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Multi-way Stratification by Linear Programming

R.R. SITTER and C.J. SKINNER!

ABSTRACT

Rao and Nigam (1990, 1992) showed how a class of controlled sampling designs can be implemented using linear
programming. In this article their approach is applied to multi-way stratification. A comparison is made with
existing methods both by illustrating the sampling schemes generated for specific examples and by evaluating mean
squared errors. The proposed approach is relatively simple to use and appears to have reasonable mean squared
error properties. The computations required can, however, increase rapidly as the number of cells in the multi-way
classification increase. Variance estimation is also considered.
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1. INTRODUCTION

There are often several stratifying variables available
to the sample designer and it is natural in such cases for
the designer to consider defining strata as the cells formed
by cross-classifying categories of these variables. A problem
with this approach, particularly common when selecting
primary sampling units (psu’s) in household surveys, is
that the desired sample size may be less than the total
number of cells and hence conventional methods of
stratification may be inapplicable.

An illustration, based on a hypothetical example of
Bryant et al. (1960), is given in Table 1. Communities
(psu’s) are classified by two stratifying factors: type of
community with three categories and region with five
categories. The desired sample size of n = 10isless than
the total number of cells, 15. This example also illustrates
arelated problem. The entries in Table 1 are the expected
counts under proportionate stratification, that is the
population proportions multiplied by the sample size.
Even if the sample size was doubled to exceed the number
of cells, the expected sample counts would still not be
integers. Whilst the effect of rounding such values to
integers may not be practically significant for large
expected counts, the choice of how to round with very
small expected counts may be of greater concern.

One reaction to the problem of many cells is simply to
drop one or more of the stratifying variables or to group
some of the categories. Alternatively, a number of proce-
dures have been proposed which attempt to retain some
‘control’ for all the categories of all the stratifying variables
by permitting different forms of random selection of cells.

Goodman and Kish (1950) proposed one procedure
under the title ‘controlled selection’. Jessen (1970) suggests
that ‘this method is somewhat complicated and its use in
applied sampling appears limited’ (p. 778). Waterton (1983)

Table 1

Expected Sample Cell Counts Under Proportionate
Stratification with n = 10

Type of Community

Regions

Urban Rural Metropolitan Total

1 1.0 0.5 0.5 2.0

2 0.2 0.3 0.5 1.0

3 0.2 0.6 1.2 2.0

4 0.6 1.8 0.6 3.0

5 1.0 0.8 0.2 2.0
Total 3.0 4.0 3.0 10.0

illustrates this complexity. Bryant et al. (1960) propose a
much simpler method for two-way stratification. Their
method has the property that the expected sample counts
display independence between the rows and columns of
the two-way table. If the rows and columns are also inde-
pendent in the population then there is no problem but if,
as will often be the case, there is an appreciable lack of
independence then some reweighting will usually be neces-
sary and this can be unattractive in practice and can inflate
the variance as is shown in Section 5. Jessen (1970) points
out that a further limitation of the method of Bryant et al.
(1960) is that it is not possible to constrain specified cell
sizes to be zero. He proposes two approaches for both
two-way and three-way stratification but both approaches
remain fairly complicated to implement and, as noted by
Causey et al. (1985), do not always lead to a solution.
All the above methods may be carried out by hand with
varying degrees of laboriousness, but none take advantage
of the power of modern computing. In this paper we shall
show how computational procedures of linear programming
can be applied to the multi-way stratification problem
following Rao and Nigam (1990, 1992). Our proposed
approach may be viewed as complementing the linear
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programming approach proposed by Causey ef al. (1985).
Which of the two approaches is preferable will depend on
the nature of the stratification problem and on the soft-
ware available. The potential disadvantage of our approach
is that it can be much more computationally intensive,
since the number of unknowns in our linear programming
problem may be as large as (&), when  is the number of
cells in the table and » is the sample size, whereas the
number of unknowns in the approach of Causey ef al.
(1985) is only k. A number of suggestions will be made,
however, to reduce the computational demands of our
approach. There are several potential advantages of our
approach. First, the stratification problem corresponds
directly to the linear programming problem and so the
computer programming is straightforward, whereas the
approach of Causey ef al. is less direct, involving mimicking
the behaviour of nonlinear functions by linear functions
(p. 904) and nesting repeated linear programming problems
within a further recursive algorithm. Second, our proce-
dure always has a solution, whereas the procedure of
Causey et al. need not, for example in cases of three-way
stratification. Third, the objective function in our linear
programming problem can be naturally modified to reflect
the different objectives of the stratification problem, for
example in a three-way problem where it is more important
to ‘balance’ the sample with respect to the first two strat-
ifying variables than the third. Fourth, our procedure can
be naturally modified to constrain the joint inclusion
probabilities of cells to be positive in order to permit
unbiased variance estimation.

2. THE PROPOSED APPROACH

2.1 Basic Ideas

We begin with the simplest kind of two-way stratifica-
tion. Let a population of N units be classified into the RC
cells of a two-way table formed by cross-classifying a row
stratification factor with R categories and a column factor
with C categories. Let N;; be the number of units in cell
ij, that is the set of units in both row i and column j, and
let P; = N;; /N be the corresponding proportion. The
parameter of interest is taken to be the population mean,
Y, of a variable Y.

Consider the following two-stage sampling procedure.
First, sample sizes n;; are determined for each cell accord-
ing to a specified randomized procedure. Letting s denote
theR x Carray (n;,i =1,...,R,j = 1, ..., C), this
procedure assigns a probability p(s) to each sin a set S
of possible arrays. To emphasize the dependence of n; on
s we write n;(s). Second, a simple random sample of
n;(s) units is selected from cell ij and the values of Y are
recorded for the sample units.

We restrict attention to designs of fixed sample size
n > 0, that is we restrict S to be the set S, of all arrays
such that

R
i=

c
E n;(s) = n.
j=1

1

We also restrict attention to proportionate stratification
so that

Y ng(s)p(s) = nPy for i=1,...,R,

SESy

j=1,...,C. @1

It follows from (2.1) that the simple unweighted sample
mean 7(s) is an unbiased estimator of Y. We propose to
choose a (or the) sampling design p(s) which minimizes
the expected lack of ‘desirability’ of the sample s by solving
the problem:

minimize E w(s)p(s), 2.2)
pep SESy,

subject to the constraint (2.1), where w(s) is a loss func-
tion for the sample s to be specified and P is the class of
possible sample designs on S, obeying

0 <p(s) =1 forall se€S,. 2.3)

Note that (2.1) implies Y5, p(s) = 1. The key observa-
tion of Rao and Nigam (1990, 1992) is that the objective
function in (2.2) and the equality and inequality constraints
in (2.1) and (2.3) are all linear in p(s) and hence this
problem may be solved directly by linear programming
with the p(s), s € S, as unknowns. The main obstacle to
this approach is that the number of elements in S, is often
very large and even with modern computing power it
becomes difficult to carry out linear programming if the
number of unknowns is large.

It is therefore desirable to restrict attention to a subset
of S,. One natural restriction is to consider only arrays
s for which nj(s) is either equal to I;; = [nPy], the
greatest integer less than nPy, or I; + 1. Letting 7i; (s) =
n;(s) — Iyand ry = nP; — I the problem becomes

minimize E w(s)p(s), Q2.4
pep ségﬁ
subject to
Y, A (s)p(s) = ry, 2.5)
s€§ﬁ

Ep(s) =1,0=<p(s) <1 forall seS; (2.6

SES};
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where S is the set of R x C arrays, where all elements
are 0 or 1 and the sum of elementsis 7 = n — ¥, I;.
Note, of course, that if all the J;; are zero, then this is just
the same problem as before. The number of elements in
S;;» which determines the magnitude of the computational
task for linear programming, is now (%). This number
can still be very large, however, and some further reduction
can be achieved by sensible choice of the loss function
w(s) as discussed in the next section.

For Table 1, this would amount to considering the
situation represented by Table 2, while only allowing a 0
or 1 cell sample size, and then adding back 1 to cells (1,1),
(3,3), (4,2) and (5,1) in the final solution. Thus n = 10,
but i = 6.

Table 2
Table of r;; Values from Table 1 with /i = 6

Type of Community

Regions
Urban Rural Metropolitan Total
1 0.0 0.5 0.5 1.0
2 0.2 0.3 0.5 1.0
3 0.2 0.6 0.2 1.0
4 0.6 0.8 0.6 2.0
5 0.0 0.8 0.2 1.0
Total 1.0 3.0 2.0 6.0

2.2 Choice of Loss Function w(s)

The major flexibility of the proposed approach derives
from the user’s freedom to choose the function w(s)
which enters the objective function in (2.2). The conven-
tional approach to two-way stratification (e.g., Jessen
1970; Causey et al. 1985) is to require that the selected
sample s obey the marginal constraints:

—nP.| <1

| n;.(s) i=1,...,R, 2.7

| nj(s) —nP; | <1 j=1,...,C  (2.8)

where

i (s) = Y ng(s), ni(s) =Y ny(s)

J i
J i

This requirement can be accommodated in our approach
by setting w(s) as (effectively) infinite for samples s not
satisfying (2.7) or (2.8) or more simply by excluding such
samples from the set S,. The problem with this conven-
tional approach is that no solution to the constrained
optimization-problem may exist.

67

In our approach, however, if we use a loss function
such as

R c
w(s) = Y3 (m(s) —nP)* + Y (ny(s) —nPj)?,
= /=1 2.9)

then an optimal solution will always exist within a large
enough set S,.. In practice, it may be advantageous com-
putationally to restrict the set S, initially to only those
samples obeying (2.7) and (2.8), or even a subset of these,
and then to expand the set if necessary, say by changing
1 to 2 in (2.7) and (2.8), until a solution is found.

Let us now consider the more fundamental question of
why constraints such as (2.7) and (2.8) are sensible
anyway. From a non-statistical point of view, the balancing
of a sample with respect to factors with a known population
distribution may reassure users about the ‘representa-
tiveness’ of the sample. From a statistical point of view,
given our unbiasedness constraint (2.1), it is natural to
consider how the loss function might be chosen to improve
efficiency. This question may be examined by taking w (s)
as the mean squared error E,,(7(s) — Y)?under a model
m. Then the solution to the optimization problem (2.2)
minimizes the design-expected model-mean squared error
or equivalently, since we require design-unbiasedness, the
model-expected design variance.

Consider, for example, the main-effects analysis of
variance model

Yk =+ o + B8 + €,

where y;;, is the kth value of Yin cell ij, p is a fixed mean
and o, 3 and €, are independent zero-mean random
effects with variances 02, aé and 02, respectively. Then,

ignoring finite population correction terms,
E,(3(s) — D? =03 Y (m.(s)/n — P.)?
i

+ 05 Y3 (ny(s)/n = Pp)* + o/n. (2.10)
J

Hence, if o2 = o} the expected design variance of 7(s)
under this model is minimized by taking the loss function
in (2.9). Alternatively, if one had some prior information
about the likely ratio of the between row variance relative
to the between column variance then it may be sensible,
on efficiency grounds, to modify the loss function in (2.9)
by multiplying the first term on the right hand side of (2.9)
by this estimated ratio.

On the other hand if it is thought a priori that there is
likely to be a strong interaction between the row and
column factors in their effect on Ythen simply attempting
to balance on the margins may be inappropriate. For
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example, if one stratification factor is urban/rural and the
other is an economic indicator X and it is known that Y
is positively related to X in urban areas and negatively
related in rural areas then it is likely to be more efficient
to stratify partially by X separately within rural and urban
areas than to balance fully on both margins. See Bryant
et al. (1960, section 9) for related comments on efficiency
for two-way stratification.

2.3 Higher-way Stratification

The proposed approach extends naturally to 3 or more
stratifying factors by letting s denote the corresponding
r-way array. The loss function will typically include further
terms, for example for three-way stratification we might
take

Ry
w(s) = N\ Z (n;..(s) — nP..)?

i=1

Ry
+ N Y] (n.(8) = nP;)?

Jj=1

R3
+ N\ E (n...(8) — nP.p)?
k=1

in obvious notation, where \;, A\, and A, are included to
represent the relative importance of balancing on the three
factors and might consist of prior estimates of the
variances of the Y means between categories of the three
stratifying factors, as in (2.10).

2.4 Multistage Sampling

One important practical application of multi-way
stratification is to the selection of primary sampling units
(psu’s) in multistage sampling, where it is common for
information of several stratifying factors to be available.

In the approach of Section 2.1, the inclusion probabil-
ities of each population unit are E(n; (s)/N;) = n/N.
If it is desired to select psu’s with equal probability then
this approach extends immediately with the psu’s con-
stituting the units and with the observed values of Y
replaced by unbiased estimators of the psu totals. Suppose
instead that it is desired to select psu’s with unequal pro-
babilities, say nz; for psu & in cell 7/, where usually z;;
will equal Mj;,/ ¥ jjx Mjjx, with My, being some measure
of size of psu k in cell ij. Then the procedure may be simply
modified by setting P; equal to the sum of z;;;, over psu’s
k in cell §j. Then, if n; (s) > 0, a sample of n;; (s) psu’s
in cell ij is selected by some probability proportional to
Z;jx method.

3. EXAMPLES

Example 1: Bryant, Hartley and Jessen (1960)

We will first demonstrate the method on the hypothet-
ical example of Bryant et al. (1960) given in Table 1. We
first reduce the problem to the form of (2.4), (2.5) and
(2.6), where the r;’s are given in Table 2. The weight
function in (2.9) in this reduced linear programming
problem becomes

5 3
wis) = Y (7 (8) —r)? + Y, (1) = )t

i=1 j=1

Applying a standard linear programming package in the
NAG FORTRAN library, we obtain the solution given in
Table 3. The I;; values have been added to the solution so
that n; = I; + 7, (). It turns out for this solution that
each s, for which p(s) > 0, has margins #;. (s) and n.; (s)
which match the desired margins exactly, that is the
solution makes (2.4) zero.

Table 3
Solution to Example 1

s p(s) s p(s)
110 110
1 00 0 0 1
01 1 0.2 0 1 1 0.1
0 2 1 111
1 0 1 110
110 1 01
0 0 1 010
00 2 0.2 1 01 0.2
1 20 0 2 1
110 110
1 01 1 0 1
010 0 01
01 1 0.1 011 0.2
11 1 1 20
110 110

Example 2: Jessen (1970)

Jessen (1970) proposed two methods for two-way and
three-way stratification. Both of these are quite compli-
cated and involve determining the set of samples which
exactly match the margins. Neither method is guaranteed
to yield a solution. Jessen (1970) applies both methods to
a simple hypothetical example for which both yield a
solution. This example is reproduced in Table 4. In this
example, since all of the nP;; < 1, the linear program-
ming problems defined by (2.1), (2.2) and (2.3) and by
(2.4), (2.5) and (2.6), respectively, are identical. We
applied our method to this problem, again using the w(s)
as defined in (2.9). By trying a number of different seeds
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in the optimization routine, we were able to obtain three
different solutions, all of which make (2.2) zero and satisfy
the constraints. These are given in Table 5. The first two
solutions are the same two as obtained by Jessen’s method 2
and method 3, respectively.

Table 4

Example 2: Jessen (1970)

Expected Sample Cell Counts Under Proportionate
Stratification with n = 6

Columns
Rows nP;.
1 2 3
1 0.8 0.5 0.7 2.0
2 0.7 0.8 0.5 2.0
3 0.5 0.7 0.8 2.0
nP; 2.0 2.0 2.0 6.0
Table 5

Solution to Example 2

s pi(s) p2(s) p3(5)
101
110 0.5 0.4 0.3
01 1
110
011 0.3 0.2 0.1
101
01 1
10 1 0.2 0.1 0.0
110
110
1 01 0.0 0.1 0.2
01 1
101
01 1 0.0 0.1 0.2
110
01 1
110 0.0 0.1 0.2
101

Example 3: Causey, Cox and Ernst (1985)

Causey et al. (1985) give an example of three-way
stratification for which their method fails to yield a solu-
tion. They consider a population subjecttoa2 x 2 x 2
stratification from which a sample of size n = 2is to be
drawn, with the-expected sample size in the ijk-th cell,
ik, as follows:

= Ay = Ay = Hypp = .5

Ria1 = My = Rpp = My = 0.
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If we apply our method in a similar manner to
Examples 1 and 2 we obtain the solution given in Table 6.
In this case, the objective function did not attain zero so
that the margins are not exactly matched in each sample.

Table 6
Solution to Example 3

N

p(s)
i=1 i=2
1 0 01 0.5
00 00
0 0 00 0.5
01 1 0

4. COMPARISON OF MSE

In this section the mean squared error (MSE) of the
proposed design with estimator y will be compared with
the MSE of the design of Bryant et al. (1960) with either
of the two estimators they propose, namely ¥, and yg,
where the U and B subscripts indicate that the first
estimator is unbiased and the second is not. Let the cells
be denoted ¢ (ij in the two-way case), let k& (and where
necessary /) denote a unit within a cell, and suppress the
sin n.(s) for simplicity of notation. The inclusion proba-
bility of any unit k in cell ¢ is

Tex = Elnc/N, = E[n.1/(NF;) “.n

and the joint inclusion probability of unit & in cell ¢ and
unit k’ in cell ¢’ is

Elng(ne~1)1

No(No—T) if c=c¢
Toperr! = 4.2
ckc'k Elngng'] " o ( )
NN, if ¢c#c’.

For large N this is approximately

T . E(ncnc’) _ E(I’lc)
T NPP. NP2

Tie=cys 4.3)

where

7 _ 1 if ¢=c¢’
le=er] 0 if c¢#c’.

The expectations will differ for our design compared to
the Bryant ef al. design and thus the . and .- will

differ. Keeping this in mind we can obtain the variance
of 7, yyand 5 in a generalized form in terms of the
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and 7. values and thus have some basis for compar-
ison. To do this, let us consider an estimator of the form
7 = Y. Yk Weya/n, where the w, values are fixed known
constants independent of k. If we restrict to the case where
n;. = nP. and n.; = nP.;, that is, integer marginal
requirements, then both of the estimators given in Bryant
et al. as well as our estimator are of this form. We will
assume this to be the case in the sequel. Replacing the
subscript ¢ with Jj for two-way stratification, y;; and yy are
of the same form as Z with w, = w; = G, = P;/(F,.P;)
and w, = w;; = 1, respectively. The estimator y is also of
the form Z with w, = w; = L.

We can now obtain a general form for the variance of
z keeping in mind that the 7 and m.. - values will differ
for the Bryant et al. design and our design:

VD = o, DL DY (amens = meen)
¢k k'

(4

(chck - Wc'yc’k’)z- (44)

Using (4.1) and (4.3) this becomes

o
)=£;2;

2
WcE(nc) 2
NZP% ; ; (yck - yck’)

Cov(nc,nc
2n2 E E NP.P. ; 4:-:
(chck - Wc’yc’k’)z' (45)

Noting that
E E (Ve — ycl)2 = 2]\72})3‘502
k|
and
EE (Wc.yck - Wc’yc’k’)2 = NZPCPC’
k k'
[w2SZ + werSe + (we¥e — we¥e)?],

where S? refers to the population variance of cell c, (4.5)
reduces to

1
V(z) = = Y, wiE(n)S?
(z) nz WC (nC)

2 ) EECOV(”C,HC [ LZ‘S(.?“ + W%’S%’
n

+ (WX — woYo)?)

= v, + v,, say. (4.6)

The first term v, may be interpreted as the usual stratified
variance for fixed sample sizes E (n.) within the two-way
‘strata’ (of course in our case the E (n,) will generally not
be integers). The second term v, may be interpreted as the
increase in variance arising from the variability of the n,
and the correlation between them. We discuss this further
at the end of this section. We now revert to the notation
¢ = ij and compare the variances for two-way stratification.
First let us consider v, in (4.6). For the Bryant ef al.
method E(n;) = nP.P;,yy = Y, X; X4 Gyyi/n, Gy =
P;/(P.Pj)and yp = ¥, ¥; ik /n-
Thus

vi(Jy) = EEPU'GUSI'ZJ/”’
~ =

(this is the same as the first term of equation (12) in Bryant
et al.) and

v (Fg) = EEP P;S}/n.

In the case of our approach E(n;) = nPj; and y =
Y ¥ Xeyik/n so that

() = EER,-S,?,/n.
i

Next let us consider v,. It is not difficult to show that
for both the Bryant ef al. method and our approach
(see Appendix)

Y, Cov(ny.ny;) =Y, Cov(ngnyy) = 0. (4.7)
i J

Using this and replacing ¢ and ¢’ by ij and i’/ ", respec-

tively, in v, given in (4.6), it follows that v, reduces to

1 _
— E E E E COV(n,-j,ni,j,)wijw,-,j,YUY;,j,_
i i j

Replacing w;; with G;; we get v2(Jy), and using simple
algebra one can show that this is the same as term 2 of equa-
tion (12) in Bryant et al. Replacing w;; with 1 gives the form
of V(¥5) and of V(p), noting that the Cov (n;;,n;-;-) will
not be the same for both. So we see that v, depends only
on the cell means while v, depends only on the within cell
variances.

Finally, we should note that

bias(yg) = — EE (Py
i

- P.P)Y,;, (48

since to compare the three estimators the mean square error
(MSE) will be the relevant measure, and this bias will con-
tribute to MSE (¥g) .
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Combining the expressions for v, v, and bias(yz)
above permits an analytical comparison of the MSE of the
proposed approach with that of the approach of Bryant
et al. (1960) using either y,; and . It is difficult, however,
to make general statements about the relative performance
of the different strategies and so we now consider intro-
ducing some model assumptions in order to approximate
the different components of the MSE expressions, in some
specific settings. We first consider the additive model:

Yijg =+ a; + B + €y,

where y; is the k-th observation in the jj-th cell, o; and §;

are fixed effects and €, are independent errors with zero
mean and common variance 2. Then E,,(S3) = o®and
E (Y;Y:;) = (u+ o + B)(p + o + B;-). Thus the
model-expected design-variance is given by replacing S,zj
by o2 and Y,; by p + «; + G in the formulas for v; and
v, for the various estimators. In this case, v,(¥z) = 0.
This point was realized by Bryant ef a/. when comparing
Jy and yg. The bias term will be zero in this case unless
there was rounding on the margins, that is bias(yg) = 0
provided n;. = nP,. and n.; = nP.;as is the case in their
example. This easily follows from (4.8) and

Y, (P = P.Pj) =), (P~ P.Pj) = 0.
i J

This was also shown by Bryant ef al. p. 119 equation (47).
Using (4.7), it is easily shown that v,(¥) = 0 as well.
This combined with the unbiasedness of ¥ and the fact that
vi(Fg) = vi(F) = o*/nin this case implies that for this
situation MSE (75) = MSE (7), that is the proposed pro-
cedure has the same MSE as the procedure of Bryant ef al.
using the biased estimator. We demonstrate in the sequel
that even when this additive model is applicable (y = 0
below), v, (7)) may be large while v (¥y) > v (7).
To compare the estimators further, let us consider the
situation of Example 1. The above derivations allow us
to obtain the MSE’s of the three estimators for this
example provided we have the S;’s, the ¥;’s and can
calculate the Cov (n,;,n;.;-) for the Bryant et al. method
as well as for our approach. The covariances for the
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Bryant et al. method are given in their paper in terms of
the P;’s, while the covariances for our approach can be
obtained from the solution in Table 3. We will consider
non-additive departures from the above model, namely

Yijg = o+ oy + B + vy B + €4y,

for various values of . For simplicity of presentation, let
p=1 0 =1i-3,8 =j— 2 (note in fact that the
MSE of each strategy is invariant to the choice of x). Thus
the model-expected design-variance is given by replacing S,zj
byland Y, byl + (i —=3)+ (j—2) +v(i—=3)(—2)
in the formulas for v, and v, for the various estimators.
Table 7 gives the resulting v;, v,, and MSE values for the
three estimators (as well as the bias squared term for y5),
for various values of v. From Table 7, it can be seen that
for an additive model, v = 0, ¥z and 7 perform equally
well, while 7, is inferior. As the model becomes more
non-additive, and | v | increases, the two estimators for
the Bryant et al. strategy tend to perform similarly, both
with MSE becoming increasingly greater than that of the
proposed strategy. This pattern is primarily due to the v,
component of the MSE of the three estimators. The bias
term of yg is of lesser importance, although it may be
more important for larger n.

The greater increase in v, as | v | increases for the
Bryant et al. design appears to reflect the greater
variability of each n; for this design. It should be noted
that it would have been possible to reduce this variability
somewhat by applying a variant of the Bryant et al.
method instead to Table 2, as was done for the proposed
method, though one would need to derive adjusted Gj;
weights for y,, and it would be difficult to handle the 0.0
cell entries in Table 2. However, even if this were accom-
plished, the 7i; for this design may still take values other
than just 0 and 1; for example ny, could take values O, 1,
or 2. This inflated n, variability is inherent in the Bryant
et al. method. For example, suppose n;. = n.; = 5.
Then using the Bryant et al. method, n;, can take values
0,1, 2,3, 4, or 5, while with the proposed method it can
take only values [#P;] or [nP;] + 1.If nP; < 1, the
technique used to go from Table 1 to Table 2 will not
improve matters.

Table 7
Comparison of MSE for Three Estimators

Bryant, Hartley, Jessen Design

Proposed Design

Ju VB J
v v, MSE v Vs Bias? MSE v vy MSE
0 125 .105 230 .100 .000 .000 .100 .100 .000 .100
+.5 125 .063 .188 .100 .033 .002 135 .100 018 118
+1 125 .105 .230 .100 131 .008 239 .100 071 171
+2 125 440 .565 .100 .523 032 .655 .100 .284 384
+3 125 1.111 1.236 .100 1.176 073 1.349 .100 .638 738




72 Sitter and Skinner: Multi-way Stratification by Linear Programming

5. VARIANCE ESTIMATION

In this section, we will consider variance estimation for
our proposed method. Using (4.1) and recalling constraint
(2.1), it is clear that

T = Eln.(s)/N.] = n/N.

The joint inclusion probability of two units k, k£’ in the
same cell ¢ is

Tekek: = Elnc(s){ne(s) — 13/{NAN, — D}].

Suppose n.(s) = I, + A.(s) when I.is the fixed integer
[nP.] and 7i.(s) = Oor 1.

If nP, = 1 then I, = 0 and 7y 4 = 0. Hence a
necessary condition for unbiased variance estimation to
be possible is that nP. > 1 for all cells c. On the other
hand if this condition holds then n.(s) = 1 for all c and
hence the probability of inclusion of any pair of units in
different cells is also always positive. Hence this condition
is necessary and sufficient for unbiased variance estima-
tion to be possible.

When this condition holds we obtain

Tek,ck’ = Ic(lc + 2rc - 1)/[Nc(Nc - 1)] = Ac,

say, where r. = E[A.(s)] = nP, — I,.

The joint inclusion probability for pairs of units in
different cells ¢ and ¢’ are

Tek,ckr = E[Nc(8)nc (8)/(NeNe2) ]

= [Idy +rode+rcde + 1] /(N Ng) = Beer,s
;.1
say where r... = E[A.(s)A. (s)].

Hence an unbiased estimator of V' (7(s)) of Sen-Yates-
Grundy form may be constructed in the usual way.

In practice, however, we wish to consider situations
where nP. < 1 for some c. In this case one assumption
we might make following Bryant et al. (1960, Sect. 7) in
order to derive a variance estimator is that the population
variance of Y is constant within each cell ¢, say S2.

Let us first obtain the variance of y(s) in the general
case

Vy(s)) =

P ELE (-

k#k’

c) Yok — Ye')?

32 ELE (e

c#ce'

Bcc) (yck —Yek )2-

Now providing B, > 0V ¢, ¢’ we may estimate the
second term unbiasedly by

2
ne(s) ner(s) !

— - B
RIDE L2

ek — J’c'k')z,

k=1 k'=1 cc’
where 4 = {c,¢’:n.(s) = 1,n.(s) = 1,c # ¢'}.
The first term can be written as
1 n? .
2;2 E (]72 — AC> 2NZ 8-,
c
For any ¢ s.t. n.(s) = 2
ne(s) ni(s) 2
E E E Dek — Yer') ne(s) - §2
_ K’ 2nc(s) c(s) - 1}

k#k

Thus provided at least one n.(s) is = 2 an unbiased

estimator of the first term is

D o

fcing(s) 22}

(V-)E L

(Yex — yck’)2
2n.(s){n.(s) — 1}

where D = the number of cells, ¢, such that n.(s) = 2

The above requires B, > 0. If

by (5.1), we need
T = Y, Fie(8)fic (5)p(s) > 0, (5.2)

which is linear in p (s). The constraint (5.2) can be handled
in linear programming if desired. There will be such a
constraint for each pair ¢, ¢’ s.t. I, = I.. = 0.

6. CONCLUDING REMARKS

We have proposed a linear programming approach to
multi-way stratification, applying ideas of Rao and Nigam
(1990, 1992). The approach is simple in conception and
is very flexible in allowing for a range of different objec-
tives via the loss function w(s), as well as in permitting



Survey Methodology, June 1994

a variety of constraints such as that the joint inclusion
probabilities of all cells be positive. The main practical
constraint on the procedure is that it may rapidly become
computationally expensive if not impossible as the number
of cells in the multi-way classification increases. Some
ideas on how to reduce the amount of computation have
been considered. Further research on this question would
be useful. For cases where the computational demands are
prohibitive, the method of Causey et al. (1985) remains
an alternative.
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APPENDIX

Proof of (4.7) for Proposed Method

Note that
Cov(n;(s),n;;(s)) = E(n;(s)n; ;- (s))

— E(n;(s))E(n;; (s)).

Equation (2.1) states that E(n;; (s)) = nP;. By definition

E(nij(s)ni’j’(s)) = E nij(s)”i’j'(S)P(S)-

N

Thus

Y, E(n;()E(ny;:(s)) = n*Pry Y Py=n’Pyy P,
J J (7.1

and

Y E(ny(9)ny(s)) = Y, Y7 ny($)ng ()p(s)
- -

J N

Y, pSIni () Y] ny(s).
§ J 7.2)
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Assume that the solution to the linear optimization
problem (2.2) equals zero, where w(s) is given in (2.9). In
this case, ¥ ; n;(s) = n;.(s) = nP. and (7.2) implies

Y B(ni(9)nij(s)) = Y] p(s)nyy (s)nP.
J s

nP. Y nij (s)p(s)

nP.E(n;j(s)) = nP.nP; .
(7.3)

Equations (7.1) and (7.3) together imply Y; Cov(n;(s),
n;y;-(s)) = 0. It can be similarly shown that

Y, Cov(ng(s),n;5:(s)) = Y Cov(ny(s),ny:(s))

= E Cov(n;(s),n; ;- (s)) = 0.
Iz
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