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Jackknife Variance Estimation of Imputed Survey Data

JOHN G. KOVAR and EDWARD J. CHEN!

ABSTRACT

Imputation is a common technique employed by survey-taking organizations in order to address the problem of
item nonresponse. While in most of the cases the resulting completed data sets provide good estimates of means
and totals, the corresponding variances are often grossly underestimated. A number of methods to remedy this
problem exists, but most of them depend on the sampling design and the imputation method. Recently, Rao (1992),
and Rao and Shao (1992) have proposed a unified jackknife approach to variance estimation of imputed data sets.
The present paper explores this technique empirically, using a real population of businesses, under a simple random
sampling design and a uniform nonresponse mechanism. Extensions to stratified multistage sample designs are
considered, and the performance of the proposed variance estimator under non-uniform response mechanisms is

briefly investigated.

KEY WORDS: Item nonresponse; Hot deck imputation; Nearest neighbour imputation; Nonrandom nonresponse;

Complex survey design.

1. INTRODUCTION

All sample surveys suffer from varying degrees of
nonresponse. While total or unit nonresponse is often
redressed by appropriate survey weight adjustment, most
survey taking organizations resort to imputation in the
case of item nonresponse. In this way, plausible values are
inserted in place of missing or inconsistent entries, thus
simplifying estimation of means and totals at all levels of
aggregation. As early as the 1950’s however, Hansen,
Hurwitz and Madow (1953) recognized that treating the
imputed values as observed values can lead to under-
estimation of variances of these estimators if standard
formulae are used; underestimation which becomes more
appreciable as the proportion of imputed items increases.

A number of remedies to overcome this problem have
been advanced. In particular, Rubin (1987) proposed
multiple imputation to estimate the variance due to impu-
tation by replicating the process a number of times and
estimating the between replicate variation. More recently,
Sérndal (1990) outlined a number of model assisted esti-
mators of variance, while Rao and Shao (1992) proposed
a technique that adjusts the imputed values to correct
the usual or naive jackknife variance estimator. The
Sérndal, and Rao and Shao methods, are appealing in
that only the imputed file (with the imputed fields flagged)
is required for variance estimation. No auxiliary files
are needed. Sdrndal’s model assisted approach yields
unbiased variance estimators, provided the model holds
(Lee, Rancourt and Sarndal 1991). The Rao and Shao
adjusted jackknife method is design consistent as well as
model unbiased (Rao 1992). But while the model assisted

approach requires different variance estimators for each
imputation method, the adjusted jackknife method pro-
vides a unified approach that requires the implementation
of only one estimator, the jackknife estimator, provided
the imputed values are adjusted appropriately during the
variance estimation stage.

In this paper we describe a simulation study that evalu-
ates the adjusted jackknife variance estimator of Rao and
Shao (1992). In Section 2 we motivate the present empirical
study by demonstrating the characteristics of the naive
variance estimator under four imputation methods in the
case of simple random sampling. In Section 3 we briefly
outline the Rao and Shao adjustment procedure and
present the empirical results. Extensions to more complex
designs and experiments with nonrandom nonresponse
mechanisms are elaborated in Section 4. Finally, in Section 5
we offer some concluding remarks and recommendations,
including areas for future study.

2. BACKGROUND

Following the notation of Rao (1992), we suppose that
in a sample s, of size n, m units respond to item y, while
n — munits do not. Denote by y} the imputed value for
unit /, i€s-s,, where s, is the set of responding units. The
usual estimator of the mean Y under simple random
sampling, based on the imputed file is given by

y-1=1(2y,-+ Ey,-*>. (1)

R\ ies, i€s-sy
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2.1 Imputation Methods

In the present simulation study we consider four simple
methods of imputation, namely the mean of respondents,
ratio, nearest neighbour and hot deck imputation methods.
The reader is referred to Kalton and Kasprzyk (1986) for
a thorough review of the topic of imputation. The simplest
and most intuitive method of imputation, when the interest
lies in estimating the mean of the item y, is to impute all
missing items with the mean of the observed responding
units. The imputed value yf, for unit i, under the mean
imputation method, is thus given by

VE=0m= ), y/m. ¢}

JEsy

In this case, the estimator of the population mean Y in
(1) reduces to the estimator y; = J,,. Due to the fact that
this method has the undesirable property of distorting the
distributions, it is used in practice usually only as a last
resort. It is included here for illustrative purposes.

Secondly, we consider a ratio imputation method based
on the assumption that a correlated auxiliary variable x,
is available, and that the ratio y/x is the same in the s,
and s — s, sets, as would be the case if the nonresponse
occurred at random, for example. Under the ratio imputa-
tion method, we impute the predicted value in place of the
missing y; as follows:

y
yi="x 3)
X,

m

where %, is the mean of the x values of the respondent set
s,. The estimator of the population mean Yin (1) reduces
to the double sampling estimator y; = (7,,/%,)%, by
considering the respondents as the second phase sample.

The third imputation technique we consider is the
nearest neighbour (NN) method. Under this method, the
missing value is filled in by an observed value of another
unit from the set s,, whose distance to the nonresponding
unit is minimum. In practice the distance functions used
are usually the ¢y, &, or ¢, Minkowski’s norms based on
the auxiliary x-variables, assumed observed for all units
in 5. Thus

y¥ =y, Jje€s,, suchthat I x; — x; I is minimized, (4)

where || - Il is one of the above mentioned norms.

The above three methods are often labelled deter-
ministic, since, given the sample of respondents, the
imputed values are determined uniquely. The fourth
imputation method considered in this study, the hot deck
method (HD), is non-deterministic, since the imputed
values are chosen at random from the respondent set.
While in practice imputation classes are often created and

some sort of sequential procedure is usually implemented,
we consider here the pure hot deck, whereby the donor unit
(/) is chosen at random, with replacement, from the entire
set s,, that is,

yi =Y, J€s,. 3

2.2 Variance Due to Imputation

Treating the imputed values as observed values, leads
to the incorrect variance estimator

Vnaive = (1 - f)s,z/n, (6)

where s? is the sample variance of the complete sample of
responding and imputed values, and (1 — f) is the finite
population correction factor (f = n/N). It can be easily
shown that the true variance of the estimator y;in (1),
V(¥7;), can be written as (Sdrndal 1990)

V(D = Vim + Vimp + Vaixs @)

where V,,,, is the sampling variance component, Vi, is
the variance introduced by the imputation method in
question and V,,, is a covariance term between V,, and
Vimp which in most cases is negligible or zero. An estimator
of V,,m could be obtained by adding to v, a term to
correct for the fact that the standard formula understates
the sampling variance component when there are imputed
values in the data set. To estimate V(¥;), however, an
additional component of variance due to the imputation
mechanism, V,,,,, must be estimated. This may be done
explicitly, as in Rubin’s (1987) multiple imputation, or by
modifying common variance formulae as in Sdrndal (1990)
and Rao and Shao (1992). Note that the interest lies in
estimating the variance of the estimator at hand, that is,
V(9;), not the variance of an estimator that would have
been obtained had there been no nonresponse.

2.3 Variance Underestimation

To illustrate the seriousness of the underestimation of
V(;) bY V,aive, and the dependence of the degree of under-
estimation on the imputation method, we first describe the
simulation study used for this purpose. We consider a data
set of 5,620 units with two variables: An auxiliary variable
x, the Gross Business Income, available for all units, that
can be used as a measure of size, and a related purchase
variable y. The correlation between x and y in this par-
ticular data set is of the order of 0.92. Simple random
samples of size 200 were selected without replacement. A
fixed proportion of units were identified at random as
nonrespondents, having their y-values deleted and imputed
according to one of the four methods described above.
Various rates of nonresponse were generated, though, for
the most part, we confine our reporting to results based
on 5 and 30% nonresponse rates.
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To evaluate the performance of the proposed variance
estimators, we calculate the percent relative bias of the
variance estimator v., given by

e — V(n)/K

K
. (
Rel.Bias(v.) = )] - x 100,  (8)
= Vrn

where V(j;) is obtained through simulation, and v, is the
k-th realization of the K simulated variance estimates in
question. Similarly, the percent relative stability of the
variance estimators is given by

(e = V(I)2/K
vy

K
Rel.Stab.(v.) = E J x 100. (9)
k=1

All simulations were performed on an IBM PC, using
Microsoft’s Fortran 77, Version 5.0. In the case of simple
random sampling, results are based on averages of 100,000
replications (K = 100,000). With this number of repli-
cates, the reported relative bias values were observed not
to vary by more than one percentage point. The results are
summarized below in Table 1 for the case of 5 and 30%
nonresponse rates.

Table 1

Underestimation of Variance of y; by the Naive Estimator
Under Four Imputation Methods, and 5 and 30%
Nonresponse Rates

Non- Variance Imputation Method
TeSPONse g yimator

Rate Mean HD Ratio NN

5% Viyp 9.9 10.3 9.5 9.5
Vyaive 8.9 9.4 9.2 9.3

Rel.Bias(v,give) -10.7% —-9.4% ~2.5% —2.2%

30% Vyp 13.5 16.5 10.1 10.3

Vnaive 6.5 9.4 8.5 9.0

Rel.Bias (vygive) —51.4% —43.4% —15.3% —12.8%

First, we note in Table 1, that the naive estimator under-
estimates the true variance of y; by 10.7% in the case of
mean imputation at a 5% level of nonresponse. About half
of this underestimation is due to the fact that v,;,, under-
estimates V,,, and the other half is due to the fact that
Vnaive ignores the component V,,,,,. Sdrndal (1990) obtains
very similar results with respect to the partitioning of the
underestimation in the case of mean imputation. Secondly,
in the first row of Table 1, the true variance of y,is larger
in the case of the hot deck imputation as compared to the
mean imputation, due to the procedure’s inherent vari-
ability (i.e., the V},,, component is larger). By contrast,
V(¥;) is slightly lower in the case of the ratio and nearest
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neighbour imputation methods, since V;,, decreases as
the imputation procedure is better able to predict the true
unobserved values (Sdrndal 1990), as is the case in the
present study due to the relatively high correlation between
the x and y variables. Thirdly, as can be seen in Table 1,
V(¥;) increases while v,,,;,, decreases as the nonresponse
rate becomes more elevated. As such, the underestimation
of V(7;), when the imputed values are treated as observed
values, becomes more serious as the proportion of missing
items increases. The problem is more pronounced in the
case of the mean and hot deck imputation methods, which
do not use auxiliary information. Note that underestimation
of variance in the order of 50%, as was observed in this
case, can lead to confidence intervals that are about 30%
too short and to declaration of significance when none
exists. Also of note is the similar behaviour of the ratio and
nearest neighbour methods which will be exploited later.

3. JACKKNIFE VARIANCE ESTIMATOR

Let y,(j) be the imputed estimator of Y obtained
when the j-th unit is deleted from the sample. Then, in
the case of simple random sampling, a naive jackknife
variance estimator of y;is given by

n—1

\_)J=

n
E 7)) — 3172 (10)
nooo
which can be shown to reduce to v,,,;,. (Rao 1992).

3.1 Imputed Value Adjustment

In order to produce the ‘‘correct’’ (Rao 1990) jackknife
variance estimator, Rao (1992) proposed to adjust the
imputed values as described below. Intuitively, the adjust-
ment is necessary whenever a responding unit is deleted
from a jackknife replicate, since in the case of most impu-
tation methods, all the imputed values depend directly or
indirectly on the observed value that was deleted. This is
clear in the case of mean imputation and ratio imputation,
where all respondents contribute directly to the mean 7,
but is less evident in nearest neighbour and hot deck
imputation methods where the deleted unit contributes to
the imputation process only in the sense that it is not
available to be selected as a donor. Thus, whenever a
responding unit is deleted, all imputed values in the sample
must be adjusted before the ‘‘delete-one’’ imputed esti-
mator of the mean is computed. The adjustment must
clearly be a function of the imputation method used. In
the case of the mean and the hot deck imputation methods,
it can be shown that the following adjustment is appro-
priate (Rao 1992; Rao and Shao 1992). Let z} (/) be the
adjusted value of the i-th imputed unit y}, when the j-th
unit has been deleted. Then z¥ (/) is given by
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eron _ (F+ i) — Il if jes,
zF(Jj) =

yr if jes-s,. (11)

In other words, no adjustment is necessary if the deleted
unit (j), has itself been imputed; that is, unit j is a non-
respondent. In the case of the mean imputation, for
example, when jé€s,, the adjusted value reduces to y,, (),
the mean of the remaining m — 1 respondents, as desired.
The jackknife variance estimator is evaluated by first
computing the adjusted imputed estimator y7(j), as

IO AGUCESIY (12)
i<

and then letting

n—1

V(¥ = P

n

IIREADIES AR (13)
j=1

It can be shown that the adjusted jackknife variance
estimator reduces to the correct variance estimator in the
case of the mean imputation (Rao 1990), and provides a
consistent estimator in the case of the hot deck imputation
(Rao and Shao 1992).

In the case of the ratio imputation, the adjusted values
are given by

yi+ [y_'"(j.)xi—y_—mxi] if jes,
() = X (J) X

yi if jes-s,, (14)

where ¥,,(/j) is the mean of the m — 1 sample values of
x of the responding units when unit j is deleted. The jack-
knife variance estimator v;(¥;) is then computed as in (13)
above, yielding the correct variance estimator. Further-
more, Rao (1992) shows that not only is the adjusted jack-
knife variance estimator design consistent (p-consistent)
under uniform nonresponse irrespective of the model, but
is also design-model unbiased (pm-unbiased) under the
model (15) and any nonresponse mechanism that does not
depend on the y-values.

Em(yi) =Bxi’ Vm(yi) :o-zxi’

cov, (¥,y) =0 i #jes. (15)

Since the naive variance estimator under the nearest
neighbour imputation was observed to behave much like
the naive variance estimator under the ratio imputation,
the adjustment for the ratio imputation given in (14) was
used in the case of the nearest neighbour imputation. As
well, an alternate adjustment was considered, whereby
unit  was re-imputed using the nearest neighbour method,

whenever the deleted unit (/) was used to impute unit ;.
That is, adjustment takes place only if the deleted unit is
a respondent (as above), but only those nonrespondents
in the j-th jackknife replicate that were actually imputed
using unit j are re-imputed by one of the m — 1 remaining
donors. (This corresponds to imputing the second nearest
neighbour for these units.) We note that no theoretical
justification exists for either of these adjustments. Since
the latter adjustment performed worse than the ratio
adjustment in our examples, and since its eventual imple-
mentation in production would be cumbersome, we omitted
it from further consideration, even though it was always
observed to be conservative.

We would like to stress here that for all imputation
methods the adjustments are only performed for the
purpose of variance estimation and can be made tempo-
rarily while the variance estimation program executes. No
permanent adjustments are required on the imputed file
used for the estimation of means and totals, though the
imputed fields must be flagged appropriately.

3.2 Empirical Results

The jackknife variance estimator with adjustments cor-
responding to the four imputation methods described
above, was computed in addition to v, in the simula-
tion study outlined in Section 2. Nonresponse rates of 5
and 30% were considered and the relative biases were
calculated. They are summarized in Table 2 below.

Table 2

Relative Biases of the Naive Variance Estimator and the
Adjusted Jackknife Variance Estimator Under
5 and 30% Nonresponse Rates

Non- Imputation Method

Variance
TESPONSE  ptimator .
Rate Mean HD Ratio NN
in percent

5% Vyaive —10.7 -94 -2.5 -2.2
vy 2.7 3.6 34 3.7

30% Voaive —-51.4 —43.4 -—153 —12.8
vy 3.3 1.9 3.0 5.3

Since the adjusted jackknife variance estimator is
design consistent (p-consistent) (Rao 1992), it performs
well in the case of the mean, hot deck and ratio imputa-
tion under uniform response mechanism, as expected.
(Equally good performance was observed with other data
sets which do not follow the model (15) as well, but more
work is needed on this front.) Of note is the relatively good
performance under the nearest neighbour imputation. The
proposed estimator tends to be somewhat conservative,
due, in small part, to the fact that it does not incorporate
the finite population correction.
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4. EXTENSIONS

While the adjusted jackknife variance estimator has
been shown to perform well in the case of simple random
sampling under uniform nonresponse mechanism in one
imputation class, we consider here extensions to more
complex design, to more than one imputation class, and
to nonrandom response mechanisms.

4.1 Complex Designs

In this section we describe a simulation study that
evaluates the Rao and Shao (1992) adjusted jackknife
variance estimator in comparison to the naive variance
estimator, in the case of stratified multistage sampling
and hot deck imputation. In particular, data from the
Canadian Survey of Consumer Finances (SCF) that follows
the design of the Canadian Labour Force Survey will be
used. The variable of interest, y, is the total household
income. The SCF follows a complex stratified multistage
design with the primary sampling units (psu’s) in the strata
used in this study selected with probability proportional
to the number of dwellings. Generally speaking, the psu’s
are collections of dwellings, corresponding to city blocks
in urban areas and to groups of Census Enumeration
Areas (EA’s) in rural regions. We used as a population a
sample of 3,870 households in 30 strata and sampled two
psu’sin each stratum. As in the case of the simple random
sampling study, 5 and 30% uniform nonresponse rates
were generated at the household level. The missing values
were then imputed using the hot deck imputation method
described in Rao and Shao (1992). Briefly, the imputation
method consists of selecting the donors from the respon-
dent set with replacement, with probability proportional
to the survey weight of the donors.

We first consider the case of a single imputation class.
Let y,; be the observed value for the k-th unit in the i-th
psuandthe A-thstratum (k = 1, ..., n,,i = 1, ..., 0,
h=1...,L,n=YYn), and let y}; be the corre-
sponding imputed value whenever the (4ik) unit is a non-
respondent, that is, whenever (Aik)€s-s,. The imputed
estimator of Y is then given by

Y = E Whik Vhik + E

(hik)€s, (hik)€s-s,

Whik Yhite » (16)

where wy;. is the survey weight corresponding to unit
(hik). Under the above hot deck imputation scheme, Y;
is asymptotically unbiased (Rao and Shao 1992).

The expectation of ¥; under the hot deck imputation
procedure can be written as (Rao and Shao 1992):

E Whik:l X E Whik

(hik)es, (hik)es

E.(Y)) :[ E Whik Y ik

(hik)es,

= [$/T] x O, a7n
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thus defining the terms S, T'and U. The jackknife *“delete-
one’’ values are then given by

- n
o g
S/) = Y, Wbk + = Y Wi
(hik)es, & (gik)es,
h#*g i#j
(18)
A n
T(g/) = ), wwe + . £ 1 Y Ve
(hik)€s, g (gik)€s,
h#g i#j

whenever the j-th psu in the g-th stratum is deleted. The
adjustment of the imputed values is performed whenever
the (gj)-th psuis deleted, (ki) = (gJj), and (hik)€s-s,,
by letting

; S(gj) S]
(g/) %
Zpiket = Vhie + V= — = |- (19)
’ [T(gj) T

Then, analogous to (12) and (13), the jackknife variance
estimator is evaluated by first computing the adjusted
imputed estimator Y¢ when the (g/)-th psu is deleted as

i (ej) = S + Y wue sl

(hik)€s-s,
g (&)
+ no— 1 E ngk Zgik s (20)
8 (hik)€s-sp
i%j
and then setting
n, — 1 ¢

vi(Yy) = £

Y, (Fiei) = )% @

n
g=1 & j=1

=

It can be shown that v; as defined in (21), is a consistent
estimator of the variance of ¥; (Rao and Shao 1992).

We generated 10,000 samples of 60 psu’s selected with
probability proportional to size, and subjected the selected
households to 5 and 30% uniform nonresponse. We then
computed the naive variance estimator, and the adjusted
jackknife variance estimator, v, in (21). The relative
bias (8) and the relative stability (9) were computed for
both of the variance estimators, and are summarized in
Table 3 below.

Table 3

Relative Bias and Relative Stability (in Parentheses)
of the Naive Variance Estimator and the Adjusted Jackknife
Variance Estimator Under 5 and 30% Nonresponse,
in the Case of Stratified Multistage Sampling

Nonresponse Rate

Variance Estimator

5% 30%
in percent
Vnaive —10.3 (88) —43.7 (84)
vy ~0.9(97) 1.2 (124)
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As can be seen in Table 3, the naive variance estimator
underestimates the true variance of Y at rates comparable
to the simple random sampling case (Table 2), with the
underestimation becoming more serious as the nonresponse
rate increases. The adjusted jackknife variance estimator,
on the other hand, performs well at both levels of non-
response, at a relatively modest cost of a slight decrease
in the stability of the variance estimator, as compared
L0 Vygive-

4.2 Imputation Classes

Under the same sample design as in Section 4.1, we also
considered the case of more than one imputation class as
is the case in practice. The household size, known for all
households in the sample, was used to form two imputa-
tion classes, namely one member households and more
than one member households. This was done under the
assumption that the propensity to respond is different
between these two classes, while uniform response pro-
bability was assumed within the imputation classes. Two
nonresponse schemes were evaluated. The first assumes a
5% uniform nonresponse in the single member household
class and 10% uniform nonresponse in the multiple member
household class, while the second scheme assumes rates
of 25 and 30% in each of the classes respectively. The
hot deck imputation, the imputed value adjustments, and
the adjusted total calculations in (20), Y4,(gj), were
performed independently within each imputation class
denoted by v. The terms Y9%,(gj) were then summed over
the two imputation classes, yielding Y%(gj), which was
used in (21) to provide the estimate v;. The results are
summarized in Table 4.

Table 4

Relative Bias and Relative Stability (in Parentheses)
of the Naive Variance Estimator and the Adjusted Jackknife
Variance Estimator Under Two Nonresponse Schemes,
in the Case of Stratified Multistage Sampling
and Two Imputation Classes

Nonresponse Rate

Variance Estimator

50 and 10% 25% and 30%

in percent
Vhaive —16.7 (87) —40.2 (84)

vy —1.0(103) 1.1 (127)

As can be seen in Table 4, the adjusted jackknife vari-
ance estimator v;, performs well under both nonresponse
schemes. The results, along with those in Table 3, demon-
strate the consistency and the reasonably good stability of
the adjusted jackknife variance estimator, even in cases
of elevated nonresponse rates.

4.3 Nonrandom Nonresponse

As demonstrated above, the adjusted jackknife variance
estimator performs well when the nonresponse is random
within imputation classes. To study its robustness against
the uniform response mechanism assumption, we use the
data set described in Section 2, and generated nonresponse
as outlined in Lee, Rancourt and Sdrndal (1991). In
particular, the probability of nonresponse is assumed to
be related to the x-variable in two distinct ways:

P, =1 — exp(— cx), (22)

P, = exp(— ¢sx), (23)

where the constants ¢, and cg are chosen such that an
expected 30% nonresponse rate is achieved. In the model
P, given in (22) the nonresponse is positively correlated
with the x-variable, implying that large (L) units are more
likely not to respond. The opposite is true in the model Py
given in (23), under which smaller (S) units are more likely
not to respond. Imputation methods which ignore the
x-variable (mean and hot deck) are expected to yield esti-
mators of Y that underestimate the true mean under non-
response model (22) and over estimate the true mean under
the model (23). However, imputation methods that incor-
porate the auxiliary variable into the procedure (ratio and
nearest neighbour), can be expected to produce better
estimates of the mean. This has been confirmed by simu-
lation as shown in Table 5 below. As before, 100,000
replicates were used.

Table 5

Estimates of the Mean ¥ as Percent of the True Mean
when the Nonresponse is not Random, and the Nonresponse
Rate is an Expected 30%

Imputation Method

Nonresponse
Model Mean HD Ratio NN
in percent
Py 60.4 60.4 94.7 93.5
Pg 132.7 132.7 102.0 101.4

Clearly, variance estimation is of no interest when the
point estimators themselves are highly biased as is the case
for the mean and hot deck methods. However, in the case
of the ratio and nearest neighbour methods, under which
the point estimators perform better, we investigated the
performance of the adjusted jackknife variance estimator,
as well as an estimator proposed by Sarndal (1990), which
can be written as (Rao 1992):
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oy = (Y L I Y
Vs(.yl)— ()?)m(m—l)z (yz mel)

i€sy

Im 2m Im
2 m Iy 24
+ (xm)nz(m Y ; (y, xm>x, 24)
Im)? 1 — %)?
i (xm> n(n — 1) L =0

i€s

provided that the finite population correction factor is
ignored, andthat (n — 1)/n = land (m — 1)/m = 1.
The results are summarized in Table 6.

Table 6

Relative Bias of the Naive Variance Estimator, the Adjusted
Jackknife Variance Estimator and Siarndal’s Variance
Estimator Under 30% Nonrandom Nonresponse

Imputation Method

Nonresponse Variance
Model Estimator Ratio NN
in percent

Py Viaive -22.7 —54.6

vy 3.9 -375

Vg -2.6 -36.8

Pg Vyaive -4.0 -0.7

vy 3.7 7.2

Vs 2.8 4.5

In the case of the ratio imputation, the naive variance
estimator performs quite differently under the two non-
response models (—22.7 versus —4.0%). This is due to the
fact that while the reduction in effective sample size tends
to decrease the variance in both cases, under the P; model
disproportionately more large units are missing which
tends to accentuate this effect, whereas under the Pg
model, where disproportionately more small units are
missing, this effect tends to be partly compensated for.
Secondly, the adjusted jackknife variance estimator performs
well in the case of ratio imputation, but relatively poorly
in the case of nearest neighbour imputation. This is due
to the fact that the present data set follows the usual linear
model (15) fairly well and the adjusted jackknife variance
estimator has been shown to be model unbiased (Rao 1992)
in the case of the ratio imputation. On the other hand, the
ratio adjustment does not work well in the case of nearest
neighbour imputation when the nonresponse is not uni-
form. The alternate adjustment for the nearest neighbour
imputation described in Section 3, performs equally poorly
in absolute terms (not shown here), though the estimates
are always conservative. Thirdly, the performance of
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Sarndal’s estimator, vg, is roughly equivalent to that of
the adjusted jackknife estimator under either the ratio
or the nearest neighbour imputation methods, and non-
random nonresponse that depends only on x.

In cases where the response mechanism is not random,
and when the propensity to respond is related to the
variable subject to nonresponse (), the point estimators
are themselves severely biased under all four imputation
methods. As such, variance estimation is of little interest,
as the real interest lies in estimating the mean squared
error. That is, more attention needs to be concentrated on
improving the point estimates and their bias. Some prelim-
inary results on this front have been put forth by Rancourt,
Lee and Sarndal (1992).

5. CONCLUDING REMARKS

It is well known that the usual variance estimator under-
states the variance of the estimate of Y in the presence of
imputed values if these values are treated as having been
observed. In this study we again demonstrated the high
degree of underestimation of the naive variance estimator
in the presence of imputed data. Several imputation
methods were considered in order to illuminate the depen-
dence of the degree of underestimation on the method of
imputation. We evaluated a unified jackknife variance
estimator proposed by Rao and Shao (1992), an estimator
that incorporates the variance due to imputation compo-
nent. The study demonstrated some desirable properties
of the proposed estimator in the case of both simple
random sampling as well as complex survey designs. Our
findings can be summarized as follows.

(1) The extent of variance underestimation is highly
dependent on both the imputation method’s ability to
predict the true values, and its ability to preserve the
natural variation in the data.

(2) The proposed adjusted jackknife variance estimator
offers a unified approach to variance estimation of
imputed data, that is easy to implement under a
number of imputation methods and under designs of
varying complexity.

(3) Operationally, no modifications to the original imputed
file are necessary and the estimation of means and totals
is thus unaffected by the need to estimate variances.

(4) The proposed method is easily extended to more
complex designs, more than one imputation class and,
with care, to the case of nonrandom nonresponse that
depends only on available auxiliary variables.

(5) The adjusted jackknife variance estimator performs
well whenever the nonresponse is uniform or the usual
linear model holds, demonstrating the fact that the
estimatar is both design consistent as well as design-
model unbiased.
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(6) In the case of the P, model, under which units with
large y-values are more likely to not respond, all three
variance estimators perform extremely poorly.

(7) Inthe case of y-dependent nonresponse, better impu-
tation techniques are needed and the bias of the point
estimators needs to be studied further. Here the issue
is primarily that of estimating the mean square error
rather than the variance.

Given the relatively high degree of imputation in today’s
surveys, at least within some imputation classes, it is clear
that the effect of imputation on variance estimation
cannot be ignored. An overestimation of precision can
lead to confidence intervals that are too short and to
spurious declaration of significance. If implementation of
the above suggested methods is deemed too onerous in any
particular circumstance, at the very least studies should
be conducted to evaluate the impact of imputation in some
representative cases. An ad hoc variance inflation factor
could then be implemented. With the emergence of gener-
alized estimation software, however, there seems to remain
little reason for not implementing variance estimators
which correctly account for the effect of imputation.

There clearly remain many unsolved, and perhaps
unsolvable problems. To begin with, much more theo-
retical work is needed with respect to nearest neighbour
imputation. The jackknife adjustments considered for this
imputation method fail to perform as well as those applied
to the other methods. Perhaps smoother alternatives to the
nearest neighbour method need to be developed. Secondly,
the robustness of the proposed estimator must be inves-
tigated. It is clear that satisfactory performance can be
obtained if the model (15) holds, and when nonresponse
is random. Limited failure of either one of these condi-
tions did not seem to detract from the good performance
of the jackknife estimator in our limited experience, but
further research along these lines is warranted. Departures
from both of the conditions simultaneously are yet to be
investigated. Cases of nonrandom nonresponse when the
propensity of nonresponse is related to the y-variable are
even less well understood, though the emphasis in this case
must be placed on the estimation of the mean square error
rather than the variance. Thirdly, comparisons to multiple
imputation results should be considered. It must be recog-
nized, however, that proper imputation methods (Rubin
1987) must first be established. We note that none of the
imputation methods studied within are proper with respect
to multiple imputation.

Extensions to other imputation methods and other
parameters of interest should be undertaken. This study
was limited to four simple imputation methods. In practice,
much more complicated methods are used, often in con-
junction with each other. The impact of more than one
imputation method on the estimation of variance has

been studied by Rancourt, Lee and Sarndal (1993); more
work is needed. With respect to other, more complicated
methods of imputation, the effect of adding theoretical
residuals to imputed data can, for example, be considered.
However, this technique only addresses the underestimation
Of Vigm bY Vyaive and ignores the effect of Vj,,,. Finally,
other parameters, such as the median for example, and the
effect of imputation on their variance are yet to be eval-
uated. Multivariate extensions can likewise be considered:
estimation of correlations, ratios and regression parameters
in the presence of imputation would likely be of interest.
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