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Regression Weighting in the Presence of Nonresponse
with Application to the 1987-1988 Nationwide
Food Consumption Survey

WAYNE A. FULLER, MARIE M. LOUGHIN and HAROLD D. BAKER!

ABSTRACT

A regression weight generation procedure is applied to the 1987-1988 Nationwide Food Consumption Survey of
the U.S. Department of Agriculture. Regression estimation was used because of the large nonresponse in the
survey. The regression weights are generalized least squares weights modified so that all weights are positive and
so that large weights are smaller than the least squares weights. It is demonstrated that the regression estimator
has the potential for large reductions in mean square error relative to the simple direct estimator in the presence

of nonresponse.
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1. INTRODUCTION

In many sampling situations, the population means of
auxiliary variables are known, but the particular values of
the variables for individual elements are not used in the
sample selection. Although the information is not used in
the sampling design, it may be highly desirable to incor-
porate the information about population means into the
estimation procedure. Common estimation procedures
utilizing auxiliary information are ratio estimation, post-
stratification, regression estimation, and raking. Regression
estimation is the most general procedure in that the regression
method can handle multiple auxiliary variables, continuous
auxiliary variables, and discrete auxiliary variables. Post-
stratification can be considered a special case of regression
estimation in which the regression variables are indicator
variables for the post strata. The raking procedure, also
known as iterative proportional fitting, is restricted to
auxiliary information in the form of discrete categories.
Deming and Stephan (1940), Stephan (1942), El-Badry and
Stephan (19595), Ireland and Kulblack (1968), Darroch and
Ratcliff (1972), Brackstone and Rao (1979), and Oh and
Scheuren (1987) are references on raking.

Early applications of regression estimation are Watson
(1937), Cochran (1942) and Jessen (1942). Cochran (1977,
Ch. 7) contains the basic theory. Regression estimation
for survey samples has been discussed by numerous
authors, including Mickey (1959), Fuller (1975), Royall
and Cumberland (1981), Isaki and Fuller (1982), Wright
(1983), Luery (1986), Alexander (1987), Bethlehem and
Keller (1987), Copeland, Pritzmeier, and Hoy (1987),
Lemaitre and Dufour (1987), Siarndal, Swensson and
Wretman (1989), Deville and Sidrndal (1992), Zieschang
(1990), and Rao (1992).

In much of the cited literature, regression estimation
is described as a procedure for reducing variance in prob-
ability samples. In practice, one of the motivations for
regression estimation is the potential for reducing bias
associated with selective nonresponse. See, for example,
Little and Rubin (1987, p. 55) for the special case of
adjustment cells, and Bethlehem (1988) for the generalized
regression estimator.

Nonresponse prompted the use of regression estimation
in our application and we discuss regression estimation in
the response adjustment context in Section 3. The standard
regression estimator and the modified procedure that
produces positive weights are introduced in Section 2.
Application of the regression weighting procedure to the
Nationwide Food Consumption Survey is described in
Section 4.

2. REGRESSION ESTIMATOR

To introduce the regression estimator used in our study,
assume that a sample containing » units has been selected
and that the probability of selecting unit / is 7;. For our
purposes, it is sufficient for =, to be proportional to the
selection probabilities. The sample might be a two-stage
stratified sample, and the unit can be either the primary
sampling unit or the observation unit. In our application,
the unit is the observation unit. Assume that a k-dimensional
vector of population means, denoted by X = (X, X,
..., X) is known, that the vector (;, X;1, Xj2, - - ., Xix)
is observed for every unit in the sample and that an esti-
mator of the mean of yis desired. We assume that the first
element of x; is one for all i. Hence, the first element of X
is also one. The vector x; = (x;1, Xj2, . . ., Xj) iS sometimes
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called the vector of control variables. A regression esti-
mator of the mean of y is

v, = X8, 2.1

where
n _q n
B = < Z X/Wi_]xz) E x{wi i (2.2)
i=1 i=1

and we have assumed ¥ x/ ;" 'x; to be nonsingular. This
definition of the regression estimator follows Mickey
(1959) who suggested restricting the term regression
estimator to estimators that are location and scale
invariant. The estimator (2.1) can also be written as

n
v = E w; Vi, (2.3)
i=1

where

n -1
w; = X( E xi’wi_lxi) Xi/7l'i_1, (24)
i=1

and the weights have the property,
n
E wx; = X. (2.5)
i=1

The weights of expression (2.4) are relatively easy to
compute, and once computed, can be used for the esti-
mation of any y-variable. If the vector x; is replaced by
the vector

(1,z;)) = (Lxjp — Xp,xj3 — Xa, ooy Xk -X0), (2.6

the estimator can be written in the form

V=5 t+ (Z_z_‘rr)Bz:)_)w—er’ 2.7

where Z = 0is the population mean of z;, Z, = X, — X,

E 7 (Vi zi)

=1

()77rsz1r) = ( E 7ri_1>
i=1

1 n
and
62 = [ E (Zj - zw)lwi—l(zj - z_w):|
j=1

h

o =1
E (zj — Z) 'm0 ;.
j=1

In the form (2.7), ¥, is the intercept in the regression of
yon z. Thus, the theory given by Fuller (1975) for regres-
sion coefficients is applicable to the regression estimator
of the mean. If the population total of units is known and
denoted by N, the estimated population total is Ny,.

By defining a sequence of populations and samples, it
is possible to show that the estimator (2.1) is a consistent
estimator of the mean of y. See, for example, Fuller (1975).
The estimator of the variance of the regression estimator
is a function of the joint probabilities. Consider a stratified
two-stage sample and replace our single subscript i with
the triple ¢j¢. Then, omitting the finite correction term, a
variance estimator is

L
P ==k n Y (=D
=1

g
Y (dy —d)? 28)

j=1
where

my; X
dy = E Wyie (Voje — Xgie B

t=1

n, is the number of sample primary sampling units in
stratum ¢, my; is the number of sample elements in primary
sampling unit j of stratum £, 3 is the vector of coefficients
defined in (2.2), 7 is the total number of elements in the
sample, and wy;, is the weight for element ¢ in primary
sampling unit j of stratum /. The factor n — kis used by
analogy to the divisor for the unbiased estimator of the
error variance in ordinary regression. When the vector of
control variables is coded as in (2.6), the estimator (2.8)
is the estimated variance of the first element of B, the
estimated intercept. The estimator (2.8) was suggested in
Hidiroglou, Fuller and Hickman (1976) and the consistency
of the estimator was established by Fuller (1975). Also see
Sirndal, Swensson and Wretman (1989).

The estimators, constructed with weights (2.4), have
good large sample properties. However, they may have
undesirable behavior in small samples. Because the weights
are linear functions of x;, it is possible for some of the
weights to be negative. Negative weights make it possible
for estimates of positive parameters to be negative. Early
research on methods of constructing nonnegative regres-
sion weights was conducted by Husain (1969). Huang
(1978) designed a computer program to produce non-
negative regression weights. Huang and Fuller (1978)
described the weight generation procedure and showed
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that the large sample distribution of the modified estimator
is the same as that of the ordinary regression estimator.
Also see Goebel (1976).

The computer algorithm of Huang (1978) is an iterative
procedure based upon the ideas of generalized least
squares. The goal of the Huang algorithm is a set of
weights w;, i = 1,2, ..., n, satisfying (2.5) that do not
differ greatly from the initial weights, where difference is
a function of the initial weight. The Huang algorithm
attempts to compute weights w; satisfying

(1 — M) max wynr;' < (1 + M) min wim !,

l<i<n l=<i<n

where the parameter M, 0 < M = 1, is specified by the
user and is generally chosen in the interval [0.8, 1.0]. If
the first round regression weights defined by (2.4) do not
satisfy the requirements, a second round of regression
weights is computed. The second round weights are
weighted regression weights in which a control factor is
assigned to each observation. Small control factors are
assigned to observations with large or small first round
weights. Relatively large control factors are assigned to
observations with first round weights close to «;”!. The
second round regression weights are checked and if they
fail to satisfy the criteria, the control factors are modified,
and so on. The algorithm is given in the Appendix.

The control weighting used in the Huang algorithm has
much in common with bounded-influence and robust
regression methods. That is, in the final estimator, the
contribution to the estimation of the slope vector is reduced
for observations that are far from the mean. See Hampel
(1978), Krasker (1980), and Mallows (1983). Recent
research on this type of estimator for survey samples is that
of Deville and Sdrndal (1992), Akkerboom, Sikkel, and
van Herk (1991), Hulliger (1993) and Singh (1993).

It is not always possible to construct weights meeting
the criteria and also satisfying (2.5). For example, if all
of the observations on x;, exceed the mean, there is no set
of positive weights summing to one that also satisfy
Y /-1 x», w, = X,. Therefore, the weight generation
program will terminate if weights meeting the specified
criteria cannot be constructed after a specified number
of iterations.

In some situations it is desirable to restrict the weights
to the nonnegative integers. This is true when estimates of
totals are being constructed and the population contains
well defined units, such as people. Nonnegative integer
weights then provide more comfortable estimates, in that
the estimates are physically attainable. Integer weights can
be constructed so that no rounding is necessary when
building tables. With such integer weights, all multiple way
tables will automatically be internally consistent.

The Huang program contains an option to round the
real weights to integer weights in a manner that maintains
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the sum of the weights. After rounding, the equalities (2.5)
will generally no longer hold exactly. We have found that
by iterating the Huang algorithm using the first-round integer
weights as initial weights, integer weights can be constructed
such that there is a very modest deviation from equality
for expression (2.5). Cox (1987), Cox and Ernst (1982),
and Fagan, Greenberg and Hemmig (1988) discuss rounding.

3. REGRESSION ESTIMATION WITH
NONRESPONSE

The early theoretical developments for regression esti-
mation assumed the sample to be a probability sample
from the population. However, it has long been recognized
that regression estimation can be used to reduce the bias
that arises from imperfections in the data collection pro-
cedure. The most obvious of these imperfections is
nonresponse. In all large samples of human subjects, some
of the subjects fail to provide information. If the non-
respondents differ from the respondents, direct estimates
constructed from the respondents will be biased. Given
auxiliary information, regression estimation provides a
method or reducing the bias. The degree to which the bias
is reduced depends upon the relationship between the
control variables, the variables of interest, and the response
probabilities. See Little and Rubin (1987) for a general
discussion of these issues.

Let 7;* denote the inclusion probability equal to the
product of «; and the conditional probability of observing
the unit given that the unit is selected. Then

n N
E{ E X/ x| EN} = E x/w X (3.1)
i=1
and

Tlmys o (3.2)

I
™=
Rl

A

n
E{ E xim | EN}
i=1

where the expectations are conditional on the given finite
population £y, and # is the realized sample size. In the
case of nonresponse, the ratio p; = ; ;! is the response
probability for individual i. Therefore, under conditions
such as those used by Fuller (1975),

plim(3 — v) = 0, (3.3)

n —co

N—ox

where § is defined in (2.2) and

N -1 N
’ —1 * ’ —1 %
Y = ( E X{ lfixi) E x{ 7 ;. (3.9
i=1 i=1
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Then
Y=Xy + 4, (3.5)

where 4 = N~' Y ¥ ,a; and a; = y; — x;v. Thus, the
regression estimator (2.1) will be a consistent estimator of
Yif plimy— 00 A = 0. The probability limit of A will be
zero if the finite population is a random sample from an
infinite population in which the linear model

yi=x;8+e, Elg} =0

holds for all i.

The mean A is zero when 7; = =; for all i and an ele-
ment of x; is one for all i because then

N . N
y=8= ( E xi'xi> E X/ yi (3.6)

i=1 i=1

and YN, (y; — x;8) = 0. A sufficient condition for A
to be zero is the existence of a row vector ¢ such that

ex! = a7 m = p (3.7)
fori = 1,2, ..., N. Thus, if the ratio of nominal prob-
abilities to true probabilities is a linear function of the
control variables, the regression estimator is a consistent
estimator of the mean of y, where the limit is for sequences
as defined in Fuller (1975). One way in which (3.7) can be
satisfied is for the elements of x; to be dummy variables
that define subgroups and for the response probabilities
to be constant in each subgroup. This situation is sometimes
described by saying that elements are missing at random
in each subgroup. We take the assumptionthat 4 = Oas
our working assumption in the empirical analysis.

In any regression problem, it is impossible to use the
sample to verify some of the assumptions. For example, in
ordinary least squares regression, the residuals & = y; — x; B
are uncorrelated with x; and, hence, the residuals cannot
be used to check the assumption that the true errors are
uncorrelated with x. Thus, in a survey with nonresponse,
one searches for control variables that are correlated with
yand (or) that one believes are correlated with the response
probabilities. But one cannot guarantee that all bias has
been removed by regression estimation based on a partic-
ular set of control variables.

In practice, one can often identify x-variables that are
correlated with the probability of response and (or) corre-
lated with the y-variables. For example, in the 1987-1988
Nationwide Food Consumption Survey, the response rate
was low among high-income households. Therefore, use
of variables for household income in a regression
estimator is expected to reduce the bias in the estimated
mean for characteristics that are correlated with income.

The error in 3 as an estimator of v can be approximated
by

n
B - v = G_.IT_I E x,»'7r,~_la,»,

i=1

where ¢; is defined in (3.5),

N
T = E ‘Il'i_l;l(','
i=1
and

N
G = T'_1 E xi/7l',‘_17>;'ix,'.

i=1

Under reasonable assumptions

and

n
G = T_l E x,~'1r,~_1x,-

i=1

are consistent estimators of 7and G. Thus, the variance
of the regression estimator can be estimated by estimating
the variance of ¥ 7_;x/ 7, 'a; If we assume that the
conditional probabilities of response in one primary
sampling unit are independent of those in all other primary
sampling units and that at least one observation unit is
observed in each selected primary sampling unit, then (2.8)
remains an appropriate estimator of the variance of the
regression estimated mean of y.

The estimator of variance (2.8) also remains appropriate
if the regression weights are constructed by a procedure
other than (2.4). For example, let the weights be defined by

n -1
Wei = X[ E xi'Wi_lgiX,] Xi'Wi_lgi,
i=1
where the g; are functions of the x;. Assume
plimB, = v,,
where

n -1 =n
By = [ E Xi'ﬂ'igixi] E X/ m gy

i=1 i=1

Also assume

N
gl_ir;lN‘l Y i = xivg) = 0.

i=1

Then expression (2.8) with wy,; replacing wy;, is a consis-
tent estimator of the variance of the estimator. The
estimator (2.8) will be used in our empirical analyses.
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Formula (2.8) identifies the two effects of regression
estimation on the variance of an estimated mean. The
correlation effect reduces the variance of the estimated
mean while the increase in the sum of squares of the
weights increases the variance of the estimated mean. To
understand these effects, consider a simple random sample.
If the y variable is correlated with x, the correlation tends
toreduce the variance of the regression estimator relative
to that of the simple estimator because

E{((yi — xi8)%} = E{ly; — EOn1?).

If the sample means of the control variables differ from
the population means, then

where n ~!is the sum of squares of the simple weights for
a simple random sample.

When comparing the variance of the sample mean with
the variance of the regression estimator, one should not
forget that one of the reasons for using regression esti-
mation in samples with nonresponse is to produce an
estimator with less bias than that of the direct estimator.
Thus, in the next section we compare an estimator of the
mean square error of the simple estimator to an estimator
of the variance of the regression estimator.

4. APPLICATION TO THE NATIONWIDE
FOOD CONSUMPTION SURVEY

The 1987-1988 Nationwide Food Consumption Survey
was conducted by the Human Nutrition Information
Service of the U.S. Department of Agriculture. The orig-
inal sample was a self-weighting stratified sample of area
primary sampling units within the 48 conterminous states.
Primary sampling units were divided into secondary units
called area segments. Households within the sample
segments were contacted by personal interview. The field
operation was conducted during the period April 1987
through August 1988 by a contractor under contract to the
Human Nutrition Information Service.

Approximately 37% of the housing units identified as
occupied provided complete household food use informa-
tion. The realized household sample contains 4,495 house-
holds. Because of the low response rate, the Human
Nutrition Information Service decided to use regression
weighting in the estimation. Population totals for all
characteristics except urbanization were estimated by the
Human Nutrition Information Service from the March
1987 Current Population Survey. See Bureau of the Census
(1987). The population totals for urbanization classes
were furnished by the contractor. In our analysis, we treat
the estimated population totals as if they were known
population totals.
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Table 1
Sample and population characteristics of households

Household Household

Characteristic Category Sample Sample P(l))pulatlon
ercent
Frequency Percent
Season Spring 1,828 40.7 25.0
Summer 678 15.1 25.0
Fall 717 16.0 25.0
Winter 1,272 283 25.0
Region Northeast 905 20.1 21.2
Midwest 1,172 26.1 24.7
South 1,567 34.9 34.4
West 851 18.9 19.6
Urbanization Central Cities 1,064 23.7 31.2
Suburban 2,122 47.2 46.0
Nonmetro 1,309 29.1 22.9
Household Income < 131% 1,041 23.2 20.0
as % of Poverty 131-300% 1,564 34.8 322
301-500% 1,108 24.6 25.9
> 500% 782 17.4 21.8
Household Food Yes 314 7.0 7.4
Stamps No 4,181 93.0 92.6
Ownership of Yes 2,998 66.7 64.1
Domicile No 1,497 333 35.9
Race of Household Black 519 11.5 11.1
Head Nonblack 3,976 88.5 88.9
Age of Household < 25 338 7.5 7.9
Head 25-39 1,588 35.3 36.1
40-59 1,369 30.5 30.5
60-69 660 14.7 13.0
70+ 540 12.0 12.6
Household Head Both Male and 3,057 68.0 60.8
Status Female
Female Only 1,044 232 26.0
Male Only 394 8.8 13.2
Female Head Yes 1,792 39.9 41.5
Worked No 2,703 60.1 58.5
Exactly One Adult Yes 1,211 26.9 29.7
in Household No 3,284 73.1 70.3
Exactly Two Adults Yes 2,616 58.2 54.2
in Household No 1,879 41.8 45.8
Presence of Child Yes 1,009 22.4 20.1
< 7 Years Old No 3,486 77.6 79.9
Presence of Child Yes 1,309 29.1 26.5
7-17 Years Old No 3,186 70.9 73.5
Household Size (Mean) 2.731 2.642
Household Size, (Mean) 9.546 9.125
Squared

Characteristics of the population and of the household
sample are given in Table 1. The original sample was
unbalanced with respect to time of interview with nearly
41% of the interviews in the spring quarter and about 16%
of the interviews in each of the summer and fall quarters.
Interviews for the spring and summer quarters were done
in both 1987 and 1988.

The sample was also unbalanced with respect to urban-
ization. There was a lower fraction of central city house-
holds in the sample than in the population (24% versus
31%), and a higher fraction of nonmetropolitan households
in the sample than in the population (29% versus 23%).
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The fraction of high income households was smaller in
the sample than in the population. The sample contained
a higher fraction of households with both a male and
female head than the population (68% versus 61%). A
higher fraction of the sample than of the population
consisted of households with children. The sample was
only mildly unbalanced with respect to several other socio-
demographic characteristics.

The characteristics listed in Table I are believed by the
staff of the Human Nutrition Information Service to be
related to food consumption behavior. Therefore, variables
based on those characteristics were used in the regression
weighting procedure. To implement the weight generation
program, each of the categorical variables of Table 1 was
converted to a set of indicator variables. For example,
three variables were created for the characteristic, house-
hold income as a percent of poverty. These were

Z, = 1 if income <131% for ¢-th household
= 0 otherwise,

1

0

if income is 131-300% for z-th household
otherwise,

Z;; = 1 if income is 301-500% for ¢-th household
= 0 otherwise.

Using this procedure, 25 indicator variables were created.
In addition, household size and the square of household
size were used as continuous variables.

The twenty-seven variables were used to generate
regression weights using Huang’s program. The parameter
M of the weight generation program was set equal to 0.9
in the computation. The weights were rounded to integers,
where each integer weight is a weight in thousands. The
sum of the weights is 88,942, which is the number of
households in the population in thousands. The average
weight is 19.787, the smallest weight is 6, and the largest
weight is 47. Thus, the largest weight is 2.38 times the
average weight. The sum of squares of the weights is
2,317,930. The average weight squared and multiplied by
the sample size is 1,759,884. Thus, if a variable has zero
multiple correlation with the 27 variables, the variance of
an estimate computed with the weights will be about 1.32
times the variance of the simple unweighted estimator.

Figure 1 shows the regression weights computed by
the Huang algorithm plotted against the ordinary least
squares weights. Because there are 4,495 households,
many points are hidden. Both weights are standardized by
dividing by the average weight. Thus, the average for
weights coded in this manner is one. Because there are
27 control variables used in the construction, the Huang
weights tend to form a swarm of points about an S-shaped
function of the original weights. If there were only one
control variable, the points would fall on an S-shaped
curve. The original weights for observations to the left of
Zero were negative.

Final

]

Figure 1. Plot of final weights against the ordinary least squares
weights, both expressed relative to the average weight.

To compare estimates constructed with weights to
unweighted estimates, we use the variables

Y; = adjusted total number of meals away from home
(meals away),

Y, = total money value of food used at home (home
food),

Y; = household size in 21-meal-equivalent persons (meal
persons),

Y, = indicator to identify housekeeping households
(housekeeping).

The household size in 21-meal-equivalent persons is the
total adjusted meals eaten from household food supplies
in the past 7 days divided by 21. ‘“Meal persons’’ is the sum
of two terms. The first term is the sum of the proportions
of meals eaten at home in the interview week by each
household member. The second term is the number of
meals served to guests, boarders, and employees during
the interview week, divided by 21. In other words:

meal persons for = E (hj + az) "'hy + (21) 'b;,
J-th household i

where h; = meals eaten at home by the i-th individual in
the j-th household during the interview week, a; = meals
eaten away from home by the i-th individual in the j-th
household during the interview week, b, = number of
meals eaten by nonhousehold members in the j-th house-
hold during the interview week.

The adjusted total number of meals bought and eaten
away from home is the sum of the proportions of meals
eaten away from home in the interview week by household
members, multiplied by 21. In the notation used to define
meal persons,
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meals away for = 21 E (hy + ay) _laij'
J-th household i

The total value of food used at home is the expenditures
for purchased food plus the money value of home-produced
food and food received free-of-cost that was used during
the survey week. Expenditures for purchased food were
based on prices reported as paid regardless of the time of
purchase. Sales tax was excluded. Purchased food with
unreported prices, food produced at home, food received
as a gift, and food received instead of pay were valued at
the average price per pound paid for comparable food by
survey households in the same region and season.

A housekeeping household is a household with at least
one person having ten or more adjusted meals from the
household food supply during the seven days before the
interview. Household food-use analyses generally consider
only housekeeping households.

Table 2
Properties of alternative estimators

Un- ) ) Re.la_tive
Variable weighted Weighted Differ-  Efficiency
Mean ence of
Mean .
Regression
Meals away
Housekeeping 7.75 7.93 -0.18 2.52
(0.22) 0.17) (0.09)
Nonhousekeeping 18.31 18.12 0.19 0.92
1.14) (1.19) 0.68)
All 8.27 8.57 -0.30 2.56
(0.22) 0.22) (0.12)
Home food
Housekeeping 61.10 59.56 1.54 3.65
(1.14) (0.98) (0.41)
Nonhousekeeping 25.99 26.39 —0.40 0.73
(1.25) (1.46) (1.00)
All 59.37 57.49 1.88 5.60
(1.12) 0.91) (0.39)
Meal persons
Housekeeping 2.42 2.33 0.09 89.00
(0.03) (0.01) (0.01)
Nonhousekeeping 0.51 0.49 0.02 1.00
(0.03) (0.03) (0.02)
All 2.33 2,22 0.11 129.00
(0.03) (0.01) (0.01)
Housekeeping (%) 95.06 93.77 1.29 5.30
(0.40) (0.58) (0.10)

The means of the variables computed using unweighted
data are given in Table 2 in the column headed, ‘‘Un-
weighted mean”’. Three means are given for meals away,
home food, and meal persons. Two means are computed
for the two subpopulations defined by the housekeeping
variables. The third mean, designated by ““all’’ in the table,
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is the estimated mean for the entire population. The stan-
dard errors of the estimates are given in parentheses below
the estimates. The estimates and standard errors for the
unweighted estimates were computed in PC CARP. See
Fuller et al. (1986). The computations accounted for the
fact that the sample is an area stratified cluster sample.

Because the sample is a two-stage sample, the estimated
variances are larger than the variance of a simple random
sample containing the same number of households. The
ratio of the variance for a sample estimate to the variance
of a simple random sample containing the same number
of individuals is called the design effect. The estimated
design effect is about 2.5 for meals away and meal persons,
is about 4.1 for home food, and is about 1.5 for house-
keeping for the “‘all”” means for the unweighted sample.

The column headed ‘“Weighted mean’’ contains the esti-
mates computed with the regression weights. The standard
errors were computed in PC CARP using formula (2.8)
with the regression weights replacing the 7;~!. The variance
calculation requires computing a regression for every
y-variable. The estimated means for the subpopulations
are ratios of regression estimators. The variances for the
subpopulation means were computed by calculating the
variances of the Taylor deviates for the ratio using formula
(2.8). The standard errors for unweighted and weighted
estimates are similar for meals away and home food. How-
ever, the standard errors for the regression estimate of the
population mean of meal persons is about one third of the
standard error of the unweighted estimate. The standard
error of the regression estimator is smaller because meal
persons is highly correlated with the household size vari-
ables used as controls in the regression procedure.

The estimated squared multiple correlation between the
variables of the table and the 27 control variables is 0.29,
0.44, 0.82, and 0.12 for meals away, home food, meal
persons, and housekeeping, respectively. If the sample
means of the control variables were nearly equal to the popu-
lation means, the standard error of the regression estimate
of meals away would be about (1 — 0.29)” = 0.84 times
the standard error of the unweighted estimate. In fact, the
estimated standard error of the regression is about 0.97
times the standard error of the unweighted estimate. The
difference is due to the fact that ¥, 7_; w? is considerably
bigger than n ~! because the sample is unbalanced on a
number of items. Note that

0.97 = [(0.71)(1.32)] *,

where 0.71 = (1 — 0.29) is one minus the squared corre-
lation and 1.32 = nY 7_, w?. The situation for house-
keeping is more extreme. The correlation is not large, and,
apparently, the large deviations from the regression line
are associated with large weights. The estimated variance
for the regression estimator is about twice the estimated
variance of the unweighted estimator.
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Table 2 also contains the estimated differences between
the unweighted and weighted estimators. The difference
between the unweighted and the weighted estimated total is

n n n
E Nn_lyt - E Wy, = E ("FIN - W)y,

t=1 t=1 t=1

The difference between the estimated means is the differ-
ence between the totals divided by the population size.
To compute the variance of the difference between the
means, we note that the hypothesis of a zero difference is
equivalent to the hypothesis that the correlation between
w, and y, is zero. Therefore, we computed the unweighted
regression of y, on w, and computed the variance of the
regression coefficient under the design using PC CARP.
The standard errors for the difference in Table 2 are such
that the ‘“s-statistic’’ for the hypothesis of zero difference
is equal to the ““z-statistic’’ for the coefficient of w, in the
regression of y, on w,.

For all four characteristics, the difference between the
weighted and unweighted estimators of the population
mean is significant at traditional levels. Thus, under the
assumption that the regression estimators are unbiased,
there are significant biases in the unweighted estimators.

The bias picture is mixed for the estimates of the sub-
population means. The difference between the two esti-
mators is significant for the three means for the house-
keeping subpopulation, which is the population of interest.
The difference is nonsignificant for the three means for
the nonhousekeeping subpopulation. The sample contains
only 222 nonhousekeeping households. Therefore, the
variance of the difference between the weighted and un-
weighted estimates is much larger for the nonhousekeeping
households than for the housekeeping households.

The differences between the two estimates of the popu-
Jation means are a function of the differences between the
two estimates of the subpopulation means and the two
estimates of the fraction of households in the two categories.
This explains why the difference for ‘‘all’’ can be larger
than both the ““housekeeping”” and ‘‘nonhousekeeping”’
differences.

The last column of Table 2 contains the ratio of the
estimated mean square error of the unweighted estimator
to the variance of the regression estimator. The estimated
mean square errors for the unweighted estimators were
computed as

MSE, = V + max{0, (Diff)> — (s.c. diff)?},

where Vis the estimated variance of the unweighted esti-
mate, Diff is the difference between the two estimates from
Table 2, and s.e. diff is the standard error of the difference
from Table 2. The estimated variance V for the unweighted
estimator is variance formula (2.8) with constant wy;,,

and with x,;, 8 replaced by J, . The second term of the
estimated mean square error is the estimated squared bias.
Under the assumption that the regression estimator is
unbiased, the expected value of (Diff)? is the squared bias
plus the variance of the difference. Hence, under the
assumption that the regression estimator is unbiased, the
estimated mean square error of the unweighted estimator
is a consistent estimator. The estimated mean square errors
of the weighted estimators are the variances of the weighted
estimators computed as the squares of the standard errors
of Table 2.

Of the four characteristics for which the population
mean was estimated, the estimated relative efficiency of
the regression estimator to the simple mean ranges from
2.5 to 129. The regression estimator for meals away has
the smallest estimated efficiency. The variances of the two
estimators are similar, but because of the estimated bias,
the regression estimate for meals away is estimated to have
a mean square error that is about 40% of that of the un-
weighted estimate. The mean square error of the regression
estimate for home food is less than 20% of that of the
unweighted estimate, that for meal persons is about 1%
of that of the unweighted estimate, and that for house-
keeping is about 20% that of the unweighted estimator.
In all cases, the squared bias is a very important component
of the estimated mean square error.

Because the unweighted subpopulation estimates for
the nonhousekeeping households showed little bias, the
unweighted estimates are estimated to be somewhat more
efficient than the regression estimates. The nonhouse-
keeping subpopulation is only about 6% of the population
and the deviations from the subpopulation mean show
little correlation with the control variables. On the other
hand, the regression estimates for the housekeeping sub-
population are estimated to be much more efficient than
the unweighted estimates. The relative efficiencies for the
housekeeping subpopulation are close to those of the total
population estimates.

Even after allowing for the fact that the population totals
from the Current Population Survey are not known popula-
tion totals, it is clear that large gains are associated with
regression estimation for the population means. Although
the regression estimator for the means of the small sub-
population is estimated to be less efficient than the un-
weighted estimators, the loss in efficiency is small relative to
the large gains in efficiency estimated for the other variables.
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APPENDIX
WEIGHT GENERATION PROGRAM

In this appendix, we present the regression weight
generation procedure of Huang and Fuller (1978). The
procedure we describe contains the option of specifying
maximum and minimum weights. This option was not part
of the original program. For a discussion of related weight
generation procedures, see Singh (1993).

Suppose that the population means (X, X5, ..., X;)
of the k auxiliary variables (X, X, ..., X)) are known.
Let a sample of n observations be available and let

X“ X12 PN Xlk

Xy Xy oo Xy

X = , (A.1)

Xot Xpp oo X

where X; is the observation on variable j for individual /.

In addition to the array of sample observations and the
populations means, two initial factors v; and g/®, i = 1,
2, ..., n, are required to initiate the computations. The
v; are typically inversely proportional to the probabilities
of selection. The default values for g!® are g/¥ = 1. For
stratified samples or data with unequal variances, the user
may choose other values for g!{%. (See Huang 1978 or
Goebel 1976.) The program input includes the sample size
n, the population size N, the parameter M, the maximum
number of iterations LI, the upper bound of the ratios of
weights to the average weight Uy, and the lower bound
of the ratios of weights to the average weight Lg. It is
required that 0 < Ly < 1 < Up. In our description, we
assume Y _; v; = n. The program normalizes the v; so
that the sum is 7.

The program can be used to construct weights to
estimate means or to estimate totals. The weights for totals
are the weights for the means multiplied by N. For means,
the program attempts to construct weights w; such that

Y w1, X) = (1,X), (A.2)

i=1

LB < nw; < UB’ (A3)

(1 — M) max w;v; = (1 + M) min w;v;, (A.4)

l<i<zn I=i<sn

fori=1,2,...,n.

The program is iterative, where an iteration consists of
computing the generalized least squares weights, where a
control factor 4, is applied to each observation. The 4; is
a product of v; and g;, where g; for iterations after the
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first is a ““bell’’ shaped function of the distance (in a
suitable metric) that the observation is from the population
mean. At each iteration, the weights satisfy (A.2) but may
fail (A.3) or (A.4).

It will not always be possible to construct weights satis-
fying the specified restrictions in the specified number of
iterations. If the sample is such that the restriction cannot
be met, the program outputs the weights of the last itera-
tion. In the single x case, when the criterion cannot be
satisfied, there will be two weights, one for those greater
than the population mean, and one for those less than the
population mean.

To describe the algorithm, let

le = X i )_(j’

y

V = diag(vy, v, ..., V),
J,=(,1,...,1),
A0 — Z'H(O)Z,
G = diag(g(”, ..., &)
and
H® = yG©,
The algorithm consists of iterating three steps.

1. The initial calculation is for « = 0. At iteration «, the
vector of regression weights, denoted by w (@, is

w® = [1 + na{®] 'V(n=U, + u'®)

= (wi?, ., wi (AL

where

u® = GPZANHNX - x) = @Y, ..., u®)’,

n —1 n
% =(2 ) Y v,

i=1 i=1

(A )T is a symmetric generalized inverse of 4,
nia{® = max{J,Vu'®, n="' — 1}, (A.6)

and

AW = Z'HZ.
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2. The weights of Step 1 are checked to see if they satisfy
the criteria.

@) Is | nuf® | = Mforalli?
() Ts

LB = le,'(a) = UB

foralli?

If either (a) or (b) fails for any / and LI iterations
have not been completed, go to Step 3. If (a) and (b)
are satisfied, or if LI iterations have been completed,
the weights are output.

3. The control factors #{*, i = 1,2, ..., n, are modified.
Set

H(a) — H(“_I)G("‘),

where

G = diag(g(®, &5, ..., &),

gl =1 0 <d*® <0.5
=1 — 0.8(d* — 0.5)2 0.5 <d® <1
= 0.8(d{¥)~! di® > 1,

d® = 1.33(Df* V] "'n|uf*"V |,

D{*~Y = min{M,C{¢"} it we D <y

= min{M,C{g™ "} if we D =y,

cle=" = max{| v/ (1 + na{*"V)Lg — 11, 0.1 M},

clel = max{|v,'(1 + na{*~")Up — 1], 0.1 M}.

Go to Step 1 to compute new regression weights.

The constant 1.33 in the definition of d* and the con-
stant of 0.8 in the definition of g{* were chosen to speed
convergence. The control factors gf* are chosen to
downweight observations on the basis of a distance from
the population mean.

The definition of w'® in (A.5) is an alternative way of
writing the vector of generalized least squares weights of
(2.4) when 77! = A,
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