, tRegnp and
Ireg1np- However, for sample sizes that are not sufficiently
large, we are in danger of having 1/0,, % 1/0, for the
majority of the k € r,, and consequently:

V(itonp) & Viigsp), V(ikegny) E V(lre), and
V(f*Reglnp) E V(fRegl)-

However, to construct confidence intervals based on
Expnp> [Regnp aNd [Reg1np, it is necessary to define esti-
mators for their respective variances. Not having explicit

expressions for these variances, it is difficult to define
variance estimators and study their properties analytically.
The choice of a given estimator is quite difficult to justify.
The most natural | way of obtaining variance estimators for
the variances of tEXp,w, ZRegnp and 7} [Reginp is to do a simple
substitution of qu( = ¢r¥ar), by GQk( = gokt,bqk) vker,
and of Oy, by equ, Yk #ELET, (equ = o ¢qu) in
all the formulas for variance estlmators spec1f1ed for the
respectlve variance estimators of estimators tEXpnp, tReg,,p
and tReglnp

5. MONTE CARLO STUDY: COMPARISON
OF ESTIMATORS

For simulation purposes, we assume that Bernoulli
trials govern each of the response mechanisms (total or
partial) and that a simple random sampling without re-
placement is the sample design used. We consider a vector
(¥1, ¥2, y3) ' of three items (Q = 3) and a variable x
containing the auxiliary information. We first generate the
Xi(k € U) by a gamma distribution with parameters g,
and a,. The generation of items y,, ¥,, ¥; is based on the
linear model (3.1) and the gamma distribution. More
specifically, we generate the y (kK € Uand g = 1, 2, 3)
according to a gamma distribution with parameters a;,(x;)
and a,, (x;) defined by:

2
quk

2
Oq

1
aézﬁéaz{T - 1}, q = 1,2,3.
pxyq

The choice of the gamma distribution is based on its gen-
eral form, which gives rise to a great variety of distribu-
tions, and on the fact that it can represent the distribution
of various types of populations (Johnson and Kotz 1970,
p. 172). We establish a priori the parameters a;, a,, 3,
and Py, (g = 1,2,3), namely:

a, =10, (B:6263)" = (0.750.65 0.60) ",
(pxylpxyszy3) " = (0.90 0.85 0.70) ".

1,(x) = , g(xy) =

2

-q
s

By

a1:29

To generate the unit and item response probabilities,
we consider the following exponential forms:

O = exp{ —_ ()\lxk + )\ka)} and
Vg = exp{— (NgXe + Nguge) },

where the v, and the v, result from a uniform distribution
(0; 1). The constants Ay, Az, A\, and A,, are such that:
N =0.15/%y, Mg = 0.15/8,%y and N, = Ay, = 0.45
(g = 1,2,3). Such a parameterization makes it possible to
have an average response rate (total or partial) of approx-
imately 70% . We could have varied these constants or used
other continuous functions.
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Figure 5.1 Absolute bias and MSE: the estimator fEXp,,pX for
n = 60
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Figure 5.2 Absolute bias and MSE: the estimator 7y, for
n = 200

5.1 Comparison of the Two Variants of the NPE Approach

We consider a population of size N = 100 and draw
asample s of sizen = 60, which we subject to the response
mechanisms. We repeat the sampling IK times and
calculate the bias IB(fEXpnp) and the mean-square error
MSE (fixpnp)» for different values of C(C = 0). Next we
repeat this experiment with N = 1,000 and » = 200.
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The results of this empirical study are illustrated by the
diagrams of B(7fy,,,) €t MSE(/E,,,) as a function of
the constant C. From this brief study we observe, firstly,
that the value C, of the optimal constant Cis in the inter-
val [0; 1], depends on the size of the sample and decreases
as the sample size increases (Figures 5.1 and 5.2).

We also observe that the estimator fﬁxp,w, is still better
in terms of less bias and mean square error than the esti-
mator fEXpW in the interval [0;1] as illustrated as an
example in Figure 5.3 for item 3, the item the least corre-
lated with the auxiliary variable. A very important fact to
be noted is that for the estimator fEXpnm we more quickly
reach the values of the bias and the mean square error of
the estimator fy,. in [0;1] at C = 0.05 and outside this
interval at C = 4. Unlike with the estimator fExp,,p,, the
values of the bias and the mean square error of the esti-
mator fEXp,,pX first reach maximum values at C = 0.05
before taking on the values of the bias and mean-square
error of fy,.. at C = 0. We also note that for a fairly
large size n and for any value of Cin the interval [0;1],
the variation is hardly perceptible (Figure 5.3). For this
reason, we suggest that a compromise value be used:
C = 0.5 (that is, & = 0.5S,).

9
Iy
’ .\.
8 - . —
.; .‘.
l._ — .\
4 RN =
\ " MSE. npx /
\ Y ,'/
6 \ K R
\ . 1
N
S Y ;s /
51 N - s —
~ o Seean .. s
- AR R ST P ]

AB. npx

0 00501 02 03 04 05 06 07 08 09 1.0 1.5 20 4.0

Constant ¢

Figure 5.3 Absolute bias and MSE: the estimators fEXp,,pX
and iy, for item 3

5.2 Overall Comparison of Estimators

The complete operation of the simulation consists in
(i) first, drawing the sample s of size n = 200 of the popu-
lation of size N = 1,000, (ii) then applying the unit and
item response mechanisms to obtain sets 7, (g = 1,2,3),
and (iii) lastly, calculating, for each estimator, the values
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of fand V(). We repeat this operation KK times. Once the
experiment is completed, we calculate, as performance
measurements, (i) the bias B(7) = E(7) — 1, (i) the
mean square error MSE () = IE({ — 1,)?, (iii) the
expectation of the variance estimator [E(V(¢)) and (iv)
the theoretical recovery rate P,(f) = P{| 7 — 1, | <
Z,,2[V()]1"7}. We can also calculate, for each given
estimator, (v) the relative error RE () [ = IB(7)/t], (vi) the
variance V(f) [ = MSE () — (IB(#))?], (vii) the relative
bias RB(7)[= | B(/) | /(V(£)) "] as well as (viii) the
relative error of the variance estimator RE (¥ (7))
[= B(V())/V({)] in order to examine the sensitivity
of the variance estimators to nonresponse.

5.3 Interpretation of the Results of the Global Simulation

I. The Prototype Estimators

The simulation results confirm the theory. For these
estimators, we make the following observations, based on
Tables 5.1 to 5.4:

(1) Fexp> Treg and Ire,; are approximately unbiased;
(i) MSE (Zreg1) < MSE (frep) < MSE (7gyp);

(iff) V(fgeg)) < Viipe) < V(ipg)and
IE[V(tRegl)] < IE[V(tReg)] < IE[Vv(IExp)] .

For these estimators, we also expected that:

) EV(fpy) = Viieg), EV(ire) = V(ire) and
IEV([Regl) =~ V(tRegl);

(ii) Negligible relative bias [RB(7) < 0.10]; the recovery
rates are close to the theoretical rates. The relative
errors RE(7) and RE (V(f)) are negligible, and are
in part due to the simulation (errors due to the limited
number of repetitions of the experiment).

Table 5.1
The Values of IB(7), MSE (/)

Y1 Y2 Y3
Exp —0.036  1.690 —0.052 1.525 —0.056  2.299
IReg —0.020 0.735 —0.019 0.744 —0.030 1.446
fRegl -0.012 0319 -0.012  0.431 —0.021 1.202
Naive —2.037  5.069 —1.937  4.535 —2220 5911
fﬁxpnpx —0.690 1.345 -0.777  1.407 —1.228  2.604
TExprpr —~0.601 1.175 —0.709  1.249 —1.140  2.345
[ﬁegnp, -0.293  0.785 -0.414 0.830 —0.895 1.834
f*Reg],,p,. —~0.285 0.376 —0.407 0.520 —~0.886 1.621

Table 5.2
The Values of V(7), IE[V(£)] and 100*E [V, ({)]1/E[ V()]

Y1 Y2 V3
fExp 1.689 1.683 29.8  1.525 1.485 29.1  2.296 2.235 26.9
IReg 0.734 0.697 72.2  0.744 0.702 61.5 1.445 1.391 42.6
IRegl 0.319 0.293 34.0 0.431 0402 327 1.201 1.130 29.3

[Naive 0.918 0.911 433 0.784 0.766 43.5 0.983 0.958 44.2

TExpnpy  0-869 1.403 32.0  0.804 1173 323 1.097 1322 354
TExpnpr 0814 1.291 351  0.746 1.089 352  1.046 1.285 37.1
TRegnpr 0700 0.627 73.9  0.658 0.588 66.6  1.033 0.955 50.5

[Reglnpr 0.294 0259 367 0355 0315 37.6 0836 0.751 37.1

Table 5.3
The Values of RE(7) and RE(V(f))

Y1 Y2 Y3
fExp —0.0024 —0.0015 —0.0040 —0.0242  —0.0045 —0.0267
fReg —0.0014 —0.0510  —0.0015 —0.0556  —0.0024 —0.0373
IRegl —0.0008 —0.0812 —0.0009 -0.0684 —0.0017 —0.0596
INaive —0.1377 —0.0083  —0.1474 —0.0230 —0.1787 —0.0260
TExpnpy  —0.0466  0.6141  —0.0591  0.4582  —0.0988  0.2046
TExpnpr —0.0406  0.5860  -0.0540  0.4591  —0.0917  0.2282
[Regnpr ~ —0.0198 —0.1038  —0.0315 —0.1077  —0.0720 —0.0752
[Reglnpr —0.0193 =—0.1191  —0.0310 —0.1124  —0.0713 -0.1015

Table 5.4
The Levels P, (f) at 90%), 95% and the RB(7)

Y1 Bg) Y3
TExp 0.873 0.922 0.027 0.870 0.914 0.042 0.852 0.904 0.037
IReg 0.881 0.929 0.024 0.876 0.929 0.022 0.870 0.917 0.025
fRegl 0.866 0.926 0.021  0.873 0.923 0.018 0.860 0.914 0.019

fNaive  0.322 0.427 2.126  0.298 0.405 2.187 0.287 0.389 2.239
TExpnpy 0851 0.906 0.740  0.800 0.874 0.866 0.667 0.758 1.172
[Expnpr 0872 0.925 0.666  0.830 0.893 0.820 0.700 0.789 1.114
[Regnpr 0839 0.908 0.350  0.806 0.878 0.510 0.712 0.789 0.880
Reginpr 0.804 0.871 0.526  0.767 0.844 0.683  0.678 0.763 0.969

II. The Naive Estimator

The naive estimator registers absolute values of IB(7)
and RE(7) that are very high in relation to the other
estimators (Tables 5.1 and 5.3). The same is true for the
values of MSE () (Table 5.1). The values of the observed
recovery rates P,(7) as well as those of the relative bias
RB(7) are hardly surprising, considering the size of the
point estimate bias (Table 5.4).
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The behaviour, in terms of variance and variance esti-
mator (Table 5.2) of fn,ive, is due to the fact that it consti-
tutes a particular case of fEXp, assuming uniform response
mechanisms. In a sense, this amounts to assuming that the
data are missing randomly.

III. The Adjusted Estimators

The reduction of the bias and the mean square error
resulting from the use of the adjusted estimators (Table 5.1)
is quite significant, in comparison with the naive estimator,
especially for the regression estimators (the estimators
[heanp @nd TReg1np). In terms of variance (Table 5.2), we
have the following inequalities:

V(fjlﬁleglnpr) < V(fik(egnpr) < V(fgxpnpr) < V(fExpnp,\‘)’

which are analytically difficult to demonstrate. Little
variation [in terms of V(#) and [E(F(£))] is observed
between items y; and y, in light of the little variation
between the correlations (0.05). On the other hand, the
effect of the correlation with the auxiliary variable on V(1)
and of IE( V(#)) may be observed by comparing items y,
and y;, then y, and y;: the variations between the corre-
lations are greater in these two cases (0.20 and 0.15
respectively).

In terms of variance estimators (Table 5.2), we observe
that:

I;v(lyﬁReglnp) < I;v(faegnp) < V(fEXpnp)’

as such is the case for the estimators freg, Iregi and lgyp-
What is surprising, and is of course due to the effect of
the auxiliary variables on the variance components relative
to the response mechanisms, is the fact that the estimators
f*EXpnp overestimate the variance with very large absolute
values of RE(V(¢)), while the regression estimators
[ hegnp A0 [ Reg1,, underestimate the variance with absolute
values of RE (V(¢)) that are smaller in relation to those
of I,y (Table 5.3). For the estimators /gy, not only
is the total variance high in relation to that of the regres-
sion estimators, but also the relative contribution of the
sampling variance is low (Table 5.2).

In terms of recovery rate (Table 5.4), the estimators
f*EXp,w yield observed rates that are closer to theoretical
rates than the estimators fl*;egnp apd f*Regl,,p. How;ver,
the values of the relative bias RB(¢) are higher for /£,
than for FRegny and 7 feginp» Which makes the confidence
intervals less reliable.

IN CONCLUSION
(i) If the goal of the estimation is to reduce bias and

mean square error, all the estimators adjusted for non-
response perform well in relation to the uniform response
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mechanism (which basically amounts to doing nothing
about nonresponse). The rate of reduction of the bias of
each estimator in relation to the naive estimator is at least
66% . The regression estimators 7 jegn, and I regy,p are the
most promising of the various estimators considered
(Table 5.1).

(ii) If the goalis to construct confidence intervals, we
need a pair of estimators [7,V(#)] that simultaneously
minimize the absolute biases | IB(7) | and | B(V (7)) |.
Tables 5.1 and 5.2 clearly show that the estimators 7, Regnp
and 7 geg1,, are the best. These estimators are less sensitive
to nonresponse if we consider the values of RE(7) and
RE(V(f)) (Table 5.3). Nevertheless the criterion of reli-
ability of the confidence intervals (RB(7) < 0.10)is never
met (Table 5.4).

(iii) The behaviour of the estimators adjusted (i) for
item y;, which is the item the most highly correlated with
the auxiliary variable, compared to item ys, then (ii) for
item y, compared to item y; ()3 being the item that is
least correlated with the auxiliary variable), shows that
with very strong explanatory variables (for y, and for
O, ), better results can be achieved not only in terms of
less bias | B(7) | and | B(¥(f)) | but also in terms of
less mean square error (a gain in precision in relation to
the naive estimator) and a better recovery rate for the
confidence intervals (Tables 5.1 to 5.4).

(iv) The behaviour of the estimators 7 geg,, and £ gegp,
in terms of bias, variance and variance estimation, is
consistent with the studies conducted by Sdrndal and Hui
(1981), Sarndal and Swenson (1985, 1987), Bethlehem
(1988) and Kott (1987) on the usefulness of regression
estimators in nonresponse situations and the importance
of having good predictor variables for the items of interest
and the response mechanisms.
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