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Competitors to Genuine 7ps Sample Designs:
A Comparison

OLIVER SCHABENBERGER and TIMOTHY G. GREGOIRE!

ABSTRACT

Without-replacement list sampling with probability proportional to some measure of element size has not enjoyed
much application in forestry because of the difficulty of implementing such sample strategies, that have been termed
aps designs to distinguish without-replacement sampling from the well-known with-replacement pps designs. In
this contribution, an exact 7ps strategy (Sunter’s variant 2), an approximate wps design (Sunter’s variant 1) and
the Rao-Hartley-Cochran random group method are examined and the variances of the respective estimators for
total bole volume are computed for four tree populations. The results indicate that compared to the Rao-Hartley-
Cochran design Sunter’s variant 1 in general leads to higher precision if the relationship between auxiliary infor-
mation x; and target characteristic y, is loose but is sensitive to the ordering of the sampling frame, whereas the
Rao-Hartley-Cochran design does not require the sampling frame to be ordered at all and appears to be superior
if strong linear relationships between x; and y, are present.

KEY WORDS: Probability proportional to size sampling; Fixed sample size; Approximate wps designs; Empirical

comparison.

1. INTRODUCTION

Rao (1978) classifies methods for unequal probability
sampling without replacement in two broad categories,
(i) sampling schemes, where the inclusion probabilities
m are proportional to the characteristic of interest, yy,
and the Horvitz-Thompson 7 estimator 7, is utilized;
(ii) schemes that entertain statistics other than the Horvitz-
Thompson estimator. Strategies in (i) are termed IPPS
(inclusion probability proportional to size) and members
of (i) non-IPPS designs. In recent literature, e.g., Sarndal
et al. (1992), selection probabilities when sampling with-
replacement are denoted p, whereas their counterparts
when sampling without replacement are denoted 7. We
therefore call sampling designs in (i) genuine wps strategies
in this paper. Both, IPPS and non-IPPS designs have in
common, that under exact proportionality, i.e., 7, o y;
and n(s) = n {constant}, it is implied that Var(f) = 0
where 7 is the respective estimator used. For this reason,
it seems appealing to draw a sample without replacement
where 7, « y, and to keep the sample size fixed at the
same time. Our interest in these methods concerns their
utility to sampling needs in forestry.

Several exact wps designs are available, Rao (1978)
gives an in depth account and discussion. Their implemen-
tation however is often a non-trivial task and numerically
cumbersome for sample sizes usually encountered in
forestry practice. Many of these exact wps strategies
require enumeration of all possible samples or use algo-
rithms that become increasingly prohibitive as # increases.

A simple design, which is feasible for n < 10is described
by Sampford (1967).

In forestry, however, the number of samples to be
drawn at any stage of a survey is oftentimes much larger,
even after stratification. Consequently, one either approx-
imates the #ps selection process in a manner that allows
the inclusion probabilities to be computed exactly, or
approximates second-order inclusion probabilities 7, in
a design that ensures an exact #ps selection. Rao, Hartley
and Cochran (1962) described a non-IPPS design, also
known as the random group method, that has gained con-
siderable attention (se¢ also Rao 1966, 1978). It is not a
7ps design, since it utilizes an estimator other than 7, to
ensure zero variance when the ; are proportional to yy,
but is of remarkable simplicity. An approximate wps
design of the first kind is Sunter’s method (Sunter 1977a,
1977b). These two designs are referred to in what follows
as RHC and SUNI. Sunter (1986, 1989) described an exact
wps strategy that can be applied if certain stipulated
conditions about the ordering of the sampling frame are
met and the possible samples can be enumerated to obtain
i, for some pairs of elements. To avoid enumeration we
use an approximation to these m,;. This scheme will be
called variant 2 or SUN2 in what follows.

Sarndal ef al. (1992) describe the SUN1 and RHC
strategies as entailing some loss of efficiency compared to
corresponding #ps designs, but no assessment of their
comparative efficiency is provided. To our knowledge, none
is extant; yet in light of the practical advantages offered
by these designs, a comparative assessment would be helpful.
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The purpose of this study is to compare the perfor-
mance of the three strategies empirically, using data from
forestry field studies and sampling intensities up to 10%
which involve reasonably large samples.

The designs SUN1, SUN2, and RHC are appropriate
if one has access to a list of population elements from
which the sample can be drawn. A complete enumeration
of the target characteristic y, is not anticipated, but the
probabilities of inclusion may be made proportional to an
auxiliary variable x,. That is, having complete knowledge
about x, prior to sampling, where it is surmised that x is
roughly proportional to y,, we try to achieve m; o x;
while # = constant.

In forestry such auxiliary information oftentimes is an
easily obtainable characteristic of tree size such as height
h, diameter at breast height d, or a combination thereof,
which can be used to sample efficiently for bole volume
or biomass, y. For example, the geometry of tree stems
suggests relationships between d, s, and the volume
contained in the tree bole that can be exploited in sampling.
In the present investigation, the target parameter is the
total bole volume per unit area or in an entire forest stand.
In practice, some form of multistage sampling would be
used, but for sake of exposition the present comparison
includes single stage sampling only.

For the RHC and SUN designs, the auxiliary variables
d, d?, d?h and the tree sequence number were used. The
sequence number was chosen as an auxiliary variable since
in the absence of ordering by size it is clearly unrelated to
the target characteristic. It should indicate the sensitivity
of competing strategies to uninformative auxiliary infor-
mation (¢f. Rao 1966).

All designs were investigated with samples of intensity
1%, 2%, 5%, and 10%. The performance of the different
sampling designs was gauged in terms of the variance of
each estimator of t = ¥}, Ratio-of-means estimation
following simple random sampling was used as a bench-
mark, since it utilizes the same auxiliary information. The
variances of the sample designs described in the following
section were compared to the mean square error of the
ratio-of-means estimator (ROM), evaluated using the
second order delta method approximation in Sukhatme
et al. (1984).

2. SAMPLE DESIGNS

2.1 Sunter’s Design, Variant 1

Sunter initially proposed two different approximate wps
designs: one relaxes the requirement of proportionality of
inclusion probabilities 7 for a subset of the population,
the other allows for some variation in sample size (Sunter
1977a, 1977b; Schreuder et al. 1990). In order that preci-
sion not be unduly sacrificed, it is assumed in the latter
case that the variance of n(s) is small, while in the first

case that altering some 7 is not too serious. In this study
only the first method was used since the RHC design
operates with fixed sample size, too, and it is the com-
parative feasibility of the Sunter and RHC designs that
prompted this study. Sdrndal et al. (1992) describe the
allocation of the sample and the computation of the inclu-
sion probabilities in detail. For part of the population,
7, o X; where x; is the auxiliary information available
for the k-th subject (or record). Let £* denote an element
in the ordered population. Then for all elements where
k < k* selection is carried out proportional to x;. The
process ends if a total sample of size # is allocated or if
k = k* = min{min{k: nx;/t, = 1}, N —n + 1}
where #; = ¥ ;24X;. In the latter case, the remaining
samples are selected according to the list-sequential scheme
of Bebbington (1975) among those elements for which
k = k*. As Sunter points out, this sampling scheme has the
advantage that only one pass through the sampling frame
is necessary. Moreover, the first and second order inclusion
probabilities can be computed during this pass through
the file. Since the design ensures that =, > 0V &, /;
mm; — T > 0V k, [ and n is fixed, the non-negative
Yates-Grundy estimator of variance can be readily com-
puted. The first order inclusion probabilities are obtained
as T, = nx/Tyifk < k*and m;, = n%/Tnifk = k*
where Ty = Y =) X and X = £/ (N — k* + 1).
Expressions for the second order inclusion probabilities
are given in Sirndal et al. (1992).

Consequently, the ordering of the population affects
the performance of the SUNI design, since the inclusion
probabilities and therefore the variance depend on k*
(see (2) below). For large sample sizes the condition
k* = min{min{k: nx,/t; = 1}, N — n + 1} may be
resolved in favor of k* = min{k: nx, /¢, = 1}, whichin
turn may lead to a premature switch from #ps to SRS
sampling owing to the ordering of the sampling frame.
Note that x,/t, < xi /t; for k’ > k need not be true
since if x; > x;.; and #, > £, it may well be that x; /#;
is greater or smaller than x;, {/#; . It thus can happen
that nx, > t, and nxy. < f;., for some k, k' where
k’ > k.Inthis case, that may occur rather frequently, it
is unclear if the switch from 7ps to SRS should take place
the first time nx; = t, or not. Sometimes it may happen
that for the first two or three elements of the population
nx; = I, but falls below #, for the main portion of the
sampling frame. This is especially the case when nis large
and a few very big x; appear on top of the population list.
To stick to Sunter’s rule in such a case would in essence
be equivalent to drawing a simple random sample.

The 7 estimator for the population total can be com-
puted as

N
~ ¥
IrsuNl = E 7 L 0))
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where J is the sample inclusion indicator function. The
variance is obtained as

N N 2
~ Ye Y
Var(frsunt) = =2 Y, EDCbVULL)(i-—;>,(%
k=1 I=1 !

Tk

[N

which is the Yates-Grundy form with Cov ([, I;) =
my — 7w (Sdrndal er al. 1992). We use the notation
VARgyn; for (2) subsequently.

2.2 Sunter’s Variant 2

In Sunter (1986, 1989) an exact 7ps design is described
for samples of size n > 2. To fix ideas let z, = x /Ty
and order the population such that

ng < Zy,k=1,...,N— (n + 1)
(n—-kyzy< Z,,l=k=N—n,

where Z, = Y ¥, z;. Let m, denote the number of samples
out of n still to be drawn when arriving at the k-th popula-
tion element u;. Given that the two conditions are met,
the following algorithm selects an exact wps sample. For
U, P(u, | my) = ngp/Zyuntilm, = Qormy, = N — k;
in the latter case discard one of the remaining units with
probability 1 — (m,z,/Z;) and retain the others.

It is not always possible to order the population such
that the above conditions are met. Sunter (1986) describes
an algorithm that checks, whether the ordering is possible.
The inclusion probabilities are

Ty = NZg
3
Ty =nn - Dgezivi k = N—n — 1,1 >k,
where
1 _
v = (1—ﬁ>...(1—@),
Zit1 Z Zy

k=2,....,.N— (n+1).

The remaining second-order inclusion probabilities,
namely 7, for/ > k > N — nhave to be obtained from
enumeration of possible samples which is likely to be
infeasible. Sunter argues that (3) gives a good approxima-
tion for those pairs of elements, and this approximation
has been used here. With these inclusion probabilities,
f.sun is indicated by the right-hand-side (rhs) of (1). An
approximation to Var (7, gunp) is given by (2), wherein (3)
is used to obtain my; for/ > kK > N — n.

The differences between SUNI and SUN2 are note-
worthy. With SUNI the joint inclusion probabilities are
computed exactly for all pairs, but the selection is not
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genuine 7ps because of the introduction of SRS in part.
In Sunter’s variant 2 the selection is exactly #ps, but
Var (7,.sun2) can only be approximated. We use VARg x>
to denote this approximation.

2.3 RHC Design

A description of the RHC design is straightforward;
properties of the RHC estimator are well documented in
Rao, Hartley and Cochran (1962), and Rao (1966, 1978).
After fixing the sample size #, the universe of size NV is
randomly divided into n groups of size N; where N = ¥ ;N;
(i =1, ..., n). Let X; denote auxiliary information
for element u; in group i, &k = 1, ..., N;,and put X; =
Y%, X, From each group one element is selected with
selection probability p; = X;;/X; . The estimator for the
total in group 7 is given as

<

Nj
D)
k=1

ik
Ly,
Dix

where 7 is the sample inclusion indicator function for
element u; in group i. The population total is then
estimated by

n

i =Y b ©)

=1

with variance

vt = = ( E ¥ )

i=1

N
( E Tyl X, — t2>- (5)
k=1

Note that (5) depends on the group sizes and is mini-
mized when all are equal. In our application, we determined
N; such that some groups were of size N; = [N/n]z;
where gif denotes the greatest integer function and the
remainder of size N; = [N/n],; + 1. The number of
groups of each size is chosen so that the sum of the group
sizes is N. If N/n is an integer, all groups are of course of
equal size. We denote (5) by VARgyc in the sequel.

The RHC design is not an exact nps design, since the
subdivision of the population introduces a source of
randomness unrelated to the size of the auxiliary variable
and (4) is not a Horvitz-Thompson estimator. The inclu-
sion probability depends jointly on the size of X, and on
the probability of an element being assigned to group i.
Ordering of the population has no effect on VARgzpc.
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3. TREE POPULATIONS

Table 1 shows the tree populations under consideration
and Figure 1 displays the relationship between the various
choices for x; and the target characteristic for the yellow
poplar population. We notice almost perfect proportion-
ality between d?h and volume, the relationship between
d and volume is clearly curvilinear, and the relationship

(a)
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Bole volume (cu ft)

(c)
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Bole volume {cu ft)
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between d? and volume is intermediate. No noticeable
trend between sequence number and volume is apparent
in the unordered sampling frame. For the remaining three
populations similar patterns hold.

For the four populations and the various combinations
of auxiliary variable and sampling intensity, there were no
observations for which nx, > Ty, thus no records were
measured with certainty.
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Figure 1. Relation of bole volume to bole dimensions in yellow poplar: (a) diameter at breast height; (b) diameter squared; (c) squared

diameter times height; (d) tree sequence number.
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Table 1
Tree Populations Examined in an Empirical Comparison of SUN1, SUN2, and RHC
The Last Four Columns Contain Pearson Correlation Coefficients Between x; and y,

P(y;x)
Species
N 1)@ d d? d’h No
Ponderosa pine Pinus ponderosa 140 9,366.6 0.99 0.99 0.99 0.31
Yellow poplar  Liriodendron tulipifera 336 18,255.5 0.96 0.96 0.99 -0.07
Loblolly pine Pinus taeda 437 1,835.8 0.96 0.96 0.99 -0.32
Red pine Pinus resinosa 91 4,075.7 0.96 0.96 0.97 -0.05

(1) N is the number of trees in the population.
(2) ¢ is total voluine.

4. RESULTS

4.1 Comparison of Variances

The variance of the estimators of ¢ corresponding to the
SUNI1, SUN2, and RHC design, expressed as a proportion
of the MSE under the ROM strategy are compared in
Table 2 for the yellow poplar population for each of the
sampling intensities investigated and Table 3 depicts
pertinent results for the remaining populations. For the
SUNI strategy, the populations were ordered by decreasing
size of X, as recommended by Sunter (1977a, 1977b). We
focus initially on the results for the yellow poplar popula-
tion in Table 2.

Table 2

Relative Performances of SUN1, SUN2 and RHC Design
for the Yellow Poplar Population where
Ratio-of-means Estimation (ROM) Serves as a Benchmark

VARsunz VARgyni  VARgppe

n/N% X n

MSErom  MSErom MSErom
1 No 4 48120 3.3136 4.7767
1 d 4 0.6735 0.6684 0.6731 332
1 d* 4 0.4605 0.4596 0.4613 333
1 d*h 4 03361 0.3378 0.3402 330
2 No 7 51327 2.6346 5.0568
2 d 7 0.709 0.6982 0.7081 325
2 & 71 05731 0.5694 0.5751 318
2 d*h 7 0.4263 0.4542 0.4369 316
5  No 17  5.4938 1.6643 5.2793
5 d 17 0.7305 0.7808 0.7283 309
5 d* 17 0.6541 0.6992 0.6608 291
s d*h 17 0.4603 1.2638 0.4935 285
10 No 34 5.8326 1.0985 5.3594
10 d 34 0.7385 0.7083 0.7339 247
10 4 34 06712 0.9687 0.6864 260
10 d*h 34 0.4298 3.0140 0.5037 250

1k is the observation in the ordered sampling frame at which the SUN1
design switches from xps to SRS sampling.

For a given sampling intensity the precision of all
designs relative to ROM increases in the order X = No,
d,d?,d’h; i.e., with increasing proportionality between
auxiliary variable and tree bole volume. Given that the
approximation of the variance of SUN2 performs well,
VARgN; can be regarded as measuring the closeness of
the RHC and SUNI1 designs to matching the efficiency of
a genuine 7ps selection. At low sampling intensities and
with meaningful auxiliary information the two designs do
not deviate much from SUN2. The performance of both
RHC and SUNI1 appears to deteriorate at higher sampling
intensities relative to SUN2 depending on the choice of
size measure. For X = d?h, in which case p .,y = 0.99
(see Table 1), RHC is still .85 (.4298/.5037) as efficient as
SUN2 but SUNI is only .14 (.4298/3.014) as efficient,
when n/N% = 10. The performance of RHC and SUN1
relative to SUN2 improves for other choices of X which
are less well correlated with Y. Indeed, when X = No,
SUNI1 is much more efficient than SUN2.

A puzzling aspect of these results is the indication that
SUN?2 is less efficient than either RHC or SUNI for some
choices of auxiliary variable and sampling intensity. We
speculate that it may be an artifact of the approximation
of some second-order inclusion probabilities incorporated
into VARgyny. It also may depend on the particular
ordering used in SUNI1 or the group sizes used in RHC
sampling, respectively. It is feasible to calculate the exact
Var (f;sunz) for n = 2. We did so for the ponderosa
pine and the red pine populations. The results indicate
that VARgyn2 approximates the precision of the SUN2
design very well, but is slightly conservative. The ratios
Var (7, sun2)/ VARgun, took on values between 0.975 and
0.999. For larger sample sizes there is no feasible way to
determine how well the approximation VARgyn, performs.

We focus now on the comparison of RHC to SUNI,
again with reference to Table 2. At low sampling inten-
sities, VARgyn; and VARRyc are essentially equivalent
when X = d”h. But using this auxiliary variable at higher
intensities led to a substantially better performance of t;,,
in some cases. The most noteworthy case is n/N% = 10
where 7, is nearly 6 times more precise than 7, syn;.
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We surmise from these results that the better x;, o y,
holds, the better is the precision of f, relative to Z,syn
owing chiefly to the effect of £* on VARgyN . Small values
of k* indicate an early switch to a SRS selection and
coincide with small values of VARg N2/ VARgyn, - Large
values of &£* on the other hand correspond to variance
ratios close to 1. For yellow poplar, n/N% = 10 and
X = d*h the SUNI design selects only three-fourths of
the population according to a wps design; we conjecture
that the early transition to SRS serves also as an explana-
tion for its poor performance compared to the RHC
design. When X = tree sequence number, SUNI is much
more precise than RHC, and its relative precision increases
as n increases.

The sharp improvement in efficiency when using an
auxiliary variable other than tree sequence number provides
an indication of the effectiveness of the strategies discussed
here when X is positively correlated to Y, and to the
liability of sampling with probability proportional to an
auxiliary variable when it is unrelated to Y.

The pattern evident in the results for yellow poplar are
generally seen, also, in the results for the other species.
Some of them are summarized in Table 3. For ponderosa
pine SUNI relative to RHC is always less precise when
X = d*hregardless of the sampling intensity and SUN2
performs always best when this variable is used. For all
species the combination n/N% = 10, X = d*h leads to
low precision of SUN1 compared to the other designs and
with the exception of the loblolly pine population, SUN1
performs poorer than ratio-of-means estimation. For all
populations, the order of magnitude better precision of
ROM over the genuine 7ps, non-IPPS or approximate wps
design when X = tree sequence number is remarkable.

From Figure 1 it can be seen that the ordering of volume
by tree numbers is haphazard, i.e., the sequence number
carries no information about bole volume. And, there is
a price to pay if one uses this uninformative auxiliary
information to determine inclusion probabilities. The
inefficiency of unequal probability sampling in presence
of uninformative auxiliary information is an important
limitation for the simultaneous estimation of multiple
population attributes, where some may be closely related
to the auxiliary design variable but others might be uncor-
related with it. Rao (1966) discusses this point in detail and
he proposes alternative estimators based on the unbiased
estimators in equal probability sampling and the estimator
ig:'r(a/t) = NY,;»&, where £ = Y py in the RHC design.
Applying this estimator in the case of unequal probability
sampling leads to bias, but to better mean-square error
performance. For the RHC design with X' = tree sequence
number, the alternative estimator proposed by Rao (1966)
improved the ratio MSEgpc (ar/MSEgom remarkably. For
the yellow poplar population for example, these ratios were
between 1.34 (n = 4) and 2.58 (n = 34), corresponding

to a mean square error of the alternative estimator of only
28% to 48% (n = 34) of the RHC estimator (5). Similar
patterns hold for the other tree species.

Since the alternative estimator is inconsistent, its bias
does not depend on 7, the larger ratios within the range
for each species appear for larger sample sizes. It thus
seems reasonable to limit the use of this estimator to
smaller sample sizes. When n gets larger, another alter-
native is to use a ratio estimator, e.g., Hajek’s estimator
N{(Xy;/m;)/ (X 1/7;)} under a genuine =ps design.

Table 3

Pertinent Results About the Relative Performances of
SUNI, SUN2 and RHC Design for the Remaining
Populations where Ratio-of-means Estimation (ROM)
Serves as a Benchmark

VARgyn2  VARsyni  VARpyc

n/N% X n

Ponderosa Pine

1 No 2 1.9608 1.9794 1.9507

1 d*h 2 0.1050 0.1096 0.1077 137

2 No 3 22976 1.9264 2.2275

2 d*h 3 0.1768 0.1919 0.1859 135

5 No 7 2.8717 2.0681 2.7819

s d*h 7 03113 0.3890 0.3670 129

10 No 14  3.2528 2.2745 3.0294

10  d* 14 0.2928 1.3724 0.4488 97

Red Pine!

2 No 2 2.0210 1.9485 2.0029

2 d*h 2 0.9076 0.9026 0.9104 90
No 5  2.9295 2.3141 2.8236

5 d*h 5 0.8874 1.3456 0.8991 87

10 No 9  3.5548 2.0124 3.2958

10 d*h 9  0.8699 1.3192 0.8942 81

Loblolly Pine

1 No 5  4.8011 3.7104 4.7625

1 d*h 5 0.4043 0.4161 0.4174 431

2 No 9  5.5940 3.7441 5.5044

2 d*h 9 0.5129 0.5510 0.5476 419

5 No 22 6.5290 3.3082 6.5253

s 4% 22 0.5035 0.6385 0.6085 406

10 No 44  7.7977 2.6635 6.5708

10 d*h 44  0.3854 0.7214 0.6146 375

! The sampling intensity 1% was omitted since it would have resulted
inn = 1.
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4.2 The Effect of Ordering on The Precision of Sunter’s
Variant 1

Sunter and others have noted that the precision of the
SUNI1 design depends on the ordering of the population.
The recommendation to sort the sampling frame by de-
creasing size of x;’s is rooted in the assumption that
larger x; are more likely to be proportional to y, than
smaller ones. The goal is to apply the 7ps part of the SUN1
design not only to as big a portion of the population as
possible but also to those elements for which x; o y,
holds best. Under this assumption it was thus advised to
put the elements with large x, values at the top of the
frame. However, it is clear that this is only a rough rule
of thumb, since the assumption of greater proportionality
with increasing size may not hold.

To investigate the effect of ordering the ponderosa pine
and red pine populations were first sorted by increasing
x; and then grouped into 10 groups of approximately
equal size. The Pearson correlation coefficient between
x, and y, was computed within each group and the popu-
lations were then sorted by

(a) groups of decreasing correlation and increasing size of
X, within each group,

(b) groups of decreasing correlation and decreasing size
of x; in each group

and SUN1 sampling was repeated for the combinations
of x’s and sampling intensity 10%. Table 4 shows the
results.

Table 4

Vargyni/MSEgrom for Ponderosa Pine and Red Pine
and Different Ways of Ordering the Population

Ponderosa Pine Ordered by Red Pine Ordered by

decr.p decr.p decr.p decr.p
X decr.x;  incr.xy  decr.xy  decr.xy  incr.xy  decr.xy

d 0.5614 0.6165 0.6043 1.0307 1.0236 0.6454
d* 0.3478 0.6562 0.5869 1.2077 0.9373 0.6948

dh 1.3724 60.861 0.4459 1.3192 0.8674 0.7461

The results are rather surprising. For red pine the order
by decreasing correlation improved all measures of preci-
sion. Sorting by increasing x; within each group now made
VARgyn; very close to VARgye, and with x = d?h,
VARgyni < VARgye. Sorting by decreasing x; within
each group achieved an even greater improvement. In con-
trast to these results, sorting the ponderosa pine popula-
tion by decreasing p and increasing x; made things worse.
The very high value of 60.861 is caused by a premature
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switch to SRS, since in this setting £* is only 28, corres-
ponding to only 20% of the population being sampled 7ps.
Moreover, using order of decreasing p and decreasing x;
improved VARgn; only for x = d?h.

These results indicate that there may exist an order that
minimizes VARgyn; and may yield higher precision than
a simple ordering by decreasing value of X. But this order
will usually differ depending upon the auxiliary informa-
tion, and even an ordering that is reasonable on intuitive
grounds may give unanticipated results. It is not known
if any ordering is optimal in the sense of minimizing
Var (f,quny) for the approximate 7ps design used in this
study. According to our present knowledge no optimal
strategy has been described.

5. DISCUSSION AND CONCLUSION

Employing some meaningful auxiliary information leads
to a considerable gain in precision in the unequal proba-
bility designs compared to a ratio-of-means estimation.

A choice between the two Sunter designs can be made
on grounds of the relationship between size measure and
target characteristic. When X o Y is strong, SUN2 offers
advantage over SUN1, and SUNI1 appears preferable when
the relationship is weak. Based on our results, the approx-
imate wps strategy, SUN1 and the non-IPPS design RHC
appear to come fairly close to the efficiency offered by
genuine 7ps selection. With increasing sampling intensity,
however, the highest precision is obtained with the SUN2
design. But the quality of the approximation VARgyN;> In
this case is unclear.

If one’s aim is to use an approximate 7ps or a non-IPPS
strategy then the RHC design with estimator t;,, appears
to offer advantages over the Sunter design with 7 gy, at
least for the tree populations studied here with the objec-
tive of estimating total bole volume. At reasonably low
sampling intensities, both estimators appear to be equally
precise.

An advantage of the RHC design is its simplicity. An
operational advantage is that it can be applied to every
population because it is impervious to its ordering and
provides an unbiased estimation within each group. While
the first criterion is also met by Sunter’s variant 1, the
ordering there clearly affects the precision of the estimator
f-suni- Variant 2 can only be used if some ordering of the
population meets the conditions given in Section 2.2.
Otherwise the selection algorithm does not produce a
sample of exactly size .

The precision of the RHC method, however, depends
on the group sizes employed. The algorithm given in
Section 2.3 is optimal.

While a particular ordering may improve the precision
of £_guny, it is unclear at present how to discern an optimal
ordering and a fixed sample size. Moreover an optimal
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ordering of one choice of auxiliary variable or attribute
of interest may be deleterious when implemented with a
different auxiliary variable or attribute.

All strategies can be disastrous with uninformative
auxiliary information.

Finally and to the extent that computational burden is
a meaningful criterion, RHC is arguably less burdensome
than variant 1 of Sunter’s design.

ACKNOWLEDGMENT

We gratefully acknowledge the comments and sugges-
tions by J.N.K. Rao, C.-E. Sarndal, and A. Sunter who
reviewed earlier versions of the manuscript as well as the
helpful comments of the referees whose contribution
helped to improve the paper substantially.

REFERENCES

BEBBINGTON, A.C. (1975). A simple method of drawing a
sample without replacement. Applied Statistics, 24, 136.

RAO, J.N.K. (1966). Alternative estimators in PPS sampling for
multiple characteristics. Sankhya A, 28, 47-60.

RAO, J.N.K. (1978). Sampling designs involving unequal
probabilities of selection and robust estimation of a finite
population total. Contributions to Survey Sampling and
Applied Statistics (H.A. David, Ed.), New York: Academic
Press, 69-86.

RAO, J.N.K., HARTLEY, H.O., and COCHRAN, W.G.
(1962). On a simple procedure of unequal probability
sampling without replacement. Journal of the Royal
Stratistical Society B, 24, 482-491.

SAMPFORD, M.R. (1967). On sampling without replacement
with unequal probabilities of selection. Biometrika, 54,
499-513.

SARNDAL, C.-E., SWENSSON B., and WRETMAN, J.
(1992). Model Assisted Survey Sampling. New York:
Springer-Verlag.

SUKHATME, P.V., SUKHATME, S., and ASOK, C. (1984).
Sampling Theory of Surveys with Applications (3rd Ed.).
Towa State University Press.

SUNTER, A. (1977a). List sequential sampling with equal or
unequal probabilities without replacement. Applied Statistics,
26, 261-268.

SUNTER, A. (1977b). Response burden, sample rotation, and
classification renewal in economic surveys. International
Statistical Review, 45, 209-222.

SUNTER, A. (1986). Solutions to the problem of unequal
probability sampling without replacement. International
Statistical Review, 54, 33-50.

SUNTER, A. (1989). Updating size measures in a PPSWOR
design. Survey Methodology, 15, 253-260.

SCHREUDER, H.T,, LI, H.G., and SADOOGHI-ALVANDI, S.M.
(1990). Sunter’s pps Without Replacement Sampling as an
Alternative to Poisson Sampling. USDA Forest Service
Research Paper RM-290.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

