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Estimation of Measurement Bias Using
a Model Prediction Approach

PAUL P. BIEMER and DALE ATKINSON!

ABSTRACT

Methods for estimating response bias in surveys require ‘‘unbiased’’ remeasurements for at least a subsample of
observations. The usual estimator of resporse bias is the difference between the mean of the original observations
and the mean of the unbiased observations. In this article, we explore a number of alternative estimators of response
bias derived from a model prediction approach. The assumed sampling design is a stratified two-phase design
implementing simple random sampling in each phase. We assume that the characteristic, y, is observed for each
unit selected in phase 1 while the true value of the characteristic, u, is obtained for each unit in the subsample selected
at phase 2. We further assume that an auxiliary variable x is known for each unit in the phase 1 sample and that
the population total of x is known. A number of models relating y, 4 and x are assumed which yield alternative
estimators of E(y — p), the response bias. The estimators are evaluated using a bootstrap procedure for estimating
variance, bias, and mean squared error. Our bootstrap procedure is an extension of the Bickel-Freedman single
phase method to the case of a stratified two-phase design. As an illustration, the methodology is applied to data
from the National Agricultural Statistics Service reinterview program. For these data, we show that the usual differ-
ence estimator is outperformed by the model-assisted estimator suggested by Sdrndal, Swensson and Wretman (1991),
thus indicating that improvements over the traditional estimator are possible using the model prediction approach.

KEY WORDS: Reinterview; Repeated measures; Response error; Bootstrap.

1. INTRODUCTION

It is well-known in the survey literature that when
responses are obtained from respondents in sample
surveys, the observed values of measured characteristics
may differ markedly from the true values of the character-
istics. Evidence of these so-called measurement errors in
surveys has been collected in a number of ways. For
example, the recorded response may be checked for accu-
racy against administrative records or legal documents
within which the true (or at least a more accurate) value
of the characteristic is contained. An alternative approach
relies on revised reports from respondents via reinterviews.
In a reinterview, a respondent is recontacted for the pur-
pose of conducting a second interview regarding the same
characteristics measured in the first interview. Rather than
simply repeating the original questions in the interview,
there may be extensive probes designed to elicit more
accurate responses, or the respondent may be instructed
to consult written records for the ‘‘book values’” of the
characteristics. For some reinterview surveys, descrepancies
between the first and second interviews are reconciled with
the respondent until the interviewer is satisfied that a
correct answer has been obtained. Forsman and Schreiner
(1991) provide an overview of the literature for these types
of reinterviews. Other means of checking the accuracy of
survey responses include: (a) comparing the survey

statistics (i.e., means, totals, proportions, efc.) to statistics
from external sources that are more accurate; (b) using
experimental designs to estimate the effects on survey
estimates of interviewers and other survey personnel; and
(c) checking the results within the same survey for internal
consistency.

The focus of the current work is on estimators of
measurement bias from data collected in true value
remeasurement studies, i.e., record check and reinterview
studies, where the objective is to obtain the true value of
the characteristic at, perhaps, a much greater cost per
measurement than that of the original observation.

Because of the high costs typically involved in conduc-
ting reinterview studies, repeated measurements are
usually obtained for only a small fraction of the original
survey sample. While the sample size may be quite ade-
quate for estimating biases at the national and regional
levels, they may not be adequate for estimating the error
associated with small subpopulations or rare survey
characteristics. In this paper, our objective is to consider
estimators of response bias having better mean squared
error properties than the traditional estimators. The basic
idea behind our approach can be described as follows.

In a typical remeasurement study, a random subsample
of the survey respondents is selected and, through some
means, the true values of the characteristics of interest are
ascertained. Let n, denote the number of respondents to
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the first survey and let 7, denote the number selected for
the subsample or evaluation sample. The usual estimator
of response bias is the net difference rate, computed for
the n, respondents in the evaluation sample as

NDR = 7, — iy, (1.1

where 7, is the sample mean of original responses and i,
is the sample mean of the true measurements. A disad-
vantage of the NDR is that it excludes information on
the ny — n, units in the original survey who were not
included in the remeasurement study. Further, the esti-
mator does not incorporate information on auxiliary
variables, x, which may be combined with the informa-
tion on y and p available from the survey to provide a more
precise estimator of response bias.

Given that we have a stratified, two-phase sample
design and resulting data (y, u, x), our objective is to
determine the “‘best’” estimator of measurement bias given
these data. Our basic approach is to identify a model for
the true value, y;, which is a function of the observed
values, y;, i = 1, ..., n;, and any auxiliary information,
x, that may be available for the population. The model is
then used to predict y; for all units in the population for
which y; is unknown. These predictions can then be used
to obtain estimates of the true population mean, total, or
proportion. Thus, estimators of the response bias for these
parameters can be derived from the main survey. Since the
approach provides a prediction equation for y; which is
a function of the observations, estimators of response bias
can be computed for areas having small sample sizes. In
this case, the prediction equation for y; may be augmented
by other respondent variables such as demographic charac-
teristics, type of unit, unit size, geographic characteristics,
and so on.

The basic estimation and evaluation theory for a predic-
tion approach to the estimation of response bias is presented
in the following sections. Under stratified random
sampling, estimators of means and totals, their variances
and their mean squared errors are provided. Results from
application to National Agricultural Statistics Service
(NASS) data are also presented.

2. METHODOLOGY FOR ESTIMATION
AND EVALUATION

2.1 The Measurement Error Model

To fix the ideas, we shall consider the case of simple
random sampling without replacement (SRSWOR) from
asingle population. Generalizations to stratified random
sampling are straightforward and will be considered
subsequently.

Let U = {1, 2, ..., N} denote the label set for the
populationand let S, = {1, 2, ..., n;}, without loss of
generality, denote the label set for the first phase
SRSWOR sample of »n; units from U.

For y,, i€S;, assume the model
Yi="v * ymi + €, 2.1

where y; is the true value of the measured characteristic,
vo and v are constants, and ¢; is an independent error term
having zero expectation and conditional variance, ¢?;.

Since the focus of our investigation is on the bias
associated with the measurements y;, consider the expec-
tation of y;. Let E(y,| i) denote the conditional expecta-
tion of y; over the distribution of the ¢; holding the unit
i fixed and let E(y;) = E;[E(y;] /)] denote the expecta-
tion of E(y; | i) over the sampling distribution. Then, for
a given unit, i,

Eil i) = v + v (2.2)

and, hence, the unconditional expectation is
E(y) =y + ¥M, 2.3)
where M = Y, u;/N. Thus, the measurement bias is
B=E(y —w) =7+ (y - HM. (2.4)

The parameter, v, is a constant bias term that does
not depend upon the magnitude of A7. Note that this
definition of v, is consistent with the usual definition of
measurement bias obtained from the simple model

Yi=m + €, (2.5)

with e; ~ (7o, 0%). (See, for example, Biemer and Stokes
1991.)

Consider the estimation of B. Assume that a subsample
of size n, of the original n; sample units is selected and
the true value, u;, is measured for these 7, units. The true
value may be ascertained either by a reinterview, a record
check, interviewer observation, or some other means. Let
S, € §; denote this so-called second phase sample. The
usual estimator of the measurement bias is the NDR
defined in (1.1). If the assumption that ‘‘the true value,
u;, is observed in phase 2, for all i€S,”’ is satisfied, then
the NDR is an unbiased estimator of B. It may further be
shown that the variance of the NDR is

(COHEE
ny/j n, SySM
ny 52
+ <1 - —)—y(l - r)2}, (2.6)
n /) n
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whc?re sﬁ = Yjes, (1 — i) %/ (ny — 1) with analogous
definitions for s2 and s, and r = s,,/s2.

The NDR may be suboptimal in a number of situations
which occur with some frequency. To see this, consider
estimators of B of the form

bga = Jg — RRa> 2.7
where J, = Tjes, ¥i/Ng 8 = 1, 2,
Bra = B + a(yy — ¥2) (2.8)

and g, = Y, #j/n, for a a constant given the sub-
sample, S;. It can be shown that the value of a that
minimizes Var (by,) is

a=r for g =1,
or 2.9
a=r—1 for g=2.

Thus, for g = 1 or 2, the ““optimal’’ choice of b, is

bopt = 71 = (2 + r(7y — 7)1,  (2.10)
which differs from the NDR by the term (r — 1) (F; — 7,).
Since, in general, y; # ¥,, NDR is optimal only if r = 1.
It can be shown that this corresponds to the case where
v in 2.1)is 1.

In this paper we shall explore alternatives to the NDR
which incorporate information on y for units in the set
S, ~ S, as well as information on some auxilliary
variable, x. To illustrate the concepts, we shall restrict
ourselves to ‘‘no-intercept’’ linear models initially, i.e.,
models for which yq = 0in (2.1). This important class of
models includes the difference estimator as well as ratio
estimators.

2.2 Model Prediction Approaches To Estimation

Model prediction approaches to the estimation of
population parameters in finite population sampling are
well-documented in the literature. Cochran (1977) and
other authors have demonstrated the model-based foun-
dations of the ubiquitous ratio estimator. There is also
considerable literature on the choice between using weights
that are derived from explicit model assumptions in
estimation for complex surveys or eliminating the sample
weights. Proponents of so-called model-based estimation
recommend against the use of weights in parameter estima-
tion (see, for example, Royall and Herson 1973; and
Royall and Cumberland 1981). They contend that the pro-
babilities of selection in finite population sampling,
whether equal or unequal, are irrelevant once the sample
is produced. The reliability criteria used by model-based
samples are derived from the model distributional assump-
tions rather than sampling distributions. If an appropriate
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model is chosen to describe the relationship between the
response variable and other measured survey variables,
“model-unbiased”’ estimators of the population parameters
may be obtained which have greater reliability than esti-
mators which incorporate weights.

On the other side of the controversy are the design-
based samplers. Instead of the model-based assumptions,
design-based samplers assume that an estimator from a
survey is a single realization from a large population of
potential realizations of the estimator, where each poten-
tial realization depends upon the selected sample. The dis-
tribution of the values of the estimator when all possible
samples that may be selected by the sampling scheme are
considered is referred to as the sampling distribution of
the estimator. Criteria for evaluating estimators under the
design-based approach then consider the properties of the
sampling distributions of the estimators. Under this
approach, weighting of the estimators is required to achieve
unbiasedness if unequal probability sampling is used.

Although the estimators of B considered here represent
all three classes of estimators, the objective of this paper
is not necessarily to compare design-based, model-assisted,
and model-based estimators. Rather, we first seek to
develop a systematic approach for evaluating alternative
estimators for a given two-phase sample design. The
problem considered is the following: Given a two-phase
sample design and estimators of B = NB denoted by B,
B, ..., Ep, how does an analyst identify which estimator
minimizes the mean squared error? A second objective of
the article is to specify a number of alternative estimators,
and apply a systematic approach for evaluating the
estimators. As an illustration, the methodology will be
applied to data from the National Agricultural Statistics
Service’s December 1990 Agricultural Survey.

2.3 The Estimators Considered in Our Study

Extending the previously developed notation to stratified,
two-phase designs, let N, denote the size of the Ath
stratum, for 4 = 1, ..., L. A two-phase sample is selected
in each stratum using simple random sampling at each
phase. Let n;, and n,, < n;, denote the phase 1 and
phase 2 sample sizes, respectively, in stratum A. Let Sy,
and S,, € S, denote the label sets for the phase 1 and
phase 2 samples, respectively, in stratum /. Assume the
following data are either observed or otherwise known:

outcome variables: y; V¥ i€Sy,
true values: w; vV I€Sy,
auxilliary variables: Xx; v i€Sy,.

Further assume that X, = Yy, X; is known for
h =1, ..., L where U, is the label set for the Ath stratum.
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2.3.1 Weighted Estimators of M and B

As a matter of convenience, we shall consider the
estimation of the bias for an estimator of a population
total denoted by M. The usual estimator of M = NM is
the unbiased stratified estimator given by

]%Sf = E Nh:aZIn (211)
h

where fip;, = Yies,, #ti/Nay- The corresponding estimator
of B = NB is N times the NDR defined in (1.1). For
stratified samples, it is

EZSI = YZSI - jﬂzsr’ (2.12)
where Yy, = Y4 NypJay and jy, = Liesy, Vil Map. Note
that (2.12) does not incorporate the information on y for
units with labels i€S;, ~ S,,. An alternative estimator
that uses all the data on y is

BlZsr = Yls! - AZZS[’ (2.13)

where Y1, = Y,Nuy, and py, = Yiesy, Vil Mine

A number of model-assisted estimators can be specified
for two-phase stratified designs. These may take the form
of either separate or combined estimators (see, for
example, Cochran 1977, pp. 327-330). Further, the ratio
adjustments may be applied to either phase 1 or phase 2
stratum-level estimators. Because stratum sample sizes are
typically small in two-phase samples, only combined
estimators shall be considered here.

As the emphasis in this paper is on the development of
the methodology for model-based estimates of measurement
bias and their evaluation, we shall consider a simple, special
case of the model (2.1); viz., vo = 0 or the no-intercept
model. However, generalizations of the no-intercept meth-
odology to multivariate intercept models do not afford any
difficulties and will be considered in a subsequent paper.
Thus, letting v, = 0in (2.1) we have

Yi = v t €, (2.14)
where v is an unknown constant and we assume ¢; ~
(0,07 ;). The least squares estimator of yis 4 = P/ fing,

where 75, = Y5,,/N and jip,, = Mh,,/N. Thus, a model-
assisted estimator of y; is y;/¥ = jioeVi/ P2 and of M is

Myur = TS‘[ Yig-
Yot

(2.15)

Using this estimator of M, two estimators of B cor-
responding to (2.12) and (2.13) are

Bogr = Yoy — Mo (2.16)

and

Bigr = Yig — Mgp. (2.17)

A third estimator of B can be obtained via the model

Yi = Bxi + e, (2.18)
where § is a constant and ¢; ~ (0,02x;). This leads to a
ratio estimator of Y,

sty (2.19)

Thus, the corresponding estimator of B is

Bogr = Yeur — Mg (2.20)

Finally, Sarndal, Swensson and Wretman (1992, p. 360)
suggest a general estimator of M in two-phase sampling.
Applying their equation 9.7.2 to the model in (2.14) under
stratified sampling yields

Mssy = Mg + léz’{t (X = Xy
2st

Note that this estimator is simply (2.15) with the addition
of the unbiased estimator of zero. The resulting estimator
may have smaller variance than M, if this term is
negatively correlated with M. Likewise, their estimator
of Y reduces to Y, defined in (2.19). Thus the corre-
sponding estimator of B is

2.21)

Bssw = Yeur — Mssw, (2.22)

which is identical to Bsgyr = B,y plus the second term
of the right hand side of (2.21).

2.3.2 Unweighted Estimators of M and B
Rewrite M as
M=Y w+ Y wm+ Y w
€Sy €S ~Sy ieU~58
(2.23)
= Mgy + My + My,

say, where S, = Us_, Sens & = 1, 2. The strategy for
unweighted, model-based estimation is to replace u; in
M >y and M _|) by a prediction, f;, obtained from a
model.

Using the model in (2.14), an estimator of y; is
Bi = Yily,

where now ¥ = y,/fi,. Thus, an estimator of M 5, is
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My = . 2 Ji
i€S1~ S 2.24)

= — (mJy, — my,),

where J; = Yies, Vil s o = Lies, il Mo and gy = Ty Ny,
for g = 1, 2. Further, using the model
pi = 0x; + &, 2.25)

where 6 is a constant and &; ~ (0, ofxi), we obtain

- i
M,y =)_é Xy-s,» (2.26)

where Xy, = Yiev~s, Xi- Thus, a model based estimator
of M is

My = Mgy + M) + M-y,

(2.27)
= Mg, + M-y,
where M1y = ny i27,/75.
Likewise, Y can be rewritten as
Y = E yi + E Vi
i€S] ieU~8y
(2.28)
=Yy + Y-y
and we wish to predict y; in ¥, _,,. Using the model in
(2.18) a model-based estimator of Y, _, is
5 Ji
Yoy = 7 Xu-s,
X1
and, thus, an estimator of Y is
YM = Y(l) + ?(~|). (229)
Thus, B is estimated as

Versions of Bz, Biaurs Bisr and By, which are more
robust to model outliers may also be constructed. The
corresponding estimators, denoted by Bygr, Biaur: Basr
and By, respectively, may be formed by eliminating those
data points which deviate substantially from the model
predictions and computing the model-based or model-
assisted estimators using the remaining data. To illustrate,
consider the estimator M in (2.15). For this estimator,
let
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Oni — % wwi)?
(May — DSpegn = ), —————,  (2.31)

S0 Mpi
denote the sum of squares of residuals for the model (2.14).
Then, in calculating the estimator of v, only those units
in /€S, where Sy, = {i€S,1 | Yin — Fpin| < 3Sresniini}
are used. Denoting this estimator of v as 7, the estimator
of Mis Moy = Yig/% wWhere ¥ = Jo/ fin and fips, and
Js are the stratified means of y; and y; for ieS,,. The
other robust model prediction estimators may be computed
analogously.

Many other unweighted, model-based estimators may
be explored in the context of our two-phase design. For
example, an intercept term may be added to models (2.14),
(2.18), and (2.25). Further, slope and intercept parameters
may be specified separately for each stratum or combina-
tion of strata.

2.4 [Estimation of Mean Squared Errors Using Bootstrap
Estimators

Although it is possible, under the appropriate design-
based or model-based assumptions, to derive closed form
analytical estimates of the variance of the estimators we
are considering in this study, we have elected instead to
use a computer-intensive resampling method. First, we
seek a method which is easy to apply since there are poten-
tially many estimators which will be considered in our
study. Secondly, it is important to evaluate each estimator
using the same criteria and a consistent method of variance
estimation is essential to achieving this objective. Thus,
it is essential that we employ a variance estimation method
which can be applied to estimators of any complexity,
under assumptions which are consistent and which do not
rely upon any model assumptions. It is well-known that
model-based variance estimation approaches are quite sen-
sitive to model failure (see, for example, Royall and
Herson 1973; Royall and Cumberland 1978; and Hansen,
Madow and Tepping 1983). Royall and Cumberland
(1981) discuss several bias relevant alternatives including
the jackknife variance estimator.

Our approach is similar to that of Royall and Cumber-
land except rather than using a jackknife estimator, we
employ a bootstrap estimator of the variance. For inde-
pendent and identically distributed observations, Efron
and Gong (1983) show that the bootstrap and the jackknife
variance estimators differ by a factor of n/(n — 1) for
samples of size n. Thus, the robustness properties Royall
and Cumberland demonstrate for the jackknife estimator
also hold for the bootstrap estimator.

Other properties of the bootstrap estimator have led us
to choose it above other resampling methods. The jack-
knife and balance repeated replication (BRR) methods are
not easily modified for the two-phase sampling design of
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our study. However, the bootstrap is readily adaptable to
two-phase sampling. Further, Rao and Wu (1988) provide
evidence from a simulation study that the coverage proper-
ties of bootstrap confidence intervals in complex sampling
compare favorably to the jackknife and BRR.

Our general approach extends the method developed
by Bickel and Freedman (1984) for single phase, stratified
sampling, to two-phase stratified sampling. Since the
bootstrap procedure is implemented independently for
each stratum, we shall, for simplicity, describe the method
for the single stratum case.

2.4.1 Estimation of Variance

Extending the bootstrap method to two-phase sampling
is not simply a matter of subsampling the single phase
bootstrap samples. Recall that true values are known only
for the units in S, and, therefore, the bootstrap sampling
scheme must necessarily confine the selection to units in
S,. Therefore, let S; and S, denote the phase 1 and phase 2
samples, respectively, selected from U using SRSWOR.
Let S, _, denote the label set, S; ~ S,. Let & = 6(S;_,,5,)
denote an estimator of © which may be a function of the
observations corresponding to units in both S, and S; 5.
Define N, n;, n, and n; _, as the sizes of sets U, S, S, and
S; -, respectively. Consider how the bootstrap is applied
to obtain estimates of Var(6).

The simplest case is when N/n; is an integer, say k.
First, we form the psuedo-population label set

Ui = Uf{(z) U Ula-2, (2.32)
where U} (,) consists of k copies of the units in S, and
U (1 ~2) consists of k copies of the units in S; _,. We then
perform the following three steps:

1. Draw a SRSWOR of size n, from U}, and denote
this set by S3.

2. Draw a SRSWOR of size n;._, from U} -3 and
denote this set by Sf_,.

3. Compute 67 = 6,(S}_,, S§) which has the same func-
tional form as (S, _,, S,), but is computed for the
ny=n_, + munitsin S§ = S§f_, U §3.

Repeat steps 1 to 3 some large number, Q, times to
obtain 67, ..., 6. Then, an estimator of Var(0) is

Q A * Ay #y 2
R o0 — O
vargss(0) = E (—“*L*—T)—,
g=1 Q N

(2.33)
where 8* =Y 2, 62/0.

Using the methods of Rao and Wu (1988), it can now
be shown that varggs(©) is a consistent estimator of
Var(0).IfN = kn; + r, where 0 < r < ny, the procedure
is modified as follows using the Bickel and Freedman

procedure. First, form the pseudo-population U} as above
consisting of kn, units. In addition, form the pseudo
population Uj = Ug(;.2) U Uj(y, of size (kK + 1)n,
where U~y and Ug(,, consist of & + 1 copies of the
labels in S; _, and S,, respectively. Then, for aQ of the
bootstrap samples, select S} = Sf_, U S5 from U} and for
(1 — «)Q samples, select St from the psuedo-population,

% using the three-step procedure described above, where

() (st

2.4.2 Estimation of Bias and MSE

(2.34)

The bootstrap procedure can also provide an estimate
of estimator bias. The usual bootstrap bias estimator
(see Efron and Gong 1983; Rao and Wu 1988) is
b(6) = 6* — 6 where 6* =¥ ,0;/Q and O is the
estimate computed from the full sample. Note that
é;(q =1, ..., Q) and © have the same functional
form and are based upon the same model assumptions.
Thus b(6) does not reflect the contribution to bias due
to model failure. We propose an alternative estimator of
bias which we conjecture is an improvement over 5(6).

Recall from (2.4) that B = E(y; — u;) where E(-)
denotes expectation over both the measurement error and
sampling error distributions. Thus, B may be rewritten as
B =Y, (Y; — p)/N where Y; = E(y,;| i). Since ¥;
is unknown and unobservable for all ieU, B is also
unknown and unobservable. Therefore, we shall construct
a pseudo population resembling U, denoted by U*, such
that B* = E*(y; — p;) is known, where E*(-) is
expected value with respect to both the measurement error
and the sampling distributions associated with U*.

Let U*= UZL_, Ut where U} consists of k, = N,/ny,
copies of the units in Sy;,. Here we have assumed &, is an
integer, but we will subsequently relax the assumption.
Further, denote by y} the value of the characteristic
for the unit i€ U*. This value is equal to the y; for the
corresponding unit in S;. Thus, the population total of
the y¥is Y* =¥ ;- yF = Y, for ¥y, defined in (2.13).
Analogously, define the true value for unit /€ U* as u} = y;
for ieU* corresponding to j€S,. For j€S, ., u;
is unknown; however, for our pseudo-population we
could generate pseudo-values for the u} such that
M* =Y - u¥ = M,y where M,,, is defined in (2.11).
Thus, for U*, B* = Y, — M>y, = By, defined in (2.13).
As we shall see, it is not necessary to generate the pseudo-
values for p in order to evaluate the bias in the estimators
of B*.

Note that under stratified sampling, U* = Uj, as
defined in Section 2.4. Further, the bootstrap procedure
described in this section is equivalent to repeated sampling
from U* and the alternative estimators él, R ép of B
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may also be considered estimators of B*. Since B* is
known, the bias of © as an estimator of B*is B* = 6 — B*
and the corresponding MSE may be estimated as

MSE = Y (6, - B*)*/Q
q

= vargss(8) + (6* — B*)?, (2.35)

where varBSS(é), éq, and O* are defined in Section 2.4.
It can be easily verified that these results still hold when
k;, is non-integer.

Thus, the bootstrap procedure provides a method for
evaluating the MSE of alternative estimators for
estimating B*. Further, the pseudo-population U* is a
reconstruction of U based upon copies of the values for
the units in S, and S,. Thus, it is reasonable to use B* and
MSE* to evaluate alternative estimators of B.

3. APPLICATION TO THE AGRICULTURAL
SURVEY

3.1 Description of the Survey

The National Agricultural Statistics Service (NASS)
annually conducts a series of surveys which are collectively
referred to as the Agricultural Survey (AS) program. The
purpose of these surveys is to collect data related to specific
agricultural commodities at the state and national levels.
Each December in the years 1988-1990, reinterview studies
designed to assess the measurement bias in the data col-
lected by Computer Assisted Telephone Interviewing
(CATI) were conducted in six states: Indiana, Iowa,
Minnesota, Nebraska, Ohio, and Pennsylvania. The reinter-
view techniques employed in these three studies are very
similar to those used by the U.S. Census Bureau (see, for
example, Forsman and Schreiner 1991). However, unlike
the Census Bureau’s program, the major objective in the
NASS studies is the estimation of measurement bias rather
than interviewer performance evaluation.

As noted above, only AS responding units whose
original interview was conducted by CATI were eligible
for selection into the reinterview sample. The reasons for
this restriction on sampling were primarily cost, timing,
and convenience. However, a large proportion of the AS
is conducted by CATI and, thus, information regarding
AS measurement bias for this group would provide impor-
tant information for the entire AS program.

For the NASS reinterview studies, the interviewing staff
consisted of a mix of field supervisors and experienced
field interviewers. This interviewing staff, which was a
separate corps of interviewers from those used for CATI,
conducted face-to-face reinterviews in a subsample of AS
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units for a subset of AS survey items. To minimize any
problems that respondents may have with recall, the
reinterviews were conducted within 10 days of the original
interview. Differences between the original AS and reinter-
view responses were reconciled to determine the ‘“‘true”’
value. Considerable effort was expended in procedural
development, training, and supervision of the reinterview
process to ensure that the final reconciled response was
completely accurate. For the most part, the wording of the
subset of AS questions asked in the reinterview was iden-
tical to that of the parent survey. The reinterviewers
attempted to contact the most knowledgeable respondent
in order to ensure the accuracy of the reconciled values.
In this report, only the 1990 data are analyzed. Table 1
presents the reinterview sample sizes for this study.

Table 1
Sample Sizes by Survey Item

X y [
U S, S,

Item

All wheat stocks 108,267 8,176 1,157

Corn planted acres 225,269 8,211 1,157
Corn stocks 225,269 7,990 1,115
Cropland acreage 278,045 8,274 1,141
Grain storage capacity 207,460 8,126 1,104
Soybean planted acreage 171,761 8,211 1,156
Soybean stocks 171,761 8,113 1,130
Total land in farm - 276,450 8,309 1,159
Total hog/pig inventory 248,571 8,247 1,142
Winter wheat seedings 108,267 8,211 1,150

3.2 Comparison of the Estimators of M and B

Using the December 1990 Agricultural Survey and its
corresponding reinterview survey data, the estimators
developed in the previous section were compared. Estimates
of standard errors and mean squared errors were computed
using the Bickel-Freedman bootstrap procedure described
in Section 2.4, with Q = 300 bootstrap samples. Table 2
displays the results for six of the estimators: B, the
traditional difference estimator; B,,yg, the weighted ratio
estimator; Bz, the robust (outlier deletion) version of
B,,r; Bssw, the Sdrndal, Swensson and Wretman esti-
mator; I-?M, the unweighted model-based estimator; and
By, the robust (outlier deletion) version of By,.
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3.3 Summary of Results

Table 2 presents a summary of the results from our
study. The first data column is the known value of
B* = E(y} — u}), the bias parameter for the pseudo-
population, U*. The other data columns contain the values
of the estimators with their standard errors in parentheses,
where s.e. (é) = \fvarBSS(é). The last four rows of the
table correspond, respectively, to:

(a) the number of items (out of 10) for which a 95% con-
fidence interval contains B*;

(b) the average coefficient of variation (C.V.);

(¢) the average square root of MSE (RMSE); and

(d) the average absolute relative bias.

A striking feature of these results is the large disparity
among the six estimators across all commodities; par-
ticularly for All Wheat Stocks. For this commodity, the
range of estimates is — 94.2 to 103.2. Also indicated (by

the I symbol) in Table 2 is whether a 95% confidence
interval, i.e., [é — 2s.e. (é),é + 2s.e. (é)],covers the
parameter B*. The best performer for parameter coverage
is Bgqy which produced confidence intervals that covered
B* for eight out of ten commodities. B,,, was the next
best with six and B,, was third with five. The traditional
ratio estimator and its robust version were the worst per-
formers with only one commodity having a confidence
interval covering B*.

Application of the mean squared error criterion presents
a different picture. Here, B), emerged as the estimator
having the smallest average root MSE. However, Bggy
and B,,, are not much greater. Further, Bgsy was the
estimator having the smallest average absolute relative
bias. Only two commodities were estimated with signifi-
cant biases using this estimator. Thus, it appears from
these results that Bggy is the preferred estimator using
overall performance as the evaluation criterion.

Table 2
Comparison of Estimators with, B*, the Pseudo-Population Value of the Biast
Characteristic B* B, Bor B,.r Boow B, B,
All wheat stocks 42.3 —6.1 103.2 —-94.2 -0.9% 19.2% 10.6%
(12.3) (17.6) (16.5) (24.8) (16.5) (16.7)
Corn planted acreage -1.8 1.1% 11.7 10.1 0.31 —-4.71 -5.0
(1.1) (1.3) (1.1) (1.2) (1.9) (1.5)
Corn stocks —-6.4 —5.4% 2.4 0.2 —6.5% —-7.9% —9.3%
(1.5) (1.6) (1.3) (1.6) 2.4) 2.2)
Cropland acreage 27.0 —19.6 -15.0 7.0 -19.6 -36.8 —12.8
(8.3) (8.3) 3.1) 8.2) (11.0) 4.0)
Grain storage capacity -3.37 1.4% 32.3 29.5 —0.1% —6.9 -6.8
3.7 3.7 (2.6) 3.9 (3.0) 2.5)
Soybean planted acreage -4.4 0.8 13.0 9.9 -0.3 -2.9 -2.7
(0.8) (1.0) 0.9) (1.0 (1.1) (1.0)
Soybean stocks —-0.01 2.8% 21.3 5.0 0.2% —-11.0 —-8.8
(3.1) 2.9) 2.3) 3.5 (3.6) 3.4)
Total land in farm —-20.0 —24.7% —18.8% —2.6 —25.7% —44.5% -21.2
(10.4) (12.5) (7.6) (10.7) (13.4) (5.8)
Total hogs/pigs inventory -0.1 -2.1 34 —0.0% —-2.2% —-2.5% —1.6%
0.9) (1.1) (1.0) (1.1) (1.3) (1.0)
Winter wheat seedings -0.6 —-0.5% 3.8 1.8 —1.2% 1.1 1.1
0.4) (0.6) (0.5) 0.6) 0.4) 0.4)
Number of items where C.I. covers B* 6 1 1 8 5 3
Average C.V. 1.01 .30 11.1 9.5 41 .48
Average RMSE 13.2 22.4 25.2 12.9 14.9 10.8
Average | Relbias | 30.8 220.0 53.4 4.9 113.1 91.3

T Standard errors in parentheses.

1 95% confidence interval covers the pseudo population parameter.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this article, we developed a general methodology for
constructing and evaluating weighted and unweighted
model prediction estimators of measurement bias for
stratified random, two-phase sample designs. The proposed
estimators incorporate information on the observations,
y, from the first phase sample, and an auxilliary variable,
x. Model robust versions of the estimators were also con-
sidered and evaluated. The ultimate goal of model predic-
tion estimation is to identify estimators which make
“‘optimal’’ use of the data (y, u, x). The general estima-
tion and evaluation methodology for achieving this goal
was illustrated for the ordinary regression model with no
intercept. However, the methodology can be easily extended
to multivariate, intercept models.

Our proposed evaluation criteria are based upon esti-
mates of bias, variance, and mean squared error computed
using a bootstrap resampling methodology. The method
of Bickel and Freedman was extended to two-phase
sampling for this purpose. It was shown both analytically
and empirically that the usual NDR estimator is not
optimal under the model prediction approach to estimating
measurement bias. Our analyses found that, for the six
estimators we considered, the estimator derived from the
work of Sdrndal et al. (1992), was the best overall
estimator by the bootstap evaluation criteria.

Incorporating auxiliary information into the estimation
of measurement bias creates a number of practical prob-
lems which may increase the costs and reduce the timeliness
of producing the estimates. First, the auxiliary variable,
x, must be available, at least in aggregate form, for all
socioeconomic and geographic domains for which model
prediction estimates are desired. This could be a large data
management task. Further, the complexity of the variance
estimator using analytical methods increases with the
complexity of the bias estimator. Although simpler, the
bootstrap variance estimation method can be prohibitively
expensive if computer time must be purchased. However,
these difficulities are not insurmountable, especially if a
high-powered microcomputer is available. Further, given
the cost of reinterview surveys for estimating measurement
bias, even moderate increases in precision in the bias
estimators can result in substantial cost savings.

The model prediction approach has the potential for
extracting the maximum information on response bias
from reinterview surveys and thus model prediction
estimators will usually be more efficient than the tradi-
tional net difference estimator. In addition, the model
prediction approach may also offer a means for extra-
polating estimates of bias to areas which were not sampled.
As an example, in the NASS application, the reinterview
sample was drawn only from the CATI areas for reasons
of operational convenience and cost efficiency. However,
by using prediction models which are functions of the
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original responses and other available characteristics, it
may be possible to predict the measurement bias in the
non-CATI survey areas from the local characteristics of
these areas - a type of ‘‘synthetic’’ estimation. Although
this application of model-based estimation was not con-
sidered in this paper, it is a natural extension of the meth-
odology and one which will be evaluated in a subsequent
study.

Also for future research, we intend to incorporate
multivariate, intercept models in the estimation of mea-
surement bias. Since the bootstrap evaluation criteria
developed in this article are general, no changes in the
evaluation methodology are required to handle the addi-
tion of variables in the estimation models. Further, the
model assumptions and the methods for handling outliers
will be refined and evaluated in a subsequent paper.
Finally, we need to explore the effect on estimation of
departures from the model assumptions, particularly the
assumption that the reinterview observation is without
error. As Fuller (1991) has shown, if the reinterview is
fallible but unbiased, the variance of the predicted values
increases but the predictions are still unbiased. Thus,
under these assumptions, one could explore the relative
precision of the alternative estimators of measurement bias
in order to determine the robustness of the model predic-
tion approach.
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