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Time Series EBLUPs for Small Areas Using Survey Data

A.C. SINGH, H.J. MANTEL and B.W. THOMAS!

ABSTRACT

In estimation for small areas it is common to borrow strength from other small areas since the direct survey estimates
often have large sampling variability. A class of methods called composite estimation addresses the problem by
using a linear combination of direct and synthetic estimators. The synthetic component is based on a model which
connects small area means cross-sectionally (over areas) and/or over time. A cross-sectional empirical best linear
unbiased predictor (EBLUP) is a composite estimator based on a linear regression model with small area effects.
In this paper we consider three models to generalize the cross-sectional EBLUP to use data from more than one
time point. In the first model, regression parameters are random and serially dependent but the small area effects
are assumed to be independent over time. In the second model, regression parameters are nonrandom and may take
common values over time but the small area effects are serially dependent. The third model is more general in that
regression parameters and small area effects are assumed to be serially dependent. The resulting estimators, as well
as some cross-sectional estimators, are evaluated using bi-annual data from Statistics Canada’s National Farm Survey

and January Farm Survey.
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1. INTRODUCTION

There exists a considerable body of research on small
area estimation using cross-sectional survey data in con-
junction with supplementary data obtained from census
and administrative sources. A good collection of papers
on this topic can be found in Platek, Rao, Sirndal and
Singh (1987). Small area estimation techniques in use in
U.S. federal statistical programs are reviewed by the
Federal Committee on Statistical Methodology (1993).
The basic idea underlying all small area methods is to
borrow strength from other areas by assuming that differ-
ent areas are linked via a model containing auxiliary
variables from the supplementary data. It would a'so be
important to borrow strength across time because many
surveys are repeated over time. Recently time series
methods have been employed to develop improved esti-
mators for small areas; see Pfeffermann and Burck (1990)
and Rao and Yu (1992). It is interesting to note that after
the initiative of Scott and Smith (1974) on the application
of time series methods to survey data, there has only lately
been a resurgence of interest in developing suitable estimates
of aggregates from complex surveys repeated at regular
time intervals; see e.g., Bell and Hillmer (1987), Binder
and Dick (1989), Pfeffermann (1991), and Tiller (1992).

In this paper we consider some natural generalizations
of the best linear unbiased predictor (BLUP) for small
areas when a time series of direct small area estimates is
available. An important example of the BLUP for small
areas is the Fay-Herriot (FH) estimator, which entails
smoothing of direct estimators by cross-sectional modelling

of small area totals. The resulting estimators are composite
estimators (i.e., convex combinations of direct and syn-
thetic estimators) and are called empirical BLUPs, or
EBLUPs, whenever estimates of some variance compo-
nents are substituted in the BLUPs. The work of Fay and
Herriot (1979) represents an important milestone in the
field of small area estimation because it is probably the
first example of a large scale application of small area
estimation by government agencies for policy analysis.
With the use of structural models, we derive time series
EBLUPs which combine both cross-sectional and time
series data. The models underlying the time series EBLUPs
were chosen on the basis of general heuristic considera-
tions rather than formal model testing procedures. Formal
testing of these types of models with survey data is very
difficult and not very much is available. Instead, we begin
with a regression model that is reasonable for the larger
area, and then allow random small area effects to account
for any local deviations from the global model. The regres-
sion parameters and random small area effects are allowed
to evolve over time according to a state space model that
was also formulated heuristically. We have not considered
here the problem of mean squared error (MSE) estimation
for our estimators. MSEs with respect to the motivating
models could be defined and estimated for many of the
estimators; however, the focus of this paper is on the
performance of the estimators in a repeated sampling
framework. MSE estimation is an important and difficult
problem, and the availability of reliable MSE estimators
could be an important consideration in the choice of
estimators.
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The main purpose of this paper is to compare time series
EBLUPs with cross-sectional estimators such as post-
stratified domain, synthetic, FH and sample size dependent
estimators. In the time series modelling of the direct small
area estimates we assume that the survey errors are uncorre-
lated over time. When survey errors are correlated over time
and can be modelled reasonably (e.g., ARMA) the approach
of Pfeffermann (1991) can be used to obtain time series
EBLUPs via the Kalman filter. Rao and Yu (1992) obtain
EBLUPs for a model, in which the Kalman filter cannot
be applied, with survey errors having arbitrary correlation
structure over time but being uncorrelated across areas. They
also develop second order approximations to, and estimation
of, the mean squared error under their model. When a model
for the correlated survey errors is difficult to specify it may
be possible, using a suitably modified Kalman filter, to get
good sub-optimal estimators (Singh and Mantel 1991).

In this paper we report on an empirical study of the effi-
ciency of time series EBLUPs. The study uses Monte Carlo
simulations from real time series data obtained from
Statistics Canada’s biannual farm surveys. The main
findings of the study are

(i) There can be reasonable gains in efficiency with time
series EBLUPs over cross-sectional estimators.

(ii) Within the class of time series methods considered in
this paper, introduction of serial dependence in the
random small area effects is found to be beneficial.

(ili) Although any smoothed version of the direct small
area estimator is expected to be biased, the time
series EBLUPs exhibit less bias than cross-sectional
smoothing methods.

Section 2 contains a description of various cross-
sectional methods for small area estimation. Time series
EBLUPs are described in Section 3 and the details and
results of the Monte Carlo comparative study are given in
Section 4. Finally, Section 5 contains concluding remarks.

2. METHODS BASED ON CROSS-
SECTIONAL DATA

In this section we describe some well known small area
estimation methods that use survey data from only the
current time. Ghosh and Rao (1994) contains a good
survey of various small area estimators.

Let © denote the vector of small area population totals
6y, k = 1, ..., K. In this section, which deals with
methods based on cross-sectional data, we ignore the
dependence of © on time ¢ for simplicity.

2.1 Method 1 (Expansion Estimator for Domains)

This estimator is given by

gk = E d; yj,

Jesk

where d; is the survey weight for sample unit j. For
stratified simple random sampling, which is used for our
simulation study in Section 4, we have

g = Y (Nu/ny) Yo Yhio @.1)

h JEShk

where yy; is the j-th observation in the A-th stratum, Sp;
denotes the set of n,, sample units falling in the k-th small
area in the A-th stratum and n,, N, denote respectively
the sample and population sizes for the A-th stratum. This
estimator is often unreliable because n,;, the random
sample size in the small area, may be small in expectation
and could have high variability. Conditional on the realized
sample size ny,, &1« is biased. However, unconditionally,
it is unbiased for O,.

2.2 Method 2 (Post-stratified Domain Estimator)

We will also refer to this estimator as the direct small
area estimator. If the population size Ny is known for
some post-strata indexed by /, then the efficiency of the
estimator g, could be improved by post-stratification.
We define

& = E Ny E djyj/ E d; = E NyFik-
] /

JeSIk JESIk

In our simulations our post-strata are the intersections of
design strata with small areas which leads to

&k = E (Np/ i) E Y = E Ny Fne-  (2.2)
h Jespk h

This estimator also may not be sufficiently reliable because
of the possibility of n,,’s being small in expectation. If
nye = 0, the above estimator is not defined. It is conven-
tional to replace ¥, by 0 when ny;, = 0. In the empirical
study presented in this paper, we replaced y, by the syn-
thetic estimate (X /X,)7x, where X is a suitable covari-
able, whenever ny; = 0.

The estimator g, in (2.2) is conditionally (given
ny, > 0) unbiased and approximately unconditionally
unbiased. Appendix A.1 gives details of estimation of the
conditional mean squared error, v, of ga.

2.3 Method 3 (Synthetic Estimator)

It is possible to define a more efficient estimator by
assuming a model which allows for ‘‘borrowing strength”’
from other small areas. This gives rise to synthetic
estimators, see e.g., Gonzalez (1973) and Ericksen (1974).
Suppose different small area totals are connected via the
auxiliary variable X by a linear model as

O, =8 +BX.k=1 . ,K, (2.3a)
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or in matrix notation

9 = Fg,

(2.3b)

where F = (F|, F5, ..., Fy)', F, = (1, X})’. Now con-
sider a model for the direct small area estimators g,;’s as

g =FB+¢

where g, = (g1, .-, 8x) s € = (€1, ..., €x)", €sare
uncorrelated survey errors with mean 0 and variance v,.
Note that the g,;s are uncorrelated over areas since they
are conditionally (given #,, ) unbiased and the samples in
different small areas are conditionally independent.

Denoting by 5’ the weighted least squares (WLS) esti-
mate of 8, we obtain the regression-synthetic estimator of
O, under the assumed model as

§§3 = 1:‘£§.
The above estimator could be heavily biased unless the
model (2.3) is satisfied reasonably well. The above model
may not be realistic because no random fluctuation or
random small area effect (a,, say) is allowed.

2.4 Method 4 (Fay-Herriot Estimator or EBLUP)

Using the empirical Bayes approach of Fay and Herriot
(1979) or the more general best linear unbiased predictor
approach (see e.g., Battese, Harter and Fuller 1988, and
Pfeffermann and Barnard 1991), the bias of the synthetic
estimator can be reduced considerably by using a composite
estimator; for an early reference on composite estimation
see Schaible (1978). The composite estimator is obtained
as a convex combination of g, and a modified g3 For this
purpose, it is assumed that

= FB +a, (2.4)

where a;’s are uncorrelated random small area effects
with mean 0 and variance w, known up to a constant.
In our empirical study later we take w, = w. Thus we
model g, as

$=rBg+a+c¢. 2.5)

Here ¢ is also assumed to be uncorrelated with €. The
BLUP of © under the model defined by (2.4) and (2.5) is

g4

g+ Alg — gD
(2.6)

Ag + (I — A)gi,

where
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A= WV'i1+whvlwu-'Lu=VvV+ W,

V = diag(v, ..., vg), W = diag(w, ..., wy),
and g = F3*, 8* is the WLS estimate of § under model
(2.5)~. Here it is assumed that both the covariance matrices
Vand W are known in computing the BLUP.

The expression (2.6) follows from the general results
on linear models with random effects, see e.g., Rao
(1973, p. 267) and Harville (1976). The BLUP or BLUE
of F 8 is g§ and the BLUP of g is A(gy — g3). It may be
of interest to note that the structure of the BLUP does not
change regardless of whether or not 3 is known. However,
its MSE does change as expected due to estimation of 3.

When Vand W are replaced by estimates, the estimator
g4 is termed EBLUP. Note that the model (2.4) is more
realistic than (2.3), and therefore, the performance of g,
is expected to be quite favourable. The estimator §4
approaches g, when the v, s get small, i.e., when the nh;s
become larg~e. However, it remains biased, in general,
conditional on 9, with bias tending to 0 as the v;s get
small.

2.5 Method 5 (Sample Size Dependent Estimator)

An alternative composite estimator is given by the
sample size dependent estimator of Drew, Singh and
Choudhry (1982). It is defined as

= Ag + (I — A)gs,

where A = diag(d;, ..., &),

1 if Y d = AN,
JEsk
8y = 2.7
E di /ANy otherwise
JE€sg

and the parameter A is chosen subjectively as a way of
controlling the contribution of the synthetic component.
The above estimator takes account of the realized sample
size ny;’s and if these are deemed to be sufficiently large
according to the condition in (2.7), then it does not rely
on the synthetic estimator. This property is somewhat
similar to that of 8as however, unlike 84, the above esti-
mator does not take account of the relative sizes of the
within area and between area variation. Rao and Choudhry
(1993) have demonstrated empirically how EBLUPs can
sometimes outperform sample size dependent estimators,
especially when the between area variation is not large
relative to the within area variation. Sdrndal and Hidiroglou
(1989) also proposed estimators similar to the above
sample size dependent estimator.
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3. METHODS BASED ON POOLED
CROSS-SECTIONAL
AND TIME SERIES DATA

Suppose information is available for several time points,
t = 1, ..., T,inthe form of direct small area estimators
8, where g, is the vector of estimates g, in (2.2) based
on data from time ¢, and also the small area population
totals for the auxiliary variable. We will now introduce
some estimators which generalize the Fay-Herriot estimator
g47 in different ways by taking account of the serial
aependence of the direct estimates {g,,:t = 1, ..., T}.
Recall that for the Fay-Herriot estirﬁator, the model for
O has two components, namely, the structural compo-
nent Fr 37 and the area componentgr. The estimator g4
borrows strength over areas for the current time Tand is
given by the sum of two components, each being EBLUP
(BLUE) for the corresponding random (fixed) effect, i.e.,

gar = Fr Bt + af. (3.1

Methods based on time series data could, however, borrow
strength over time as well. Here we introduce three esti-
mators which are motivated from specific structural
models for serial dependence. All three of these estimators
are optimal under different special cases of a structural
time series model for the direct small area estimates
{gy:t = 1, ..., T} specified by the following state space
model. Let o, denote B/, a/)’ and H, denote (F;, I).
Then we have

8x = O + &,

(3.2a)
O, =F@ +a=Huy
and
o = Groey + & (3.2b)
where
GH" 0 ,
Gt = > S:I - > (3-20)
0 Gt(Z) 1

along with the usual assumptions about random errors,
i.e., €, {, are uncorrelated, {, is uncorrelated with o
for s < f, and that €, ~ (0, V), & ~ (0,T,) where
Iy = block diag{B,, O;}. The covariance matrices V;, B;,
and Q, are generally diagonal. If GV = Iand G® = I
then 3, and g, evolve according to a random walk.

This model is in the general class defined by Pfeffermann
and Burck (1991) using structural time series models. The
main purpose of their study was to show how accounting
for cross-sectional correlations between neighbouring
small areas (in addition to serial correlations) and inclusion
of certain robustness modifications (to protect against

model breakdowns) could improve the performance of
time series model based estimators. They also used the
maximum likelihood method under normality to estimate
model parameters. The focus of this paper, on the other
hand, is on the Monte Carlo evaluation of a special class
of time series estimators (related to Fay-Herriot) chosen
on the basis of heuristic considerations and not on the basis
of model fitting. The methods considered could, therefore,
be viewed as model assisted methods whose performance
will be evaluated in a design based (i.e., repeated sampling)
framework by Monte Carlo simulation. Moreover, it will
be seen later that, for the types of serial dependence con-
sidered, the model parameters can be estimated relatively
simply by the method of moments, without making any
distributional assumptions such as normality.

To find the optimal estimator (BLUP) of ©in (3.2)
based on all the direct estimates up to time 7, we first
found the BLUP &7 of o7 from which the BLUP of O7
is obtained as Hyar. It is possible, albeit cumbersome,
to get @r directly from the complete data using the theory
of linear models with random effects. However, since the
ars are connected over time according to the transition
equation (3.2b), it is more convenient to compute it recur-
sively using the Kalman filter (KF). Traditionally KF is
viewed as a Bayesian technique in which at each time ¢,
the posterior distribution of ¢, given dataup to ¢ — 11is
updated to get the posterior distribution of ¢, given data
up to time /. Although it is instructive to view KF in this
manner, it is not necessary under mixed linear models.
Suppose &r|s denotes the BLUP of ar based on data up
totimes, s < T.Itis known (see Duncan and Horn 1972)
that, for the special structure of serial dependence consid-
ered here, the BLUP &7 of o based on data up to time
T is the same as the BLUP of g7 based on &r s and the
last T — s observations. In other words, information in
the previous data can be condensed into an appropriate
BLUP before augmenting more current data points. A
good description of the Kalman filter is given in chapter 3
of Harvey (1989).

3.1 Method 6 (Time Series EBLUP-J)

For the first estimator, we let 3, evolve over time
(e.g., according to a random walk), but assume that g, is
serially independent. The equations for the state space
model for this case are similar to (3.2) except that the serial
independence of the g,s implies G/?) = 0. This will give
rise to a composite estimator

ger = FrBr + dr. (3.3)

Note that S7in (3.3) would now be based on all the small
area estimates up to time 7"and therefore would be differ-
ent from 3% of (3.1) which is based on only direct estimates
at time T. The estimator d;, as a result, would also be
different from the corresponding component g% of (3.1).
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In the simulation study described later we take G = I,
B, = diag(v%,v3), corresponding to a random walk model,
and Q, = 72I. Appendix A.2 illustrates the method of
moments estimation of the parameters y7, v3, and 72.
The KF may then be run, with initial values for &, and its
MSE obtained from the FH estimator at ¢t = 1, to obtain
the EBLUP of &7. Then Hraris the time series EBLUP-I
estimator ggr at time 7.

As pointed out by a referee, when the number of small
areas is quite large, or when the variation in 3, over ¢ is
relatively large, there is little difference between g¢7-and
gar. Indeed, there is little difference between the })erfor—
mances of these two estimators in our simulation study
described in Section 4.

3.2 Method 7 (Time Series EBLUP-II)

For the second estimator, we let 3, be fixed (it may or
may not be common for different time points) and let the
area effects g, be serially dependent according to, for
example, a random walk. This time series generalization
could be viewed as an analogue of the model proposed by
Rao and Yu (1992). The resulting composite estimator will
have the same form as (3.1), i.e.,

gir = FrBr + ar, (3.4)

but the component estimates 37-and @ would be different.
We have two cases.

3.2.1 Case 1: Suppose the §,s are fixed and time-
invariant but the g,s are serially dependent. Then, in
(3.2), GV = I'and B, = 0. If Q, is taken as 72/, then the
only unknown parameter 72 can be estimated by the
method of moments; see Appendix A.2. We will denote
by g7rthe EBLUP obtained in this case when the parameter
estimate is substituted.

3.2.2 Case 2: Here we assume that ;s are fixed but
different for different time points. The area effects o
evolve over time as in Case 1. In (3.2) we have G/ = 0
and B, = mlI where m is a large number. The expressions
for &7 and its MSE obtained from the KF in this case give
the correct formulas as m — oo (see Sallas and Harville
1981). The KF updating equations for g, in this case take
the special form

B = (F/A7'F) T 'FlA (g — GP a,_1);
g =GPa_; + Py 1A (g2 — GP a1 — F,B);
P, = Py — Py A7 (A, — F(F/A7'F)7'F)
APy,

where A, = P,;_; + V;, P, is the MSE of g, about g,,
and P,y = GPP,_1{GP}’ + Q,is the MSE of G/
@;_ as an estimator of g,. The time series EBLUP in this
case will be denoted by g77.
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3.3 Method 8 (Time Series EBLUP-III)

For the third estimator, we let both 8, and g, evolve
over time. This will have more complex serial dependence
than either (3.3) or (3.4). Its form will be similar to (3.1)
and can be represented as

gsr = FrBr + @r. (3.5)

As before, if B, = diag{~%, vy} and Q, = 721, then the
model parameters 72, yf, v can be estimated by the
method of moments as in Appendix A.2. The resulting
EBLUP of ©7 will be denoted by ggy.

It may be of interest to note that ﬁlany of the estimators
considered so far are optimal under special cases of the
model underlying gg7. As has been shown, the time series
EBLUPs of methods 6 and 7 result from making restric-
tions on the matrices G, and I',. The cross-sectional Fay-
Herriot estimators of Section 2.4 result from restricting
the data to a single time point. The synthetic estimators
of section 2.3 are special cases of the Fay-Herriot esti-
mators with zero variance for the random small area
effects, and the direct (post-stratified) estimator is obtained
in the limit as the variance of the small area effects goes
to infinity.

A further generalization that could be useful is to allow
correlations between neighbouring small area effects. This
can be accomplished by allowing the matrix Q,in (3.2) to
be non-diagonal; however, it is not clear what would be
an appropriate correlation structure in Q,.

4. MONTE CARLO STUDY

The cross-sectional and time series methods were com-
pared empirically by means of a Monte Carlo simulation
from a real time series obtained from Statistics Canada’s
biannual farm surveys, namely, the National Farm Survey
(in June) and the January Farm Survey. Due to the redesign
after the census of Agriculture in 1986, the survey data for
the six time points starting with the summer of 1988 were
employed to create a pseudo-population for simulation
purposes. To this, data from the census year 1986 was also
added. Thus information at one more time point was
available although this resulted in a 3-point gap in the
series. The missing data points, however, can be easily
handled by time series methods. It may be noted that
although the data series is short, it is nevertheless believed
to be adequate for illustrative purposes. The parameter of
interest was taken as the total number of cattle and calves
for each crop district (defined as the small area) at each
time point. For simplicity, independent stratified random
samples were drawn for each occasion from the pseudo-
population, though the farm surveys use rotating panels
over time. The dependence of direct small area estimates
over time was modelled by assuming that the underlying



38 Singh, Mantel and Thomas: Time Series EBLUPs for Small Areas

small area population totals are connected according to
some random process. The auxiliary variable used in the
model was the ratio-adjusted census 1986 value of the total
cattle and calves for each small area. This showed high
correlations with the corresponding variable over time at
the farm level. Specific details of the empirical study are
described below.

4.1 Design of the Simulation Experiment

First we need to construct a pseudo-population from
the survey data over six time points (June 1988, January
1989, ..., January 1991). The actual design involves two
frames (list and area) with a one stage stratified sampling
from the list frame and a two stage stratified sampling
from the area frame, for details see Julien and Maranda
(1990). We decided to use survey data from the list frame
only because the list frame corresponds to farms existing
at the time of Census 1986 and the chosen auxiliary variable
for model building was based on Census 1986 information.
Moreover, we chose to use the data from the province of
Quebec because its area sample is only a minor component
of the total sample and the estimated coefficient variation
for the twelve crop-districts (i.e., small areas of interest)
of this province showed a wide range for the livestock
variables. It was decided to avoid variability due to changes
in the underlying population over time by retaining only
those farms which responded to all the six occasions. Also,
farm units who belonged to a multiholding arrangement
in any one of the seven time points (including the census)
were excluded because of the problems in finding indi-
vidual farm’s data from the multiholding summary record
and changes in their reporting arrangement over time.

The various exclusions described above were motivated
from considerations of yielding a sharper comparison
between small area estimators. The total count of farm
units after exclusions was found to be 1,160 out of a total
of over 40,000 farms on the list frame. For the pseudo-
population, we replicated the 1,160 farm units propor-
tional to their sampling weight so that the total size N of
the pseudo-population was 10,362, which was manageable
for micro-computer simulation.

The pseudo-population was stratified into four take-
some and one take-all strata using Census 1986 count data
on cattle and calves as the stratification variable. Although
we did not consider alternative stratifications or sample
sizes in our simulation study, there is no reason to think
that our conclusions would alter significantly if we were
to do so. The sigma-gap rule (Julien and Maranda 1990)
was used for defining the take-all stratum. To apply the
sigma-gap rule we look at the smallest population value
greater than the population median where the distance to
the next population value, in order of size, is at least one
population standard deviation; all units above this point
are placed into the take-all stratum. The algorithm of Sethi

(1963) was used for determining optimal stratification
boundaries for take-some strata. Neyman’s optimum
allocation was used for sample sizes for strata in order to
optimize the precision of the provincial estimate of total
count. This resulted in, from a total sample size of 207
(2% sampling rate), allocations of 51, 62, 48 and 35 from
takesome strata with 5,001, 3,188, 1,850 and 312 farms,
respectively, and the size of the take all stratum was 11.
The expected number of sample farms in each small area
varied from 4.6 in area 9 up to 27.5 in area 6, with an
average of 17.3. The expected number of sample farms
with some cattle and calves varied from 3.6 in area 9 to
18.8 in area 3, and the average over the small areas was
11.7. A total of 30,000 simulations were performed. For
each simulation, samples were drawn independently for
each time point using stratified simple random sampling
without replacement. The 30,000 simulations were con-
ducted in 15,000 sets of 2 simulations where each set corre-
sponds to a different vector of realized sample sizes in the
twelve small areas within each stratum. This was required
to compute certain conditional evaluation measures as
described in the next subsection, see also Sdrndal and
Hidiroglou (1989).

4.2 Evaluation Measures

Suppose m simulations are performed in which m, sets
of different vectors of realized sample sizes in domains
(h,k) are replicated m, times. The following measures
can be used for comparing performance of different esti-
mators at time 7. Let { vary from 1 to m, and j from 1
to ny.

(i) Absolute Relative Bias for area k:

ARB; =|m™! Z E (estx — truey)/true|. (4.1)
i

The average of ARB,, over areas k will be denoted by
AARB. We take the absolute relative bias since our
primary interest in this study is in an overall measure
like AARB; however, in other contexts the actual
biases for individual small areas may also be of con-
siderable interest.

The following measure is motivated by a desire to eval-
uate the conditional performance of estimators, condi-
tional on the vectors of realized sample sizes in domains.
It is conventional to measure performance conditional on
fixed domain sample sizes; here we consider the standard
deviation of the conditional bias, By, as a simple sum-
mary measure. If this standard deviation is small then the
method is robust to variations in the realized sample sizes.
Note that the expected value of By is just the uncondi-
tional bias which is estimated by ARBy. Let BZ denote the
unconditional expected value of B%. We define the
following Monte Carlo measure:
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(ii) Standard Deviation of Conditional Relative Bias for
area k:

%3
SDCRBy = {mr‘ D (B — Cy) /truek - ARB,%} ;
i

Bik = m{' E eStijk — truey, (42)
J

2
Cop = my '(my —1)7} (E estiy — <E est,jk> /m2>
J

J

The correction term Cj, adjusts for bias in B%, as an
estimate of B%, due to m, being finite. B3, — Cy is
conditionally unbiased for B%; it is also uncondi-
tionally unbiased for B%. The Monte Carlo average
m ' Y,;(B3 — Cy) converges to B2 with probability 1
as m, — o. B2 — C; may be negative for some i,
due to finite m,. For large m, the average over i is
usually very close to B%; whenever the average is less
than ARB7 we set SDCRB, to 0. ASDCRB will denote
the average of SDCRBy, over areas k.

(iii) Mean Absolute Relative Error for area k:

MARE,; = m ™! E Z | estyx — true; |[true,  (4.3)
[

and AMARE denotes the average of MARE, over
areas.

(iv) Mean Squared Error for area k:

MSE, = m™! E E (est;, — truey)? 4.4)
i

and AMSE as before denotes the average over areas.
(v) Relative Root Mean Squared Error for area k:
RRMSE, = {MSE,} "/true,. 4.5)

Again, ARRMSE denotes the average over areas.

The precision (i.e., the Monte Carlo standard error)
of each measure depends on m, m,. For all measures
except (ii), the optimal choice of m,, m, under the restric-
tion that m, > lism, = m/2, my = 2, since this mini-
mizes the Monte Carlo standard error. To see this, let A
be the average of an evaluation measure from m, samples
all with the same sample configuration (set of random
sample sizes in domains) which we call C. Then the
expected value of A conditional on Cis a function of C,
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say E(C), and the conditional variance of A is propor-
tional to my !, say V(C)/m,. The unconditional variance
of Aisthen V{E(C)} + E{V(C)}/m,, and the overall
Monte Carlo variance of an evaluation measure based
on m; sample configurations replicated m, times is
V{E(C)}/m; + E{V(C)}/mm, which is minimized,
since m = mm, is fixed, by taking #1, as large as possible.
For the second measure, the appropriate choice of m;, m,
is less straightforward. In the simulation study, m was
chosen as 30,000 and the corresponding values of m,, m,
were set at 15,000 and 2.

4.3 Estimators Used in the Comparative Study

There were nine estimators included in the study,
namely, g; to gg and g7, all calculated for time 7" = 10.
We used a simple linear regression model for the synthetic
component with the auxiliary variable defined as

X = (6,/0))04, (4.6)

where O, O, respectively denote the population totals
for small area k and the provinceat f = 1, i.e., at Census
1986. The estimator O, denotes the post-stratified estimator
of O, from the farm survey at time 7 at the province level.
Thus X, is simply a ratio-adjusted synthetic variable.
The variances of error components in the regression model
were assumed to be constant over areas. For time series
models, it was assumed that the serial dependence was
generated by a random walk. The above type of model
assumptions have been successfully used in many applica-
tions and the main reason for our choice was simplicity.
It was hoped, however, that the chosen models might be
adequate for our purpose and might illustrate the differen-
tial gains with different types of model assisted small area
estimators, i.e., both cross-sectional and time series
smoothing methods.

Since the Census 1986 data was included in the time
series, the direct estimate g,; corresponds to Census 1986
and therefore the survey error €, would be identically 0.
Moreover, from the definition of X, it follows that a
reasonable choice of (B, 82;) would be (0,1) which
implies that ¢, must be Q. Thus the covariance matrices
B, and W, at t = 1 are null and, therefore, the distribu-
tion of @, at + = 1 would not require estimation. The
above modification in the initial distribution of ¢, is
natural in view of the extra information available from the
census. Moreover, since the direct estimates g,, were not
available for t = 2, 3, 4, equations for estimiting model
variance components in Appendix A.2 were modified
accordingly.

For method 7 (case 1), 8, was assumed to have a
common fixed value only for 1 = 2 because at t = 1,
B, = (0,1)’. For the sample size dependent estimator gs
the parameter A\ was taken to be 1.
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4.4 Empirical Results

The main findings were listed in Section 1. Here we give
some detailed comparisons and some possible explana-
tions. We do not show separate results for g5 which
performs slightly worse than, though overall similarly to,
g;. The estimators are summarized in Table 1. Figures 1
to 3 and Tables 2 to 4 present some of the empirical results.
We have not shown the Monte Carlo standard errors but
they were all found to be quite negligible.

Table 1

Summary of Estimators

8¢ — Time Series EBLUP-I, 8s
evolve over time, as inde-
pendent over time

g, - Expansion
g, - Post-stratified

g7 - Time Series EBLUP-II, as
evolve over time, fixed
common

g3 - Synthetic
g4 - Fay-Herriot

gg — Time Series EBLUP-III, s
and as evolve over time

gs - Sample Size
Dependent

Table 2 gives the five evaluation measures averaged
over small areas, Figure 1 shows plots of the averaged
evaluation measures relative to the Fay-Herriot (g4)
value. There is a clear pattern in the behaviour of various
measures across different estimators. The direct estimator
g, does very well with respect to the bias measure (AARB)
but does somewhat poorly with respect to the other
measures. The cross-sectional smoothing method g;
(synthetic) does quite poorly with respect to the bias
measures. The Fay-Herriot method g4 performs somewhat
better than post-stratified on average with respect to the
MSE measure but is much worse in terms of bias. The
sample size dependent method gs is quite similar to g,
slightly worse with respect to the bias measures and slightly
better with respect to the other measures. The time series
methods g; and gg perform quite well overall, though
they are somewhat worse than g, with regard to bias. The
performance of the time series estimator g¢ is generally
between that of Fay-Herriot and the time series estimators
g7 and gg. For all of the estimators (including the synthetic
g3) the standard deviation of the conditional relative bias
(ASDCRB) is appreciable; however, it is smallest for the
time series methods. As expected, the expansion estimator
g, does well with respect to the unconditional bias measure,
AARB, but its conditional performance (ASDCRB) is
quite poor.

6.0 ! T T I L
X : : : : : : :
R L e e Bl
: : : : 1| V7 :ASDCRB
4.0 V ------- - ------- -------- — ~~~~~~~ - +AMARE -------- ~
: : : : 1| X :AMSE: :
3.0 _. ........ . ....... ........ ........ . D‘ARRMSE __
e8] : : : : : : :
20k----- R X T Lo >< ....... T e Lo _
-0 DO N
1.0k aeeees [T B - [ERRERETSTPRREY o SRTLRECRLPRRpr SR .
o B a e
0 A X 1 I £ 1 i I

81 & &3 84 &5 &6 £7 88

Figure 1. Evaluation Measures Relative to Fay-Herriot
Note: Relative ASDCRB for g; (= 18.98) not shown.

Table 2

Average Evaluation Measures

81 82 &3 &4 &s 8 871 &8
AARB .001  .007 .097 .065 .018 .070 .053 .053
ASDCRB 282 .016 .016 .015 .023 .010 .010 .010
AMARE 269 147 115 108 .136  .097 .087 .088
ARRMSE 339 .192 137 .137 .176 .120 .109 .11l
AMSE
(1,000°s) 72,979 27,596 13,382 12,898 22,760 10,603 8,610 8,829

Figure 2 plots averages of RRMSE, for three size
groups, namely small, medium and large small areas,
based on the ranking of their true population totals at time
T. They are divided up into these three groups because the
relative errors of estimation would be expected to be larger
for the smaller totals, and the plots do not contradict this
expectation. Again, the time series methods g, and gg
perform best. Note that the time series method gg, which
assumes the small area effects to be independent over time,
does not do as well. The unaveraged values of RRMSE,
are given in Table 3. RRMSE; is relatively large because
the total number of cattle and calves for area 9 is less than
half that of any other small area. Areas 6 and 8 stand out
within the medium size small areas as being most difficult
to estimate by the smoothing methods. The reason for this
is that, while there was an overall decline of about 16%
in the total number of cattle and calves in the pseudo-
population from June 1986 to January 1991, the decreases
for areas 6 and 8 were the furthest from the average at 33%
and 1%, respectively, so the ratio adjusted covariate
would be least appropriate for those areas. Nevertheless,
the time series methods g; and gg performed significantly
better than the post-stratified estimator for areas 6 and 8.
This is because the random walk model for the small area
effects is able to track small areas which, like areas 6 and 8,
progressively deviate from the model.
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Figure 2. Relative Root Mean Squared Errors: Averaged
within Size Groups

Table 3

Relative Root Mean Squared Errors and True Total
Cattle and Calves for Small Areas
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Figure 3. Absolute Relative Biases: Averaged within
Size Groups

Table 4

Absolute Relative Biases and True Total Cattle
and Calves for Small Areas

True True
Area yoes| 81 82 & 84 & 8 &1 & Area | yoes| 81 82 83 84 & & &1 &
9 8,502 |.580 .277 .342 275 277 .199 .160 .174 9 8,502 |.002 .047 .232 .139 .085 .099 .061 .069
10 | 18,990 |.360 .196 .078 .113 .175 .097 .103 .104 10 |18,990|.002 .002 .006 .007 .003 .01S .026 .025
Small 11 18,776 | .339 122 .122 .103 .112 .096 .086 .087 Small 11 18,776 | .002 .009 .090 .052 .021 .062 .039 .037
Size 12 19,819 |.409 237 .076 .152 212 .123 .117 .117 Size 12 19,819 (.000 .007 .019 .011 .007 .023 .024 .023

Average | 16,522 | .422 208 .154 .161 .194 .129 .116 .120

Average | 16,522 ].001 .016 .087 .052 .029 .050 .037 .039

1 27,595 |.312 206 .117 .130 .185 .120 .100 .102 1 27,595 [ .001 .003 .093 .063 .007 .078 .044 045

6 29,012].306 241 .256 .216 .224 .224 .168 .172 6 29,0121.000 .001 .239 .157 .023 .195 .120 .123

Medium 7 23,600 | .341 .121 .107 .094 .110 .088 .092 .092 Medium 7 23,600 [ .000 .005 .088 .053 .014 .058 .062 .061
Size 8 23,627 | .383 250 .155 .165 219 .155 .146 .144 Size 8 23,627 | .002 .008 .143 .106 .024 .124 .093 .091
Average | 25,959 | .336 .205 .159 .IS1 .185 .147 .126 .127 Average | 25,959 | .001 .004 .141 .095 .017 .114 .080 .080

2 35,592 1.268 .171 .113 .110 .156 .096 .089 .088 2 35,592 (.000 .000 .095 .071 .009 .068 .049 .047

3 40,582 |.241 .151 .087 .090 .137 .070 .072 .073 3 40,582 |.000 .001 .047 .041 .005 .029 .026 .025

Large 4 42,396 | .256 .160 .099 .103 .144 .080 .088 .089 Large 4 42,396 | .001 .002 .066 .056 .008 .044 .057 .056
Size 5 35,996 | .270 .176 .091 .097 .160 .088 .085 .088 Size 5 35,996 [ .000 .000 .045 .029 .005 .048 .035 .039

Average | 38,642 | .259 .164 .098 .100 .149 .083 .083 .084

Average | 38,642 | .000 .001 .063 .049 .006 .047 .042 .042

Figure 3 and Table 4 are identical to Figure 2 and Table 3
in format, but show relative biases instead of relative root
mean squared errors. The biases for both the expansion
estimator g; and the post-stratified g, are negliglible. For
the smoothing methods the average absolute relative biases
for medium size small areas are relatively large, mainly
because of areas 6 and 8 for which the covariate is least
appropriate. Among smoothing methods, the sample size
dependent gs has the least bias because it is usually very
close to the direct g,; however, it also gains very little over
g, with respect to mean squared error. Of the remaining
smoothing methods the time series estimators g7 and gg,
which had the smallest mean squared error, also have the
smallest bias. Nevertheless, the relative bias of these
methods can be quite large, as in areas 6 and 8. In practice
it would not be possible to estimate these biases; however,
the possible size of the bias could be assessed using simu-
lated sampling from a variety of plausible populations.

5. CONCLUDING REMARKS

It was seen by means of a simulation study that small
area estimation methods obtained by combining both cross-
sectional and time series data can perform better than those
based only on cross-sectional data, with respect to both
bias and mean squared error. However, the cost in terms
of bias could still be substantial. A question of obvious
importance is whether it is possible in practical situations
to judge if the gains from any type of smoothing would
outweigh the costs, and how to make this judgement.

The models for the simulation study were chosen on
general considerations. However, in practice, suitable
diagnostics similar to those employed in Pfeffermann and
Barnard (1991) should be developed for survey data before
any model-assisted method can be recommended. It should
also be noted that the small area estimators could be
modified to make them robust to mis-specification of the
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underlying model as suggested by Pfeffermann and Burck
(1990), see also Mantel, Singh and Bureau (1993). Finally,
modification and further extension of the methods pre-
sented in this paper to the more realistic case of correlated
sampling errors should be investigated in the future.

ACKNOWLEDGEMENT

We would like to thank Jon Rao, Danny Pfeffermann and
M.P. Singh for useful discussions and comments on earlier
versions of this paper. The comments and suggestions of an
anonymous referee and an Associate Editor are also very
much appreciated. The first author’s research was supported
in part by a grant from the Natural Sciences and Engineering
Research Council of Canada held at Carleton University.

APPENDIX

A.1 Variance Estimation for g,

Let v;, denote the conditional (given 7,,,) variance of
Zokr in (2.2). Then vy, is given by (whenever ny, > 0 for
all » at time ¢),

v = Y N (n,,-k; - Nh—k;) G (AD)
h

where o7, is the population variance for the intersection
of the A-th stratum with the k-th small area at time £. The
variance o2, can be estimated by the usual estimator s,
for ny, = 2. Note that the estimate of the conditional
variance vy, also provides an estimate of the unconditional
variance of go4;.

If ny, = 1, then we can use a synthetic value as an
estimate of a2, which can be defined as ¥ (np — 1)
St/ T (e, — 1), the summation being over all k for
which ny,, = 2 within each (A,7). If ny, = 0, vy of
(A.1) is of course not defined. With the synthetic value of
Ve used in this case, we need a synthetic value of its
mean squared error. For each (4,?), it can be defined as

(Xner/ X ) (" — Nig')sh, + (bias) 2,
where (bias) 2 will be taken as

E (Bt / Xt ) Pnt — Frae)> Mg,
np>0

where my,, is the number of small areas with sample in
stratum /4 at time £.

A.2 Estimation of Variance Components

Using the notation of (3.2), we here illustrate the method
of moments for estimating variance components for the
model of Section 3.1 in the special case when there is only
one auxiliary variable X,,, Q; = 7%I and B, follows a
random walk, i.e., G\ = L. LetF, = (Fy;, ..-» Fxi)'s
Fio = (1LXe)', B, = (BuB2) ", and B, = diaglyiv3).
The parameter 7% is estimated by the solution of

T K
Y Y (g — FluB) e + 1) = T(K = 2).
t=1 k=1

If there is no positive solution, we set #2 = 0. Here @,
denotes the WLS estimate of 3, based on only the cross-
sectional data at z. This is analogous to the method used
in Fay and Herriot (1979) for cross-sectional data. An
estimate of y7 can be obtained by solving (for i = 1,2)

T
Y Bir = B0V (4 +dP) = T = 1,
t=2

where d{") is the (i,)-th element of (F/_; U~} F,_1) ™' +
(F/UT'F) L
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