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Maximum Likelihood Estimation of Constant Multiplicative
Bias Benchmarking Model with Application

IJAZ U.H. MIAN and NORMAND LANIEL!

ABSTRACT

The maximum likelihood estimation of a non-linear benchmarking model, proposed by Laniel and Fyfe (1989; 1990),
is considered. This model takes into account the biases and sampling errors associated with the original series. Since
the maximum likelihood estimators of the model parameters are not obtainable in closed forms, two iterative
procedures to find the maximum likelihood estimates are discussed. The closed form expressions for the asymptotic
variances and covariances of the benchmarked series, and of the fitted values are also provided. The methodology

is illustrated using published Canadian retail trade data.
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1. INTRODUCTION

Benchmarking methods are very commonly used for
improving sub-annual survey estimates with the help of
corresponding estimates, called benchmarks, from an
annual survey. The improvement generally is in terms of
reductions in the biases and variances of the sub-annual
estimates. For example, the monthly retail trade estimates
might be improved using estimates from annual retail trade
surveys. The sub-annual estimates are often biased due to
coverage deficiencies in the frame. Undercoverage is
caused by delay in the inclusion of new businesses and non-
representation of non-employer businesses in the frame.
Furthermore, the variances of the sub-annual estimates
are often larger than those of the corresponding annual
estimates, and the sampling covariances exist between the
estimates from different time periods due to overlap of the
samples. On the other hand, the annual estimates can be
assumed unbiased because, in practice, their frames do not
suffer much from coverage deficiencies. Detailed discus-
sions on benchmarking can be found in Laniel and Fyfe
(1989; 1990), Cholette (1987; 1988), and others.

Several procedures for benchmarking time series are
available in the literature. Based on a quadratic minimiza-
tion approach, Denton (1971) proposed several procedures
to benchmark a single time series. Cholette (1984) proposed
a modified version of Denton’s order one proportional
variant method where he removed the starting condition
to avoid transient effects. The assumptions made by
authors are very unlikely to be satisfied by most economic
time series. More specifically, their models assume that the
bias associated with sub-annual estimates follows a
random walk and that both the sub-annual and annual
data are observed without sampling errors. In general the
estimates come from sample surveys and hence they are
subject to sampling errors.

Hillmer and Trabelsi (1987) proposed an alternate
approach to benchmarking which is based on an ARIMA
model (see e.g., Box and Jenkins 1976). Although this
approach takes into account the sampling covariances of
the sub-annual and annual estimates, the approach does
not accommodate biases in the sub-annual estimates.
Cholette and Dagum (1989) modified the Hillmer and
Trabelsi approach by replacing the ARIMA model by an
“Intervention’” model. This approach allows the modelling
of systematic effects in the time series but still possesses
the same weaknesses as found in the Hillmer and Trabelsi
model (Laniel and Fyfe 1990).

In order to overcome the deficiencies mentioned above,
Laniel and Fyfe (1989; 1990) proposed a non-linear bench-
marking model on levels. The authors provided a complex
algorithm to find the generalized least squares (GLS)
estimates (and their asymptotic covariances) of the model
parameters. This model takes into account the sampling
covariances of the sub-annual and annual estimates, and
can be used when the benchmarks come either from cen-
suses or annual overlapping samples. This model also
assumes a constant multiplicative (relative) bias associated
with the sub-annual level estimates. Other constant multi-
plicative bias benchmarking models has been proposed by
Cholette (1992) and Laniel and Mian (1991). Cholette
assumes a model in which both the bias and errors are
multiplicative. The author used the GLS theory to find the
estimates of the model parameters after making a loga-
rithmic transformation on the model. Laniel and Mian
(1991) have provided an algorithm to find the maximum
likelihood estimates of a constant multiplicative bias
benchmarking model with mixed (a mixture of binding
and non-binding) benchmarks. The binding benchmark
here is an estimate from a census (i.e., an estimate with
zero variance) and the non-binding benchmark on the other
hand is an estimate based on a sample. The assumption
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of a constant multiplicative bias will be verified in practice
if the rate of frame maintenance activities is relatively
stable, that is, when the proportion of frame coverage defi-
ciencies is fairly constant over time. This assumption also
implies that the covered and uncovered businesses in the
frame possesses the same average period-to-period ratios
with respect to the variable of interest. The nature of bias
associated with sub-annual estimates may vary from one
time series to another. Cholette and Dagum (1991) have
proposed a benchmarking method which assumes a con-
stant additive bias associated with the sub-annual estimates.

The purpose of this paper is to consider the maximum
likelihood (ML) estimation of the parameters of Laniel
and Fyfe’s model and the results are based on the report
of Mian and Laniel (1991). Their model is described in the
next section. Two iterative processes to find the ML esti-
mates of the model parameters are discussed in Section 3.
The closed form expressions for the asymptotic covariances
of the estimators of model parameters and of the fitted
values are provided in Section 4. The published Canadian
retail trade data collected by Statistics Canada are used to
illustrate the methodology.

2. CONSTANT MULTIPLICATIVE BIAS
MODEL (CMBM)

In order to meet the benchmarking requirements of the
economic surveys, the following constant multiplicative
bias model (CMBM) has been proposed by Laniel and
Fyfe (1989; 1990). The model assumes that the biased sub-
annual estimates y, follow the relationship given by

v =08, +a, t=1,2,...,n 2.1

and the unbiased annual estimates zr follow the rela-
tionship

r = 20,+br, T=12,...,m, (2.2)
teT

where the subscripts 7 and T denotes respectively the sub-
annual and annual time periods, 8, is the unknown fixed
sub-annual parameter, 8 is an unknown constant bias
parameter associated with y,, and a, and b, are sampling
errors associated respectively with y, and z7. The above
model is a hybrid type (mixed) model in which bias is
multiplicative but errors are additive.

Before proceeding further, let us define the column
vectors Y = (¥, Y2, -+ s Yn) s 2= (21, 225 -+ 5 Zm) s
a=(a, a, ...,a,)", b= (b, by, ..., by)’, and
0 = (6,86, ...,0,)". The CMBM model, given by
(2.1) and (2.2), can be rewritten as

w = XBO + u
@.3)
= Xo8 + XpO + u,

where

Xs = (BI,:D")’, Xg=1(0":0")", Xp=(0":D")’,

u=(a:b’)’, D = (dr,),
2.4)

w=(y":z"),

I, is an identity matrix of order n, 0 is a zero vector or
matrix of an appropriate order, and dy, is an indicator
function equal to 1 for €T and to O otherwise. It is
assumed that the sampling error vectors @ and b follow multi-
variate normal distributions such that a ~ MN(0,V,,)
and b ~ MN(0,V,;). Also, in the general case, a and b
are correlated, which means that Cov(a,b) = V,;, =
Vi, # 0.1t is shown in the next section that the ML and
GLS estimators of the © and 3 are same for this model.
Thus the assumption regarding the normality of @ and b
is required only to obtain the Fisher information matrix
(and hence variances) of the ML estimators.

3. MAXIMUM LIKELIHOOD ESTIMATION

The log-likelihood function under CMBM can be
written as

nL) = — EM 000 —%1111 V| - %Q,
3.1
where
Q= (w— X30) V1w — X;0) (3.2
and

vV = (Vaa Vab) .
Voa Voo
The ML estimates of the model parameters © and 3
can be obtained, assuming ¥ known, by maximizing the
log-likelihood function (3.1) or equivalently by minimizing
the quadratic term Q (3.2). For this particular model, the
ML and GLS estimators of the model parameters are the
same and the distinction between them will be made only
if the need arises. Taking the first order partial derivatives

of In(L) with respect to © and (3, respectively, and then
equating them to zero, we have

dln(L) .
= X, V - X e = 07
30 gV W = X:0)
(3.3)
dln(L) .
= X5V w— X30) =0.
a6 6 ( 50)
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Since E(w) = X0 under the model (2.3), the above
equations are estimating equations in the sense of Godambe
(1960) and they are information unbiased. It is interesting
to note that X5 ¥ ~' and X4 ¥ ™' do not depend on w so
that the equations (3.3) converge to zeros and hence have
consistent roots as long as E(w) = X3 ©. That is, even
when Vin the above equations is replaced by some of its
consistent estimate the equations will provide consistent
estimates of the vector O and 3. Also note that the above
equations are non-linear in the parameters to be estimated
and it is not possible to obtain explicit expressions for the
estimators of © and 8. Therefore some iterative procedure,
such as the well-known Fisher-Newton-Raphson method
(also called method of scores by Fisher), may be used to
obtain the estimates. The elements of expected Fisher
information matrix needed to implement the Fisher-
Newton-Raphson method are provided in Section 4.

An alternate way to find the ML estimates of the model
parameters is to solve the estimating equations (3.3)
successively. By solving the first expression of (3.3), the
estimate of O, as a function of (3, is given by

6=008 =XV 'X) ' X5V w. (3.4

Similarly, by solving the second expression of (3.3), the
estimator of 3, as a function of 0, is given by

B=p(0) =[0Vh(y — ¥ Vip' (z — DB))]/
[0'V.56], (3.5
where

Viao = Voo — Voo VLZI Voa-
The ML estimates of © and 3 can be obtained by success-
ively calculating equations (3.4) and (3.5) until conver-
gence. This procedure has an advantage over the Fisher-
Newton-Raphson method as it is easy to implement.
However, for this kind of algorithm, the convergence is
usually very slow. We will compare these two methods in
Section 6 to check the speed of their convergence.
Once the ML estimates of the model parameters are
obtained, one can find the fitted sub-annual values y = 36
and the fitted annual values 7 = DO.

Initial Guess for © and 3
In order to obtain an initial guess for 3, say BO, let us
rewrite the model (2.3) as

w* = X§ 8 + u*,

wherew* = ((Dy)':(z — DO)')’, X4 = ((DO)’:O’)’
and u* = ((Da)’:b’) ’. Thus the ML estimate of § is
given by
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B =[x5 (v~ wrl[xs (v Xy, (3.6)

where

DV,, D" DV,
V* = Cov(u*) =
Vea D’ Vo

Using the fact that E(z) = D0, and replacing DO by z
in (3.6), an initial guess for § may be taken as

e [ Q)

3.7

[2/(DVaas D7) ' Dy][[2 (DVius D) ™" 2].

The initial estimate of © can be obtained from (3.4) by
replacing g by B,.

4. COVARIANCES OF THE ESTIMATORS

In this section, we derive the expressions for the asymp-
totic covariances of the ML estimators of CMBM
parameters by inverting the Fisher information matrix,
say (2. The asymptotic covariances of the fitted sub-annual
and annual values are provided by using the delta method.
First, let us consider the derivation of the covariances of
the ML estimators of © and 8. The elements of @ (i.e., the
negative expectations of the second order partial
derivatives of In(L)) are given by

[921n(L)]
0, = — e[Sy
| 50 00" |
9%1n(L)]
0, = - B[P —evate
as
and
0, =0 = — g|CID] _ gpoix
12 21 696[3 8 o-

Therefore, the Fisher information matrix of order (n +
1) X (n + 1) is given by

Q= [9“ Q‘Z]. 4.1)
Q21 Q22
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Inverting © by using the algebra of partitioned matrices
we have

Cov(0)

—1
ﬂ11.2)

Var(8) = 93},

“4.2)
Cov(8,8) = — 0759, 05
= - 079,05,
where
Q=9 — 0209, 9y,
(4.3)

=0y — 0 05",

©
S
|

Once the covariance matrix @ ~! is available, the asymp-
totic covariances of the sub-annual fitted values j can be
obtained by using the delta method (see e.g., Rao 1973).
Let A be the matrix of first order partial derivatives of y
with respect to the elements of (0’:8)’. Clearly, the
n X (n + 1)matrixis A = (81,,:0). Now, by using the
delta method, the asymptotic covariance matrix of j is
given by

Cov(p) = AQ~'A". 4.4)

Furthermore, the covariance matrix of the annual fitted
values £, from the standard multivariate normal theory,
is given by

Cov(Z) = DQ;LD’, 4.5)

where D and @,, , are as defined by (2.4) and (4.3),
respectively.

5. MAXIMUM LIKELIHOOD ESTIMATION
WHEN V,, = 0

In this section we consider the ML estimation of the model
parameters for the special case when the error vectors a
and b are uncorrelated (i.e., Cov(a,b) = V,, = V;, = 0).
Usually this is the case in sample surveys when annual and
sub-annual samples are drawn independently from each
other. Reduction in the results of Sections 3 and 4 can be
seen by substituting ¥,;, = Vj, = 0inthe equations. As
an example, for this special case, the ML estimators of ©
and B, given by (3.4) and (3.5), reduce to

0* =06"(8) = (8*V.' + D'Vy'D)"!

(BVa'y + D'Vyp'z)

and
Br = pr(0) = [0V y][/[e V. 8],

respectively. These equations must be solved successively
to obtain the required estimates.

Similarly, the elements of the Fisher information matrix
reduce to

0 = B*V;' + D'Vip' D,
05 = 0'V,'0,

on = O =pVle.

6. AN APPLICATION

Here we present an example using published Canadian
retail trade data which resuits from monthly and annual
retail trade surveys conducted by Statistics Canada. The
monthly retail trade estimates and their coefficients of varia-
tion (CV) are available from the Statistics Canada publication
‘“‘Retail Trade’’ (Catalogue No. 63-005 Monthly). There
are two types of monthly retail trade estimates, namely
preliminary and revised estimates. We use the revised but
seasonally unadjusted (raw) estimates for this example.
Since the CVs of the revised estimates are not available,
the CVs of the preliminary estimates are used to approx-
imate the variances of the revised monthly estimates. The
data for the period January 1985 to December 1988 are
used in this example. Another difficulty was to find the
autocorrelations for monthly retail trade estimates. Based
on some monthly retail trade data, Hidiroglou and Giroux
(1986) provided the estimates of autocorrelations at lags
1, 3, 6, 9 and 12 for three different kinds of stratum in
several provinces of Canada. As an approximation to the
autocorrelations of monthly retail trade estimates, the
averages of their estimates of autocorrelations for the
strata in the Province of Ontario and Standard Industrial
Classification Code 60 (Foods, Beverages, and Drug
industries) are used. The approximate (averaged) auto-
correlations, say p(k), are given in Table 1.

Table 1

Approximate Autocorrelations g (k) for the Monthly
Retail Trade Estimates

Lag k 1 3 6 9 12

p(k) 0.970 0.940 0.918 0.914 0.962
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The method of ordinary least squares and an algorithm
of McLeod (1975) for the derivation of theoretical auto-
correlations for autoregressive moving-average time series
was used to revise the observed autocorrelations. An
ARMA (1,0)(1,0),, seasonal multiplicative model was
fitted on the five observed autocorrelations by minimizing
the sum of squared differences between the observed and
theoretical autocorrelations. Then the estimated model
parameters and the above mentioned algorithm of McLeod
were used to calculate the autocorrelations for all other
lags of interest. Given that the ARMA model is correct for
theoretical autocorrelations, this approach provides a
consistent estimate of the autocorrelation function. These
final (revised) approximate autocorrelations for up to
47 lags are given in Table 2 and were used to approximate
the covariances for monthly retail trade estimates via
multiplication with the standard deviations.

Table 2

Revised Approximate Autocorrelations p* (k) for the Monthly
Retail Trade Estimates for up to 47 Lags

Lag k p*(k) Lag &k p*(k) Lagk p*(k) Lag &k p*(k)

0 1.0000 12 0.9602 24 0.8896 36 0.8100
1 0.9758 13 0.9345 25 0.8647 37 0.7869
2 0.9555 14 0.9126 26 0.8433 38 0.7669
3 0.9391 15 0.8943 27 0.8253 39 0.7501
4 0.9266 16  0.8798 28 0.8107 40  0.7363
5 0.9177 17 0.8687 29 0.7994 41  0.7254
6 0.9126 18 0.8612 30  0.7913 42 0.7176
7 0.9113 19 0.8572 31 0.7864 43 0.7126
8 0.9136 20 0.8567 32 0.7843 44 0.7106
9 0.9196 21 0.8595 33 0.7862 45 0.7114
10 0.9293 22 0.8661 34 0.7909 46  0.7151
1 0.9429 23 0.8760 35 0.7989 47 0.7217

At the time this study was performed, the annual retail
trade estimates were only available for years 1985 through
1988. These estimates are available from Statistics Canada
publication ‘“Annual Retail Trade’’ (Catalogue No. 63-223
Annual). The variances of annual retail trade estimates are
not available from the literature and have been computed
from the actual survey data. The covariances between
monthly and annual estimates are zero because the samples
of monthly and annual retail trade surveys were drawn
independently from each other. The annual retail trade
estimates are from dependent samples, thus their
covariances are non-zero. But the estimates of covariances
are not readily available via regular survey processing and
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a study would be required to obtain them. Consequently,
for the purpose of this example, we assumed that the
covariances between annual retail trade estimates are zero.

An interesting question was raised by one of the ref-
erees. He asked what will happen when the variances and
covariances of survey estimates are not known. This is a
difficult problem and cannot be answered so easily. How-
ever the model presented assumes these variances and co-
variances are known. In general, the estimating equations
used to find the maximum likelihood estimates need only
the consistent estimates of variances and covariances. It
is a common practice in benchmarking problems to
estimate these variances and covariances from survey data
since the theoretical values are never known (see, e.g.,
Hillmer and Trabelsi 1987).

The computations required for this example are per-
formed by an algorithm written in the GAUSS program-
ming language for micro computers. The initial estimate
of 8 for the iterative process, obtained form (3.7), is given
by B, = 0.9162. The initial estimate of the parameter
vector O is obtained from (3.4), after replacing 8 by B,.
Both the Fisher-Newton-Raphson and successive iteration
methods, as discussed in Section 3, are used to find the
ML estimates of the model parameters. The final ML
estimate of 3 is found to be very close to the initial estimate
and is given by 8 = 0.9016 with CV = 0.0065. It is
interesting to note that the Fisher-Newton-Raphson
method converged very quickly to a final solution for this
example. In fact it converged in only 6 iterations (about
1 minute) for a ten digit precision whereas the successive
calculations method converged, with the same precision,
in over 500 iterations (over 45 minutes), on a 386DX-25Mhz
personal computer. However, as they should, both methods
converged to the same final solution. The covariance
matrix of the estimated vector (0':8)’ is obtained by
inverting the Fisher information matrix @, given by (4.1),
after replacing parameters by their ML estimates. The
original series of the monthly retail trade estimates and the
benchmarked series of the ML estimates along with their
CVs are given in Table 3. The fitted sub-annual series
along with their CVs are also given in this table (last two
columns). The original and benchmarked series are also
plotted in Figure 1. The results show that the original
behaviour of the series is not disturbed by benchmarking
and a very large reduction in the CVs of sub-annual
estimates is achieved. The original series of the annual
retail trade estimates and fitted annual values along with
their CVs are given in Table 4. The variances of the fitted
values in Tables 3 and 4 are obtained by using expressions
(4.4) and (4.5), respectively, after replacing parameters by
their ML estimates. The results of fitted values also show
alarge reduction in the CV’s of the original estimates. That
is, the reliability of the monthly and annual series are
increased by benchmarking.
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Table 3
Monthly Retail Trade Estimates, ML Estimates of the ©,’s and Fitted Values
(all in millions of dollars) Along with their CV’s

Year Month e CV(y)* 6, Ccv(6,) P Cv(,)
1985 1 8,689.668 0.008 9,686.630 0.00210 8,733.384 0.00667
2 8,390.380 0.008 9,350.078 0.00210 8,429.951 0.00665

3 10,107.485 0.006 11,248.048 0.00233 10,141.146 0.00496

4 10,541.145 0.008 11,741.785 0.00200 10,586.294 0.00656

5 11,763.659 0.007 13,094.151 0.00198 11,805.576 0.00570

6 11,067.487 0.008 12,321.326 0.00189 11,108.803 0.00647

7 10,810.755 0.008 12,029.467 0.00184 10,845.666 0.00643

8 11,289.656 0.009 12,554.808 0.00206 11,319.309 0.00726

9 10,336.540 0.009 11,484.216 0.00205 10,354.073 0.00728

10 11,213.751 0.010 12,447.696 0.00256 11,222.737 0.00809

11 11,935.495 0.010 13,234.412 0.00258 11,932.034 0.00808

12 13,300.288 0.008 14,734.891 0.00188 13,284.853 0.00643

1986 1 9,753.373 0.009 10,794.009 0.00221 9,731.787 0.00716
2 9,249.279 0.009 10,227.777 0.00224 9,221.277 0.00709

3 10,609.952 0.008 11,729.293 0.00207 10,575.031 0.00622

4 11,637.936 0.008 12,860.626 0.00206 11,595.032 0.00614

5 12,695.108 0.008 14,024.139 0.00205 12,644.046 0.00605

6 11,826.254 0.008 13,059.556 0.00202 11,774.385 0.00598

7 11,940.908 0.010 13,164.500 0.00233 11,869.002 0.00740

8 11,866.547 0.010 13,070.205 0.00232 11,783.987 0.00743

9 11,540.397 0.009 12,712.283 0.00202 11,461.287 0.00670

10 12,208.845 0.010 13,430.932 0.00235 12,109.215 0.00747

11 12,201.498 0.010 13,418.219 0.00240 12,097.753 0.00747

12 14,479.170 0.009 15,933.951 0.00215 14,365.916 0.00670

1987 1 10,271.723 0.012 11,276.676 0.00357 10,166.956 0.00891
2 9,951.105 0.010 10,945.319 0.00261 9,868.208 0.00737

3 11,492.162 0.008 12,663.849 0.00230 11,417.620 0.00584

4 12,867.443 0.009 14,172.605 0.00235 12,777.901 0.00652

5 13,508.434 0.012 14,850.145 0.00343 13,388.765 0.00862

6 13,608.274 0.011 14,973.985 0.00287 13,500.418 0.00786

7 13,278.474 0.023 14,483.340 0.01066 13,058.057 0.00165

8 12,728.196 0.008 14,028.998 0.00227 12,648.426 0.00577

9 12,616.239 0.009 13,888.982 0.00233 12,522.188 0.00659

10 13,760.829 0.008 15,156.409 0.00227 13,664.890 0.00592

11 13,380.142 0.008 14,733.240 0.00227 13,283.365 0.00597

12 16,269.757 0.007 17,928.148 0.00241 16,163.867 0.00525

1988 1 11,134.013 0.010 12,234.529 0.00274 11,030.548 0.00753
2 10,959.374 0.010 12,042.761 0.00276 10,857.651 0.00754

3 13,177.788 0.008 14,508.565 0.00233 13,080.800 0.00602

4 13,666.311 0.009 15,035.737 0.00243 13,556.094 0.00676

5 14,267.530 0.006 15,742.039 0.00379 14,192.890 0.00448

6 14,432.944 0.009 15,884.130 0.00240 14,320.997 0.00673

7 13,960.825 0.009 15,363.957 0.00240 13,852.014 0.00673

8 13,691.315 0.008 15,073.691 0.00233 13,590.312 0.00606

9 13,773.109 0.008 15,159.075 0.00235 13,667.294 0.00613

10 13,900.743 0.009 15,279.950 0.00255 13,776.282 0.00696

11 14,453.461 0.009 15,884.279 0.00260 14,321.132 0.00700

12 17,772.990 0.009 19,529.791 0.00267 17,607.895 0.00702

*Source: Statistics Canada publication ‘‘Retail Trade’’ (Catalogue No. 63-005 Monthly).
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Figure 1. Original and Benchmarked Series of Monthly Retail Trade Estimates for All Stores in Canada

Table 4

Annual Retail Trade Estimates and Annual Fitted Values
(in millions of dollars) Along with their CV’s

Year ¥ CV(zy) ir  CV(Zr)
1985 143,965.400 0.00033 143,927.507 0.00032
1986 154,377.100 0.00031 154,425.491 0.00030
1987 169,944.600 0.00193 169,101.697 0.00128
1988 181,594.000 0.00137 181,738.512 0.00127

*Source: Statistics Canada publication ‘“Annual Retail Trade’’
(Catalogue No. 63-223 Annual).

7. CONCLUSIONS

The non-linear model discussed here seems to be very
appropriate for benchmarking an economic time series
from large sample surveys. The proposed iterative proce-
dures to find the maximum likelihood estimates of the
model parameters are very simple to implement in practice.
However, the convergence of the successive calculation
method is very slow in comparison to the Fisher-Newton-
Raphson method. The closed form expressions for the
covariances of the ML estimators are provided. These
estimates and their covariances may be used to make
inferences regarding model parameters. Furthermore,
expressions for the fitted sub-annual and annual values
along with their asymptotic covariances are also provided.
The methodology presented in this article seems to provide
a good fit to the Canadian retail trade data. However, the
goodness of fit tests for this and other benchmarking
models need to be developed.
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