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Robust Joint Modelling of Labour Force
Series of Small Areas

D. PFEFFERMANN and S.R. BLEUER!

ABSTRACT

In this article we report the results of fitting a state-space model to Canadian unemployment rates. The model assumes
an additive decomposition of the population values into a trend, seasonal and irregular component and separate
autoregressive relationships for the six survey error series corresponding to the six monthly panel estimators. The
model includes rotation group effects and permits the design variances of the survey errors to change over time.
The model is fitted at the small area level but it accounts for correlations between the component series of different
areas. The robustness of estimators obtained under the model is achieved by imposing the constraint that the monthly
aggregate model based estimators in a group of small areas for which the total sample size is sufficiently large coincide
with the corresponding direct survey estimators. The performance of the model when fitted to the Atlantic provinces
is assessed by a variety of diagnostic statistics and residual plots and by comparisons with estimators in current use.
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1. INTRODUCTION

A time series model for survey data is the combination
of two distinct models. The ‘‘census model’’ describing
the evolution of the finite population values over time and
the survey errors model representing the time series rela-
tionships between the survey errors of the survey esti-
mators. There are at least four main reasons for wishing
to model the raw survey estimators:

(a) The model based estimators of the population values
resulting from the modelling process have in general
smaller variances than the survey estimators, partic-
ularly in small areas where the sample sizes are small.

(b) The model we employ yields estimators for the seasonal
effects and for the variances of these estimators as a
by-product of the estimation process.

(c) The model can be used to forecast the population
values, the trend and the seasonal components for time
periods beyond the sample time period for which the
direct survey estimators are available. Such forecasts
are important when assessing the performance of the
model and for policy decision making.

(d) The model can be used to detect turning points in the
level of the series and assess their significance. (Work
on this problem will be addressed in a separate article).

The methodology described in this article integrates the
methodologies presented in Pfeffermann and Burck (1990)
and Pfeffermann (1991) with some new modifications and
extensions. The main features of the model are as follows:

1. The model decomposes the population values into the
unobservable components of trend, seasonality and
irregular terms. Smoothed predictors of the three

components (and hence of the population values) based
on all the available data, and standard errors of the
prediction errors are obtained straightforwardly by
application of the Kalman filter. The standard errors
are modified to account for the extra variation induced
by the use of estimated parameter values.

. The model uses the distinct monthly panel estimators

as input data. The use of the panel estimators has two
important advantages over the use of the mean esti-
mators: (i) It identifies better the time series model
holding for the survey errors by analysing contrasts
between the panel estimators, (i) It yields more efficient
estimators for the model parameters and hence better
predictors for the unobservable model components.

. The model accounts for changes in the variances of the

survey errors over time and for possible rotation group
effects.

. The model can be applied simultaneously to the panel

estimators in separate small areas. The census model
is extended in this case to account for the cross-
correlations between the unobservable components of
the population values operating in these areas.

. A modification to ensure the robustness of the small

area estimators against possible model breakdowns is
incorporated into the model equations. The modifica-
tion consists of constraining the model based estimators
of aggregates of the population values over a group of
small areas for which the total sample size is sufficiently
large to coincide with the corresponding aggregate
survey estimators. As a result, sudden changes in the
level of the series are reflected in the model based
estimators with no time lag.
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The model and the robustness modifications are
described in more detail in section 2. Empirical results
obtained when fitting the model to the four Atlantic
provinces of Canada are presented in section 3. Section 4
contains a short summary with suggestions for extension
of the analysis.

Before concluding this section we mention that in the
U.S., the state unemployment estimates are produced
for most of the states based on time series models which
have a similar structure to the model used in our study.
See Tiller (1992) for details. A major difference between
the two models is that in the U.S., the model postulated
for the population values includes also explanatory
variables so that the trend and the seasonal component
only account for the trend and seasonal variations not
accounted for the explanatory variables. The models fitted
to the survey errors are like in our case of the ARIMA
type and they likewise account for changes in the variances
of the survey errors. They are otherwise different because
of the very different sample rotation schemes used in the
two countries. Another notable difference between the
two models is that in the U.S., the models are fitted to
each state separately and the input data consist of only the
mean survey estimates, that is, one observation for every
month. As a result, the models do not account for rotation
group biases.

2. A STATE-SPACE MODEL FOR CANADA
UNEMPLOYMENT SERIES

2.1 The Canadian Labour Force Survey

Data on unemployment are collected as part of the
Labour Force Survey (LFS) carried out by Statistics
Canada. The Canadian LFS is a rotating monthly panel
survey by which every new sampled panel of households
is retained in the sample for six successive months before
being replaced by another panel from the same PSU’s or
strata. The PSU’s are defined by geographic locations (city
blocks or urban centers in the urban regions and groups
of enumeration areas in the rural regions). The strata are
homogeneous groups of PSU’s defined by geographic
locations such as city tracts, census subdivisions and
enumeration areas. In the urban regions, (about 2/3 of the
sample), every PSU is represented in only one panel. In
the rural regions, the PSU’s are represented in all the
panels but with different enumeration areas in different
panels. As a result, the separate panel estimators can be
assumed to be independent, a property validated and
utilized in other studies, see e.g. Lee (1990). For a recent
report describing the design of the LFS and the construc-
tion of the direct survey estimators, the reader is referred
to Singh ef al. (1990).

2.2 The Census Model

In what follows we consider a single small area. In
section 2.4 we consider joint modelling of the panel
estimates in a group of small areas. The model postulated
for the population values is the Basic Structural Model
(BSM) which consists of the following set of equations.

Y=L +8+¢&; L=L_+R_y+
11
R, = R,y + nrs; E S = s 2.1
j=0

In (2.1) Y, is the population value (‘‘true’’ unem-
ployment rate) at time ¢, L,, is the trend level, R, is the
increment, S, the seasonal effect and €, the irregular term
assumed to be white noise with zero mean and variance
0. Thus, the first equation in (2.1) postulates the classical
decomposition of a time series into a trend, seasonal and
irregular components. This decomposition is inherent in
the commonly used procedures for seasonal adjustment,
see e.g. Dagum (1980). Notice however that in the present
case the series {Y,} is itself unobservable. The series
{n:}, {ng:} and {5s] are independent white noise
disturbances with mean zero and variances o7, 0% and
0% x g(1) respectively. Hence, the second and third
equations of (2.1) define a local approximation to a linear
trend whereas the last equation models the evolution of the
seasonal effects such that the sum of every 12 successive
effects fluctuates around zero. Notice that the variances
of the error terms 7g, are time dependent. The functions
g(1) are specified at the end of section 3.1.

The theoretical properties of the BSM in comparison
to other models are discussed in Harrison and Stevens
(1976), Harvey (1984) and Maravall (1985). Empirical
results illustrating the performance of the model are shown
in Harvey and Todd (1983), Morris and Pfeffermann
(1984) and Pfeffermann (1991). Although more restricted
than the family of ARIMA models, the BSM is now
recognized as being flexible enough to approximate the
behaviour of many diverse time series.

2.3 The Survey Errors Model

The model holding for the survey errors was identified
initially by analyzing separately the pseudo error series
e) = (y¥ —p), t=1, ..., N, where " is the
estimator of Y, based on j-th panel j = 1, ..., 6, (the
panel surveyed for the j-th successive month) and 7, =
v ¢, yM/6 is the mean estimator. Notice that
WD = 5) = (e — T, el/6), where e =
(V) — Y,) are the true survey errors. Thus, the notable
feature of the contrasts (y — ,) is that they are func-
tions of only the survey errors irrespective of the model
holding for the population values.
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There are two prior considerations in the choice of a
model for the survey errors:

(a) The model should account for possible rotation group
biases or more generally, allow for different means for
the survey errors of different panels.

(b) The model should account for changes in the variances
of the survey errors over time.

Rotation group biases may arise from providing dif-
ferent information on different rounds of interview,
depending on the length of time that respondents are
included in the sample, or on the method of data collec-
tion, say, whether by telephone or by home interview. (In
the Canadian LFS, the first panel is interviewed by home
visits, the other panels are interviewed by telephone).
Another possible reason for differences between the panel
survey error means is differences in the nonresponse
patterns across the panels. See Pfeffermann (1991) for
further discussion with references to earlier studies on
this problem.

Changes in the variances of the survey errors over time
occur when the variances are function of the level of the
series. Indeed, as revealed by figure 1 in section 3, the
estimates of the standard deviations of the survey errors
are subject to seasonal effects with a seasonal pattern that
follows the seasonal pattern of the population values.
Another possible explanation for changes in the variances
of the survey errors is changes in the sampling design. For
example, the overall sample size of the Canadian LFS was
reduced in 1985-1986 from 55,000 households to 48,000
households. This reduction in the sample size was
associated with other changes in the design. See Singh
et al. (1990) for details.

Application of simple model estimation and diagnostic
procedures to the pseudo survey errors suggest a 3rd order
autoregressive (AR) model for the standardized survey
errors &) = (e!) — 8;)/SD(e!), i.e.

(i ~(j—1 (/=2 (/=3
e = ¢y el + ¢pel3P + ¢ 893V
+uP, j=1,...,6, (2.2

where 8; = E(e) are the rotation group biases, SD(e)
are the design standard deviations and # are independent
white noise with mean zero and variances sz_ It is assumed
that 216'=1 B; = 0 which implies that the mean survey
estimator, y,, is unbiased. See Pfeffermann (1991) for
discussion on the need to constraint the bias coefficients.
Subsequent analysis when fitting the combined model
defined by (2.1) and (2.2) (see section 2.4) validates this
model with the further observation that the coefficients
(#j1, Dj2, Dj3) can be assumed to be equal forj = 4, 5, 6.
Furthermore, for the first panel an AR(1) model already
gives a good fit whereas for the second and third panel an
AR(2) model is appropriate although with different
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coefficients. These relationships hold for each of the four
Atlantic provinces.

One of the referees of this article raised the question of
whether the AR(3) model defined by (2.2) is flexible
enough to account for the panel estimates correlations at
high lags which are believed to be high because of “‘PSU
effects’”. As mentioned in section 2.1, panels rotating out
of the sample are replaced by panels from the same PSU’s
and it usually takes several years before a PSU is exhausted
and replaced by a neighbouring PSU. Lee (1990) presents
two sets of panel estimates correlations for the Canadian
LFS. The first set, denoted by p;, are the correlations
between estimates produced from the same panel so that
J ranges from 1 to 5. The second set, denoted by v;, are
the correlations between estimates produced from a panel
and its predecessor so that j ranges from 1 to 11. The
p-correlations are generally high as expected but it should
be emphasized that they are lower for the unemployment
series than for the employment series, demonstrating the
high mobility of the unemployment Labour Force. The
y-correlations are much smaller than the p correlations but
as mentioned by the author, the computation of these
correlations is much less reliable and their behavior is
somewhat fuzzy showing occasionally an increasing trend.
We computed the serial correlations based on the models
(2.2) with the ¢-coefficients replaced by their estimated
values and found in general a close fit to the p-correlations
at all the lags from 1 to 5. The correlations at higher lags
are different from the corresponding y-correlations but
interesting enough, they are in most cases higher and
always decrease as j increases.

Another question related to the model (2.2) raised by
the referees is whether one could apply the log transfor-
mation to the raw data for stabilizing the survey error
variances, rather than modelling the standardized errors.
There are two main reasons for not using the log transfor-
mation in our case. Foremost, the use of this transfor-
mation would imply a multiplicative decomposition for
the population unemployment rates which is counter to
common practice of postulating an additive decompo-
sition. In Statistics Canada the unemployment rates in the
two larger provinces out of the four considered in our
study are deseasonalized by postulating the additive
decomposition. In the U.S. the models fitted to the state
unemployment series likewise postulate an additive
decomposition. See Tiller (1992). The second reason is that
changes in the survey error variances may result from
charges in the sampling design and in particular, from
changes in the sample sizes. Such changes cause discrete
shifts in the variances which cannot be handled effectively
by the log transformation. As noted also by one of the
referees, transforming the data has the drawback of
producing nonlinearity in aggregating the estimates over
the panels and/or the small areas.
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The model defined by (2.2) satisfies the two prior
considerations discussed above. The actual application of
the model requires however two modifications:

1. For the first three panels there is not a long enough
history to permit the fitting of an AR(3) model. For
example, the survey error ¢!’ corresponds to the
panel which is in the sample for the first time. In order
to overcome this problem, we replace the missing
survey errors by the survey errors corresponding to the
panels previously selected from the same PSU’s or
strata. For example, the AR(2) model fitted to &> is

e =y e + ¢yl + u?. (2.3)

Notice that the panel surveyed for the second time at
month ¢ replaces at time (¢# — 1) the panel surveyed
for the sixth time at month (# — 2) so that both panels
represent the same PSU’s or strata. The use of surrogate
survey errors in the case of the first three panels may
explain the different models identified for these panels
as compared to the model identified for the other three
panels.

2. The true standard deviations of the survey errors are
unknown whereas the survey estimates of the standard
deviations are themselves subject to sampling errors.
To overcome this problem, we use smoothed values
of the estimated standard deviations, obtained by
fitting the relationship

12
(SD), = 4(SD);—, + %ot + E i Dys  (2.4)

i=1

with the y-coefficients estimated by ordinary least
squares. The notation (SY)), defines the raw,
unsmoothed estimate of the design standard deviation
of the mean survey estimator, ¥, at month ¢ and { D;,}
are dummy variables accounting for monthly seasonal
effectssothat D;, = 1whent = 12k + i,k = 0,1,

., i=1, ..., 12 and D;, = 0 otherwise. The
smoothed standard deviations of the panel survey
errors are obtained as SD(e!)) = V6(SD),. The
latter estimates are used as surrogates for the true,
unknown, standard deviations.

2.4 State-space Representation and Estimation of the
Model Holding for the Survey Estimators

It follows from (2.1) that the panel estimators can be
modeled as

Yy =L +S+¢€+ed j=1,...,6, (2.5

where

Li=L_;+ R+ R =R+ i
11
E Sr+j = Nses (2.6)
j=0

with (€}, {n.,}, {nr/} and {yg,} defined as in (2.1). The
separate models defined by (2.5), (2.6) and (2.2) can be
cast into a compact state-space representation withy, =
Y, ..., %) as the input data, similar to the repre-
sentation in Pfeffermann (1991). Following that represen-
tation, the survey errors (and in the present study also the
census irregular terms) are included as part of the state
vector so that there are no residual terms in the observa-
tion equation defined by (2.5). Unlike in Pfeffermann
(1991), however, the transition matrix and the Variance-
Covariance (V-C) matrix of the state error terms are not
fixed in time since they depend on the design variances of
the survey errors which, as explained in section 2.3, change
over time.

The state-space representation of the model permits us
to update, smooth or predict the state vectors and hence
the seasonal, trend and population values at any given
month 7 by means of the Kalman filter. Denote by ¢, the
state vector corresponding to month ¢. The state vector
comprises the trend level, increment and seasonal effects,
the rotation group biases and the survey errors. See
Pfeffermann (1991) for details. By ‘‘updating’’ we mean
estimation of ¢, at month ¢ based on all the data until and
including month #. ““Smoothing”’ refers to the estimation
of g, based on all the available data for all the months
before and after month ¢. Smoothing is required for
improving past estimates as, for example, when estimating
the seasonal effects or when estimating changes in the
population values or the trend levels. ‘Prediction’ of state
vectors corresponding to postsample months is important
for policy making. Predictions within the sample period
allow to assess the performance of the model, e.g. by com-
paring the forecasted panel estimates as derived from the
predicted state vectors with the actual estimates. See
section 3 for detaiis. The theory of state-space models and
the Kalman filter is developed in numerous publications,
see Pfeffermann (1991) for the filtering and smoothing
equations with references. Notice that the filtering and the
smoothing equations not only yield the three sets of
estimators for any given month ¢ but also the V-C matrices
of the corresponding estimation errors.

The actual application of the Kalman filter requires
the estimation of the unknown model parameters and
the initialization of the filter, that is, the estimation of
the initial state vector ¢ and the corresponding V-C
matrix of the estimation errors. For a single small area,
the unknown model parameters are the four variances of
the error terms in the census model (2.1) and the eight
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autoregression coefficients and six residual variances in the
panel survey error models (2.2). (The rotation group
means are included in the state vectors as fixed, time
invariant coefficients). In order to reduce the number of
free parameters in the combined state-space model, we
assume o7 = o> X §7,j = 1, ..., 6, where {a}} are the
residual variances in (2.2) and '6]2 are the estimates of the
residual variances obtained by fitting the autoregression
equations to the pseudo survey errors e,(,{,) defined in sec-
tion 2.3. This assumption reduces the number of unknown
parameters from 18 to 13. (The estimates 61-2 are very
close for j = 4, 5, 6 and have been set equal).

Assuming that the error terms in the census and survey
error models have a normal distribution, the unknown
model parameters can be estimated by maximization of
the likelihood. See Pfeffermann and Burck (1991) for a
brief description of the application of the method of
scoring maximization algorithm and for the initialization
of the filter. That article includes references to more
rigorous discussions.

2.5 Adjustments to Account for the Use of
Estimated Parameter Values

Once the unknown model parameters have been
estimated, the Kalman filter equations can be applied with
the true parameter values replaced by the parameter
estimates. As noted in section 2.4, the Kalman filter not
only produces estimates for the state vectors but also the
V-C matrices of the corresponding estimation errors. A
possible problem arising from the use of these V-C
matrices, however, is that they ignore the extra variation
implied by parameter estimation, thus resulting in
underestimation of the true variances.

Formally, let &, (A) define the estimator of ¢, at month
t, based on all the data available until some given month
n, where )3 represents the estimators of the unknown model
parameters. The estimation error can be decomposed as

(& (N —g] =[&(N) —al + [@r(g) - &N, 2.7)

which is the sum of the error if A were known plus the
error due to estimation of ). The two terms in the right-
hand side of (2.7) are uncorrelated. A simple way to verify
this property is by noting that & () = E(g, | Y, M)
where Y represents all the available data. By conditioning
on Y and \, [&(A) — &,()\)] is nonstochastic whereas
E{[&®Q) — ol Y, A\ = 0. It follows therefore from
(2.7) that

O = E{1&() — el L&) — 1)
= E{[&(\) — a1[&0) — ]’}
+ E{[&}) — &M1& — &)1}
= A, + B,. 2.8)
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In order to estimate A, and B, we condition on Y and
follow the approach proposed by Hamilton (1986). By this
approach, realizations A4, £ = 1, ..., K are generated
from the asymptotic normal posterior distribution of A,
that is, from a N():\,f\) distribution where ):\ is the max-
imum likelihood estimator of A and A is the asymptotic
V-C matrix of \. (Both A and A are obtained from the
method of scoring). The Kalman filter is then applied with
each of these realizations yielding estimates &, (A 4)) with
V-C matrices P,(A ). The matrices 4, and B, are
estimated as

1 X
At=E E P,(Nxy)s
k=1
1 X . .
B, = p kg [ Ary) — &M1& M xy) — @& (M1

2.9)

Ansley and Kohn (1986) propose an estimator for B,
based on first order Taylor series approximation. The use
of their estimator is computationally less intensive but the
procedure proposed by Hamilton is somewhat more
flexible in terms of the assumptions involved and it enables
a better insight into the sensitivity of the Kalman filter
output to errors in the parameter estimators.

2.6 Joint Modelling in Several Small Areas

The model considered so far refers to a single area.
When the sample sizes in the various areas are small, more
efficient estimators can often be derived by modelling in
addition the cross-sectional relationships between the area
population values. Clearly, the increase in efficiency
resulting from such joint modelling depends on the sample
sizes within the small areas and the closeness of the
behaviours of the area population values over time.

The survey errors are independent between the areas
so that any joint modelling of the survey estimators
applies only to the census model. For modelling the unem-
ployment rates in the four Atlantic provinces, we follow
Pfeffermann and Burck (1990) and allow for nonzero
contemporary correlations between corresponding error
terms of the census models operating in these provinces.
Thus, if y/, = (€7, nf9, 942, n§7) denotes the vector
of error terms at time ¢ associated with the census model
operating in area g, it is assumed that C, ;, = E(y,, v/)
is diagonal but with possibly non zero covariances on the
main diagonal. The actual implication of this assumption
is that if, for example, there is a significant increase in the
trend level in one province, similar increases can be
expected to occur in other provinces.

The resulting joint model holding for the four provinces
(or more generally for a group of areas) can again be cast
into a state-space form, see equations (2.7) and (2.8) in
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Pfeffermann and Burck (1990). A major problem with the
fitting of this model, however, is the joint estimation of
all the unknown parameters which is computationally too
intensive in terms of computer time and storage space.
(The computer program written for the application of the
method of scoring uses numerical first order derivatives
so that each derivative requires a separate sweep through
all the data. Each sweep involves the computation of the
Kalman filter equations for each month included in the
sample period).

To deal with this problem, we first fitted the models
defined by (2.5), (2.6) and (2.2) separately for each of the
provinces. We also postulated equal correlations between
the corresponding error terms of the separate census
models across the provinces so that

bup = Cod" Cop Ciy" =0 1 <a,b=4, (210
where C,, = E(y,,v,). The four correlations maximizing
the likelihood of the joint model were determined by a grid
search procedure with the other model parameters held
fixed at their previously estimated values.

The assumption of equal correlations reduces the
number of unknown parameters considerably. It can be
justified also by the small number of areas considered for
this study implying that no other pre-imposed structure
on these correlations can be safely detected. More sub-
stantively, a simple breakdown of the Labour Force by
industry (Table 1 of Section 3) shows very similar relative
frequencies in the four provinces suggesting a high degree
of homogeneity in their economies.

2.7 Modifications to Protect Against Model Failures

The use of a model for the production of official
statistics raises the question of how to protect against
possible model failures. As discussed below, testing the
model every time that new data becomes available is not
feasible requiring instead the development of a built-in
mechanism to ensure the robustness of the estimators
when the model fails to hold.

For modelling the Labour Force series in small areas
we employed the modification proposed by Pfeffermann
and Burck (1990). By this modification, the updated state
vector estimates at any given time ¢, are constraint to
satisfy the condition

A A
E Wi 2{1 = E WaFiw =1, 2, ..., (2.11)
=1 a=1

where Y, is the model based estimator of the population
value Y, in area a, 3, = 1/6 ¥ 5., y¥ is the corre-
sponding survey estimator and w,, = M,,/M, is the rela-
tive size of the Labour Force in that area so that M, =
Y4  My,and ¥4_, w, = 1. Notice that ¥ 4_, w, Y,

and Y Z_, w,J, are correspondingly the model based
estimator and the direct survey estimator of the aggregate
population value in the group of areas considered. The
condition 2.11 can be written alternatively as ¥ 2_, w,
&, = Owheree,, = ¥ %_,ef})/6is the mean survey error
for state a. Pfeffermann and Burck (1990) show how to
modify the Kalman filter equations so that it produces the
constrained state vector estimator and its correct V-C
matrix under the model (without the constraint), for every
month ¢.

The rationale behind the modification is simple. It
assumes that the total sample size in all the areas is suffi-
ciently large and hence that the aggregate survey estimators
can be trusted. This assumption in fact dictates the level
of aggregation required, see below. By constraining the
aggregate model based estimators to coincide with the
aggregate survey estimators, the analyst ensures that any
real change in the population values reflected in the survey
estimators will be likewise reflected in the model based
estimators. Notice that without constraining the
estimators, sudden changes in the level of the series, for
example, will be reflected in the model based estimators
only after several months because these estimators depend
not only on current data but also on past data. On the
other hand, if no substantial changes occur, the model
based estimators can be expected to satisfy approximately
the constraints even without imposing them explicitly.
Thus, the constrained estimators should perform almost
as well as the unconstrainted estimators in regular time
periods.

The assumption that the total sample size in all the areas
is large and hence that the aggregate survey estimator is
sufficiently close to the corresponding population value
is critical. It guarantees (in high probability) that the
modification will only occur when there are real changes
in the population values and not as a result of large
sampling errors. Admittedly, and as noted by one of the
referees, in the application of the method to the Atlantic
provinces described in section 3, the aggregate estimator
is based on only four provinces so that its standard error
is about 50 percent of the standard errors of the province
survey estimators, depending on the province sample sizes.
(The province survey estimators are independent, condi-
tional on the corresponding population province values).
Thus, if the constraints are to be used in practice, the
aggregation should be carried out over a larger set of
provinces or other small areas.

The following two alternative approaches have been
suggested for dealing with the robustness problem:

(i) Perform a time series outlier detection as proposed for
example in Chang, Tiao and Chen (1988).

(ii) Model the time series of proportions {#;, = 7.,/
YA Fu,a =1, ..., (A — 1)} if these time series
exhibit smoother behavior than the series {7,,].
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The detection of outliers is an important aspect of any
modelling exercise but the question remaining is how to
modify the population value estimates once observations
(survey estimates) are detected as outliers. Notice in this
respect that our main concern is with current estimates that
is, the most recent available estimates. In Chang, Tiao and
Chen (1988), the motivation for the outlier detections is
to remove their effect from the observations so as to better
understand the underlying structure of the series and
improve the estimation of the model parameters. But if
the cause of an outlier observation is a real shift in the level
of the population values, this shift should not be removed
but rather accounted for in the model based estimators.
Harrison and Stevens (1976) propose to account for such
changes by modifying the prior distribution of the state
vectors, e.g. by increasing the variances of the state vector
errors so as to allow for more rapid changes in the state
vector estimators. See Morris and Pfeffermann (1984) for
an example. Our approach of constraining the model
based estimators to coincide with aggregate survey
estimators provides a more automatic procedure that does
not require timingly prior information.

The second approach suggested for dealing with the
robustness problem is appealing since abrupt changes in
the population values can be expected to cancel out in the
ratios #,,. The main disadvantage of the use of this
approach is that the model holding for the ‘true’ ratios =,
is naturally very different from the model holding for the
population values ¥, as defined by (2.1) and in particular,
it no longer provides estimates for the trend and the
seasonal effects which, as mentioned in the introduction,
is one of the major uses of our approach. It is also not clear
how to extract the estimates for the population values ¥
from the model holding for the ratios #,,, without some
additional assumptions, like, for example, our assumption
that the aggregate survey estimator is sufficiently close to
the corresponding population value.
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The use of constraints of the form (2.11) was previously
considered by Battese, Harter and Fuller (1988) and by
Pfeffermann and Barnard (1991) for analyzing cross-
sectional surveys. Pfeffermann and Burck (1990) present
empirical results illustrating the good performance of the
modified estimators in abnormal time periods. See also
section 3.

3. FITTING THE MODEL TO THE ATLANTIC
PROVINCES, EMPIRICAL RESULTS

The model defined by (2.2), (2.5) (2.6) and (2.10) was
fitted to the monthly panel estimators in the four Atlantic
provinges in two stages. In the first stage the model defined
by (2.2), (2.5) and (2.6) was fitted to each of the provinces
separately. In the second stage, the correlations defining
the matrix ¢ of (2.10) were estimated using a grid search
procedure. (See section 2.6). The estimators obtained are,
Diag(¢) = (0.5, 0.25, 0.80, 0.0). The data used for
estimation of the model cover the years 1982-1988. Data
for 1989 were used for model diagnostics by comparing
the results within and outside the sample period.

3.1 Preliminary Analysis

Table 1 shows a breakdown of the Labour Force in the
four provinces by industry. The figures in the table refer
to March 1991. The (expected) sample sizes of the LFS are
also shown. As can be seen, the percentage breakdowns
in the four provinces are very similar justifying the
assumption of equal correlations between the error terms
of the census models across the provinces. The similarity
of the percentage breakdowns suggests also possible
improvements in the efficiency of the model based
estimators derived from the joint model over estimators
which ignore the cross-sectional correlations between the
province population values.

Table 1
Labour Force by Industry in the Atlantic Provinces, March 1991

Nova Scotia

New Brunswick

Newfoundland Prince-Edward

Island

Sample size 4,409 3,843 2,970 1,421
Thousands %o Thousands Yo Thousands % Thousands o

Agriculture 7 1.7 7 2.3 0.5 0.2 6.0 9.8
Other primary industry 18 4.4 13 4.2 18.0 7.7 4.0 6.6
Manufacturing 44 10.7 37 11.9 23.0 9.9 6.0 9.8
Construction 24 5.9 21 6.8 18.0 7.7 4.0 6.6
Transp. and communication 35 8.6 30 9.6 20.0 8.6 5.0 8.3
Trade and Commerce 81 19.8 61 19.6 41.0 17.6 10.0 16.4
Finance 20 4.9 12 39 6.0 2.6 0.5 0.8
Services 143 35.0 107 34.4 83.0 35.6 19.0 31.1
Public Administration 36 8.8 22 7.0 23.0 9.9 6.0 9.8
Unclassified 1 0.2 1 0.3 0.5 0.2 0.5 0.8
Total 409 100.0 311 100.0 233.0 100.0 61.0 100.0
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Two other prior considerations mentioned in section
2.3 are that the model should account for possible rota-
tion group effects and for changes in the variances of the
survey errors over time. In order to obtain initial estimates
for the rotation group effects, we averaged the pseudo
survey errors, e,‘,Q =Y —5),j=1,..., 60verall
the months in the sample period. We then divided the
averages by the conventional estimates of the standard
errors. (The errors e,‘,Q are correlated over time but the
correlations are small because except for lags 6, 12 ezc. the
data of any given panel refer to different PSU’s in the
urban areas and different enumeration areas in the rural
areas. See section 2.1). Notice that in the absence of
rotation group effects, E(e{)) = 0 for all j and ¢
irrespective of the model postulated for the population
values.

This preliminary (model free) analysis yields similar
results to the results obtained under the full model,
presented in Table 2 of section 3.3.

Next consider the variances of the survey errors.

Figure 1 plots the seasonal effects of the aggregate
survey estimators in the four provinces along with the
seasonal effects of the standard errors of these estimators
(multiplied by 100). Denote as before by w,, the relative
labour force size in province a at time ¢. The aggregate
survey estimator is defined as y* = Y 4_, w, 7, (Equation
2.11). The standard error of y} is (SD*), = [ L 4_, w2,
(SD)2,]1%. The seasonal effects were estimated by
application of the additive model of X-11 so as not to bind
them to any particular model. We chose the additive model
since we assume the additive decomposition for the survey
estimators. (As revealed from Figure 4, the seasonal effects
of the aggregate survey estimators produced by X-11 are
very close to the seasonal effects obtained under the
model).

Figure 1 shows that the standard errors are influenced
by seasonal variations with a seasonal pattern that follows
closely the seasonal pattern of the survey estimators and
hence of the corresponding population values.

As discussed in section 2.3, rather than using the
original estimates of the design standard errors in the
models fitted to the panel survey errors we use smoothed
values, thus reducing the effect of the sampling errors on
the former estimators. Figure 2 plots the two sets of
estimators for Prince Edward Island (P.E.1.) province
which is the smallest province in the Atlantic region and
hence has the smallest sample sizes. As can be seen, the
effect of the smoothing is to trim the extreme raw estimates
but otherwise the smoothed values behave similarly to the
raw estimates. The plots for the other provinces show a
similar pattern but the differences between the raw and the
smoothed estimates are smaller because of the larger
sample sizes in these provinces.
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We conclude this section by specifying the models
postulated for the seasonal effects in the four provinces.
Our initial model assumed fixed variances for the error
termsng, = Y. /LoSii;, ¢ = 1,2, ... (seeequation 2.1).
The predicted errors 7, = ¥ jLo S, ; obtained under
that model were found to decrease in absolute value as a
function of time in three out of the four provinces and
increase in time in the remaining province. Notice that
under the model defined by (2.1), with constant variances
of the state error terms, the Kalman filter converages
to a steady state by which the V-C matrices of the state
vector estimators and hence of 4 are constant. Thus,
we modified the initial model such that VAR (5,,) =
osz X g(t) where for the provinces of Nova Scotia,
Newfoundland and P.E.I. g(¢) = (=32 whereas for
New Brunswick g(¢) = .

3.2 Results

3.2.1 Rotation Group Biases

Table 2 shows the rotation group Biases (RGB) and
their estimated standard errors (SE) in the four provinces
as obtained under the full model defined by (2.3), (2.5),
(2.6) and (2.10).

Table 2

Rotation Group Biases and Standard Errors
in the Four Provinces (X 100)

Nova New Newfound- Prince
. . Edward
Scotia Brunswick land
Panels Island

RGB SE RGB SE RGB SE RGB SE

1 -0.20 0.10 -0.02 0.11 -047 0.13 0.32 0.17
2 0.18 0.09 0.40 0.10 0.42 0.12 0.18 0.15
3 0.32 0.08 0.24 0.09 0.47 0.12 0.31 0.15
4 0.06 0.07 0.01 0.09 0.18 0.12 0.03 0.15
5 -0.03 0.08 -0.15 0.10 -0.10 0.13 -0.25 0.16
6 -0.34 0.08 -0.50 0.11 -0.50 0.14 -0.60 0.16

The RGB behave fairly consistently across the provinees.
Thus, the biases for the 3rd and 6th panel are all highly
significant using the conventional #-statistic, having a
positive sign for the 3rd panel and a negative sign for the
6th panel. The biases for the 4th and 5th panels have again
the same sign in all the provinces and they are all non-
significant.

For the 2nd panel all the biases are positive but the bias
in P.E.L is not significant. (P.E.I. is the province with the
smallest sample size). It is also in P.E.I. that the sign of
the bias for the 1st panel is different from the signs in the
other provinces.
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As discussed in section 2.3, there is more than one
possible reason for the existence of RGB but the results
emerging from the Table provide a strong indication that
whatever the reason is, the biases found for some of the
panels are real and not just the outcome of sampling
errors. A drawback of the present analysis, however, is
that the RGB are assumed to be fixed over time. Section 4
proposes a more flexible model.

3.2.2 Goodness of Fit

A. TESTING FOR NORMALITY

Let IY = (v - yz(cff(,_l)) define the innovation
when predicting the j-th panel estimator one month ahead
and denote I, = (I, ..., I'®. The use of maximum
likelihood estimation in this study assumes that the vectors
I, are normal deviates (see section 2.4). To test this
assumption, we computed the empirical distribution of the
standardized innovations {(SI)Y) = [I¥/SDUP) 1,
t = (k+ 1), ..., N} and compared it to the standard
normal distribution using the Kolmogorov-Smirnov test
statistic. This test statistic was computed for each of the six
panels in the four provinces yielding P-values larger than
0.15 in 21 out of the 24 cases. (The tests were performed
using PROC UNIVARIATE of the SAS package. By this
procedure, if the sample size is greater than fifty as it is
in our case, the data are tested against a normal distri-
bution with mean and variance equal to the sample mean
and variance). Applying the same test procedure to
the standardized innovations {(SI),, = {I,,/SD(1,;)],
t=(k+1),...,Nywherel, = [T %, 1{/6] yields
P-values larger than 0.15 in all the four provinces.

The estimators of the standard deviations of the innova-
tions used for the tests are those produced by the Kalman
filter, without accounting for the variance component
resulting from parameter estimation (see section 2.5). The

latter component is negligible even in P.E.I. which has the
smallest samples sizes among the four provinces. We come
back to this finding in section 3.4.

B. PREDICTION ERRORS WITH DIFFERENT
PREDICTORS

Table 3 contains summary statistics comparing the
behaviour of the prediction errors (innovations) in the
four provinces as obtained for three different sets of
estimators of the state vectors: (1) The estimators obtained
under the separate models (SM) defined by (2.2), (2.5)
and 2.6; (2) the estimators obtained under the joint model
(IM) defined by (2.2), (2.5), (2.6) and (2.10); (3) the
estimators obtained by imposing the robustness con-
straints (2.11) on the joint model (ROB). Below we define
the summary statistics using as before the notation
1P = P - ﬁﬁ{f(,_l)) for the prediction error when
predicting the j-th panel estimator one month ahead.

MB, = YL, (82 19/6)/(N — k) - mean bias
in predicting the mean survey estimator
Jww = Ej6=1yl(ill)/6'

MAB, = Y. | Si1 IY/(N — k)| /6 - mean
absolute bias in predicting the panel estimators.

SORE, = (Y iy [1/6 0= I /5) 12/ (N = K)} 7 -
square root of mean square relative prediction
error in predicting the mean survey estimator.

The above summary statistics are shown separately for
the sample period of July 1983 — December 1988 and for
the postsample period of January 1989 -~ December 1989.
In the latter case, the data were added one data point at
a time so that for predicting the survey estimator of
February 1989 for example we used the data observed until
January 1989 and so forth.

Table 3

Prediction Errors in the Four Provinces,
Summary Statistics (X 100)

Nova Scotia New Brunswick Newfoundland Prince Edward Island
SM M ROB SM M SM M ROB SM M ROB
7.83 - 12.88
MB —.11 -.07 —.06 —.12 -.09 —.25 -.18 —.08 .06 .14 .15
MAB 12 11 .10 .14 .12 .29 .24 .20 .20 .23 .23
SQORE 5.76 5.62 5.70 5.48 5.47 7.03 6.91 6.96 9.34 9.13 9.17
1.89 - 12.89
MB .14 1 .04 .47 47 .36 .33 .17 .84 .85 .86
MAB .32 .32 .30 S1 51 .39 .37 .29 .84 .85 .86
SQORE 6.39 6.27 6.82 6.25 6.25 5.92 5.90 5.61 9.45 9.26 9.30
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The main conclusions from Table 3 are as follows:

(1) The results obtained for the three sets of predictors are
in general very similar, indicating that for the data
analyzed the use of the joint model improves only
slightly over the use of the separate models and that
there are no abrupt changes in the level of the series
in the years considered.

(2) The errors when predicting the survey estimators are
small both within and outside the sample period,
suggesting a good fit of the model. Notice that except
in P.E.I., the relative prediction errors as measured by
the statistics SQRE,, are all less than 7%.

(3) The biases of the prediction errors in the postsample
period are larger than in the sample period with rela-
tively large differences in New Brunswick and P.E.I.
This outcome by itself could suggest some model
failure in the year 1989. Inspection of the monthly
panel prediction errors in the four provinces for this
year, (not shown in the Table), indicates however that
although the errors are in general mostly positive, the
relatively large biases are mainly the result of one or
two extreme errors which, with only 12 data points, has
a large effect on the average summary statistics. It
should be noted also that the estimated unemployment
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rates in the four provinces in the year 1989 are between
0.11 and 0.18 so that a prediction bias of .005 or even
.009 as obtained for P.E.I. is not high. Clearly, the
model can be modified to account for these biases if
they persist with additional data. On the other hand,
notice that the discussion above refers only to the bias
of the prediction errors since the bias of the model
based estimators of the concurrent population values
is controlted by the robustness constraints (2.11).

In view of the very similar results obtained for the three
sets of predictors considered and in order to highlight the
performance of the robustness constraints, we deliberately
deflated the unemployment rates in the period March 1985
to March 1987 by 33%, deflated the rates in the period
April 1987 - November 1988 by 25% and inflated the
rates in the period December 1988 - December 1989 by
33%. The effect of these operations is to introduce sudden
drifts in the datainthe months ¢ = 39, = 64and ¢ = 84.
Figure 3 displays the aggregate, one step ahead prediction
errors (APE), If = Y 4o 1w [T /=1 & — 99 1))/6]
as obtained for the joint model with and without the
robustness constraints, and for the separate models.

The clear conclusion from Figure 3 is that by imposing
the constraints, the APE in the periods following the three
months with sudden drifts are smaller than the APE

8 8
6 I - s
4 | — 4
2 — 2
0 0
-2 Hq -2
-4 —H 4
I Logapasr s beevageg gaea b yarpr v lerea s dagr ey e leson s agalipid 6

J J J
1984 1985 1986

———— With robustness constraints

o————o Without robustness constraints

J J J
1987 1988 1989 1990

»———x Separate models

Figure 3. Aggregate One-Step Ahead Prediction Errors of the Three Sets of Predictors (x 100) for Contaminated Data
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obtained without the constraints. Thus, in March 1985 for
example, f = 39, the APE are very large in absolute value
both with and without the constraints which is obvious
since the predictors use only the data until February 198S.
The APE corresponding to the robust predictors return
however, to their normal level much faster than the APE
of the nonrobust predictors. A similar behaviour is seen
to hold in the other two periods. Another notable result
featured in the graph is that in the periods following the
months with the sudden drifts, the joint model performs
better than the separate models even without imposing the
robustness constraints. Thus, by borrowing information
from one province to the other, the joint model adapts
itself more rapidly to the new level of the series. For more
illustrations of the performance of the robustness con-
straints see Pfeffermann and Burck (1990).

C. COMPARISONS WITH ESTIMATORS
PRODUCED BY X-11

As a final assessment of the appropriateness of the
model, we compare the estimates of the seasonal effects
and the trend levels as obtained under the model, with the
estimates produced by the X-11 procedure (Dagum 1980).
The latter is known to be less dependent on specific model
assumptions. This procedure is the commonly used
method for seasonal adjustment throughout the world.
Figure 4 displays the average seasonal effects for the four
provinces as obtained by X-11 and under the model.
Figure 5 displays the corresponding trend level estimates.
The averages are computed using the weights (w,,)
employed in previous analyses. The model based estimates
shown in the two figures are the smoothed estimates
which, like X-11, employ all the data in the sample period.

As can be seen, the seasonal effects produced by the two
approaches are very close. The trend level estimates are
also close but the X-11 trend curve is smoother than the
model curve. Similar close correspondence between X-11
and the model is obtained for each of the four provinces
separately, including, in particular, P.E.I. with its
relatively small sample sizes.

3.3 Comparison of Design Based and Model Dependent
Estimators

We mention in the introduction that one of the major
reasons for wishing to model the raw survey estimators is
that the model produces estimates for the population
values which, at least in small areas, are more accurate
(when the model holds) than the survey estimators. We
computed the two sets of estimates for the four provinces
and found that as expected, the estimates produced by the
two approaches behave very similar but the design based
estimators are less stable, having in general higher peaks
and lower troughs. An important aspect when comparing
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the two sets of estimates is their performance in estimating
year to year changes of the population values. Such com-
parisons are free of the obscuring effects of seasonality.
Figure 6 displays the results obtained for P.E.I.. The
model dependent estimates are the smoothed values of the
joint model which use all the data in all the months. As
can be seen, the estimates produced by the model are much
more stable and vary only mildly from one month to the
other compared to the design based estimates. Figure 7
displays the standard errors (S.E.) of the unemployment
rates estimators in P.E.I. as computed under the design,
(smoothed values, see Figure 2), and under the joint
model. Also shown are the S.E. when fitting the separate
model defined by (2.2), (2.5) and (2.6) and the corre-
sponding S.E. after accounting for the use of parameter
estimates instead of the unknown parameter values. See
section 2.5 for details. (The latter have been computed
only for the separate model to save in computing time).

There are three notable features emerging from the
graphs:

(1) The S.E. of the model dependent estimators under the
joint model are only mildly smaller than the S.E.
obtained for the separate model but considerably
smaller than the S.E. of the survey estimators.

(2) The S.E. of the model dependent estimators behave
similarly to the S.E. of the survey estimators, a direct
consequence of accounting for the changes in the
variances of the survey errors over time in the model.
See section 2.3 for details.

(3) Accounting for the use of estimated parameter values
in the computation of the S.E. of the model dependent
estimators has only a marginal effect on the computed
S.E. Recall that P.E.I. is the province with the smallest
sample sizes. The effect of accounting for the use of
parameter estimates in the other provinces is even
smaller.

4. SUMMARY

This article illustrates that data collected by a complex
sampling design, consisting of several stages of selection
with rotating panels, can be successfully modelled by a
relatively simple model. The model consists of two parts:
the census model holding for the population values and
the survey errors model describing the time series relation-
ship between the survey errors. The use of the model yields
more accurate estimators for the population values and
their components like trend and seasonality and it permits
estimating the S.E. of these estimators in a rather simple
way. The model equations can be modified to secure the
robustness of the model-dependent estimators against
possible model failures.
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The model used in this article can be extended in various
directions. Foremost, the model should be applied
simultaneously to more provinces or other small areas to
ensure that the aggregate sample estimators ¥ 2_, w,, 7.,
are sufficiently close to the corresponding population
values. See the discussion in section 2.7. Incorporating in
the model an outlier detection mechanism to further assess
the performance and suitability of the model is another
valuable addition.

Two other extensions are to relax the assumption of
constant variance for the error term €, in the census model
and to let the rotation group biases to change over time.
The first extension is suggested by the observation made
in section 3.1 that the variances of the survey errors are
subject to seasonal effects, with a seasonal pattern that is
similar to the seasonal pattern of the raw estimates. Fitting
the equations (2.4) in the four provinces indicates also the
existence of a mild trend in the variances which again
behaves similar to the trend of the raw survey estimates.
Thus, the variances of the survey errors seem to depend
on the magnitude of the survey estimators which suggests
that the variances o} = V(¢,) change with the level of
the population values. As a first approximation one could
assume that ¢7 is proportional to the corresponding
variance of the survey error.

Letting the rotation group biases change over time is
a natural extension of the model, considering that the
population values means are time dependent. Modelling
the evolution of the group biases can however be problem-
atic because of possible identifiability problems with the
models holding for the trend and the seasonal effects.
See the discussion in Pfeffermann (1991).

The last two extensions are important and should be
explored but based on our experience with the unemploy-
ment data, we expect that they will affect the model
estimators very mildly.
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