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Optimum Two-Stage Sample Design for Ratio Estimators:
Application to Quality Control -
1990 French Census

JEAN-CLAUDE DEVILLE!

ABSTRACT

This study is based on the use of superpopulation models to anticipate, before data collection, the variance of a
measure by ratio sampling. The method, based on models that are both simple and fairly realistic, produces expres-
sions of varying complexity and then optimizes them, in some cases rigorously, in others approximately. The solution
to the final problem discussed points up a rarely considered factor in sample design optimization: the cost related

to collecting individual information.

KEY WORDS: Census quality control; Superpopulation model; Two-stage sample design optimization; Multiple

objective survey.

1. INTRODUCTION

The survey method used for quality control of French
census data pointed up a number of new and interesting
problems, three of which are dealt with in this paper. After
discussing them in general terms, we describe their specific
application to the census.

In all cases, the problem is one of optimizing a two-
stage survey in which the primary units are census collection
districts. Units are selected using an index k that varies in
a population U of districts and is, in concrete terms, a
processing unit of the census forms collected.

The first problem is that of estimating the frequency
of a characteristic in the population of forms (the fact of
containing an error). Keeping in mind the accuracy defined
for this estimate, an attempt is made to minimize survey
cost with a cost function in the form

CT = mCo + nCl, (11)

where m is the number of primary units (districts) sampled,
C, the cost of processing one PU, n the number of final
units (forms) sampled and C; the cost of processing one
final unit. The problem is fairly common when a mean is
to be estimated (see for example W. Cochran (1977)). Our
solution is more complete as it takes into account the great
variability in primary unit size.

The second, more unique, problem is also more signifi-
cant. The final population (i.e. the forms) is made up of
G separate groups (g = 1to G). We are looking for an
estimate of the frequency of occurrence of a characteristic
in each group, with an accuracy defined for each one. The
constraint resides in the fact that, because the primary
units are common to all groups, sampling within one PU
affects all groups.

The objective is to minimize survey cost, which is
expressed as

G
Cr = mC, + Y, n,Cy, (1.2)
g=1

where n, is the total number of final units in group g and
C, the cost of processing one final unit in group g. In
practice the groups are made up of the different types of
census forms.

The third problem is related to coding control. We do
have an a priori measure of the difficulty of coding each
form. Formally, therefore, we have, at the level of each
individual i in the population, a quantitative variable X;,
such that the probability (within a meaning to be defined)
of the individual having the characteristic to be measured
is approximately proportional to X;. We are seeking to
use this information to minimize the cost of control
(measurement of the frequency of the ‘‘coding error’’
characteristic) subject to a defined survey accuracy.

In each case, plausible and simple superpopulation
models allow us to evaluate the anticipated variance of the
survey. In a manner of speaking, this is an almost standard
illustration of model assisted survey sampling as described
in Sarndal, Swensson, Wretman (1992).

2. OPTIMUM ESTIMATE OF THE PROPORTION
OF RECORDS CONTAINING ERRORS
TWO-STAGE SAMPLE DESIGN

Each primary unit & (district) has a known number N,
of individuals (forms). Of this number, D, display the
characteristic of interest (i.e. contain an error). The aim
is to estimate:
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P=2Dk/ENk.

The survey is done by drawing a sample s of primary
units (PU), with m,, the probability of inclusion in the
first order and =, in the second order, to be determined.
Subsequently, if primary unit & is drawn in s, n, individuals
drawn by simple random sampling without replacement
are checked; d; denotes the number of forms containing
errors that will be found.

Estimator P, of P, = D, /N, is expressed P, = d; /n,
and D, = N, P, gives an unbiased estimate of Dy. The
estimator of P is expressed

y D
s T

_ @.1)
Y Ne
s Tk

P

This is the ratio of the unbiased estimators of D and N,
the total number of forms. Although this number is
known, estimator (4.1) is obviously more accurate than
1/NY D/ m.

We have

Var(P) = EVar(P|s) + Var E(P|s). (2.2
Now

Var(B|s) = N"2 ),

Ni P(1 —Pk)Nk(l 1 )

s 7f/% Ny —1 ne Ny
- N,
where N = E AL
s Tk
Hence
. NEP(1—P)N. /1 1
EVar(P|s) = N“2 ) & M(—— —).
v ™ Ne—1 e Ny
2.3)
Furthermore,

y 2
. s Tk
EB|s) = .
Ne

s Tk
The variance of this value is obtained by linearization

following introduction of variable Z, = D, — PN, =
Ni(Py — P).
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We obtain

Var E(B|s) = N~2 Var( Y ﬁ)

i

N

Taking into account that Y, Z, = 0:

2
VarE(P| s) = N—2<E Ze VY Ll m)~
k Tk

k#l T

2.4)

The sum of (2.3) and (2.4) gives us the variance of
estimator (2.1).

2.1 Introduction of a Model

Not only is the variance of P difficult to manipulate,
it contains unknown parameters. The problem may be
circumvented by formulating the hypotheses required to
produce a superpopulation model. It is assumed below
that the parameters of this model may be estimated from
the results of a preliminary test covering a very small
portion of the population. In the model, expectation is
denoted by E; (variance by Var;) and all the random
variables are assumed independent of the sampling
process.

The model has the following specifications:

(a) D, has a binomial distribution (N, p,). In the model,
P, is thus an estimator of p,.

(b) p, is itself random; we assume p; to be independent
and have the same distribution, with

E.p, = P,
Var; p;, = o?
for any k, in particular whatever the value of N,.

In the model, after conditioning with p,, we obviously
have

E;(Dy| px) = Ny pi»
Varg (Dy | pe) = Nipe(1 = pp).

The anticipated variance of Pis E ¢ VarP, to which we
now turn our attention. For its evaluation, we denote

@) E;(P, — P)? = E{(E;(P, — px + px — P)*| py)

_P(1-P) - ¢’

+ 02,
Ny
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(b) E; P (1 — Py) = E;(E;((Px — P?) | pi))

E; p,(1 )N"_1
£ Pk Py N,

Ny — 1
P(1 — P) — o®)—~——,
(P( ) — o) N,

(¢) E; Z, Z, = 0, because of the independence of Z; and
Z,, clearing one extremely cumbersome term and m,.

When we combine all the pieces of (2.3) and (2.4), a
minor algebraic miracle occurs, producing the expression

. N2 2
EVarP = N72 ), —k(02 + T—)
U Tk ny
(2.1.1)
where 72 = P (1 — P) — ¢°

(by nature a positive quantity)

Comment:

The algebraic miracle is easily explained if we are not
seeking the variance in the sole context of sample design.
It is in fact the result of a model slightly more general than
the one suggested.

Suppose we wish to estimate the total NY = ¥, Y; of a
variable Y and suppose that, to this end, a two-stage
sample is drawn: in the first stage, primary units k are
drawn with 7, probability and, in the second, n; final
units are drawn by simple random sampling.

We are assuming a model in which:
Y,‘ = Y + (043 + E,‘,

with o a variable linked to the PU of index k. o is
independent, subject to the same zero expectation and has
a variance o°. €; is also independent, centred and has
a variance 72. With 7} = mn; /Ny (N, = size of PU
number k), the Horvitz-Thompson estimator of the fotal
is Y = Y Y;/=}, the sum being extended to the sample.
In the model, and conditionally in the sample, we have

. N2 2
Var (Y| s) = E —%(02 + T—)

s Tk s

For this expression, expectation is again expressed in
the form of equation (2.1.1).
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2.2 Search for an Optimum Sample Design

The maximum variance of P is set by the criteria
selected for quality control. As the survey is repeated for
each processing unit, it is only natural to seek to minimize
the expected survey cost given in (2.1.1), i.e.

E Y, (C, + mC)) = Y m(C, + meCy).  (2:2.1)
5 U

The problem of optimization is expressed as:
To minimize E 7 (C, + 1, Cy)
U

with the constraints

N2 2
N2 E —k(02 + T—) <V,

Ny

and for any k, n, < Ny.

Let us now apply a Lagrange multiplier \ to the first
constraint - which will obviously be saturated - and
multipliers p, to the others. We obtain the solutions

NZ 2
C, + mC = \N—% (02 + l) (2.2.2)
Tk ny
and, for any k:
NZ 2
Cm =A% Doty 2.2.3)
e N

with
Wty = 0 if ny < Nk and Ky >0 if n, = Nk'

For the use of Lagrange multipliers, see for example
Luenberger (1973).

For all primary units in which g, = 0 (the largest), we

obtain
7/ C\"
n = — | —2 = n*,
1 C]

Each primary unit receives the same allocation, which
corresponds to the consistent accuracy principle. Going
back to equation (2.2.3), we observe that, again for these
primary units, the probability of inclusion 7, must be
proportional to size N, i.e.

(2.2.4)

1 = NA O ;T;Nk. (2.2.5)
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This is the standard proof of a self-weighting one-stage
survey in which the first stage is drawn with probabilities
proportional to a measure of size. (See for example
Cochran 1977).

Since n, is independent of N, it is impossible to have
n, = Nj or u, > 0 unless N, < n*. Equation (2.2.2)
gives us the probability of inclusion to within one factor:

2 2 ! 2 2\
l + 7°/N\" vinrs [ Neo™ + "
me = NN (TN e (D 2 TN
C, + CiN; NGy + G,

(2.2.6)

Relations (2.2.5), valid if N, = n*, and (2.2.6) valid
if N, < n*, establish that =, is proportional to a known
variable T, = f (Ny), for which the graph is given in
Figure 1.

To fully define the survey, the number m of primary
units to be drawn must still be set. T = Y T is also a
known quantity.

If we restrict ourselves to fixed size sampling, we have
m, = m T,,/T. m may be determined by importing this
value into the variance constraint, i.e.

N2
NVm = T ), ?"(02 + 72/ny).
U k

If, as a first approximation, assuming 7, = N, we
obtain the simplified form:

mvV, = a* + 72/n*.

We now have a full solution to the problem.

Figure 1. Graph of =, as a function of N,
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3. OPTIMUM ESTIMATE FOR A TWO-STAGE
SURVEY IN WHICH THE PRIMARY
UNITS ARE STRATIFIED

The harsh facts of the situation complicate the problem
somewhat: because a number of types of forms must be
controlled separately, a fairly general problem, described
below, arises.

For each primary unit (a district in a processing unit)
we know the population ;, of secondary units belong-
ing to G groups. The ““population’’ of PU number £ is
Nyt = Yz Ny, that of group g is Ny, = Yy Nig. As
described above, we are looking for the probability of
inclusion m, with which to sample PU number k, the
number of PUs to be drawn and the allocation n,, of the
sample among the various groups in PU &, knowing that
these ny, units are drawn by simple random sampling
from among the N, units available.

3.1 Search for an Optimum Model Assisted Design

In each group, we postulate a model identical to the one
formulated in section (2.1) (or the more general form
described in the comment on that section).

For g = 1 to G, we have therefore:

. B N2
v, = E; Var(B,) = N2 ZU: ~(0F + 7).

3.1.DH

The cost function is expressed in the general form (1.2).
We are seeking to minimize the expected survey cost

Cr= 2 m <co + ) nkgcg>, (3.1.2)
8

U

under constraints ¥, < V,, where quantities V, are exter-
nally fixed (e.g. quality of data to be obtained, tightness
of control.

In this form, the problem can prove fairly complex. We
write a general form of a Lagrange multiplier:

L =\Cr+ X \V,.

g

The problem sets A = 1, A, being multipliers to be
determined. In a simple variant, values are set for A,:
we wish to minimize a given linear combination of vari-
ances under a cost constraint. In all the hypotheses, by
differentiation with respect to ny, (considered a real
variable), we obtain

AR Cy = Ny N3§ Nig 75/ Nk (3.1.3)
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7 being for the moment to be defined to within one
factor, we may write

M2 N,
T Mg = (—g> 7, (3.1.4)
G, Ny,
By summing over k, we deduce that
A\
Eng,= 2 mme=(2£) 7. (.15
U Cg

The total size of the sample in each group is thus directly
linked to multiplier A, .

Differentiation of the Lagrange multiplier with respect
to m, gives us new relations which, when combined with
(3.1.4), are miraculously simplified to give

2
g
c, = Y, cg(—g) n,, (3.1.6)
g Tg
or, if we introduce the numbers
* CU " Tg
(@) 2
g g
we write
2
) ('ﬂ> = 1. (.1.7)
g\

As may be seen in equation (2.2.4), n¥ is the number
of secondary units to be drawn per PU if there is a single
group; 7y, is always less than ng.

From (2.1.4), (3.1.5) and (3.1.7) we obtain the relations:

1 2 Ni 2
W/% p— E )\g Gg (]\]_g> .
o g +&

- - (3.1.8)
C

Thus, 7 is proportional to T} such that T7 = ¥, .07
N3, /N3, which appears to be a satisfactory measure of
size. The relations (3.1.4) show that, if & is fixed, n, is
proportional to n* N> g, Ni,/N,,; taking into account
(3.1.7), we obtain

. N,
Nig = 1% xg/zagﬁ—"ﬁ T (3.1.9)

+g

3.2 Explicit Solutions to Two Specific Cases

(a) If A\, were known, i.e. if }, N,v, were minimized
under a cost constraint, then (3.1.2) and (3.1.9) could
be used to calculate 7}. By transfering

x =mT/T(T = E T, m nu'mber of primary
U units to be drawn

177

to budget constraint Cy < C%, we find that

m v N
cr =", (CoTk + 2 ConiNo, kg)
T'T N

g +g

ie.

)\'/z
m = Ch (co+ chn;-g—"g>.
- T

If a single \, is not equal to zero, it is fairly easy to
check that the result is the one given at the end of section
(2.2).

(b) The initial problem (min Cr under V, < V,) is re-
solved fairly easily in two specific cases.

bl - Maximum dispersion of the groups. For any PU
k, we have Ny, = Ny, for a given k. The prob-
lem is broken down into G separate problems,
each being of the type examined in section 2.

b2 - Minimum dispersion. The distribution is the
same in all the PUs; in other words, for any k and
any g, we have

N
Nig = New =52 with (N =) N+g>,
&g

T is then proportional to Ny, and 7, is quantity n; u,
independent of k.

With m;, = mN,, /N, we obtain by writing V, = V,:

_ 2 2%
mV, = o5 + Tg/n‘g U,

i.e.
‘fg2 -1 Tg%
m= 5t +u ' —2—.
Ve ng Ve

Thus we obtain G-1 linear relations between the ug‘l,

in principle permitting full resolution of the problem,
knowing that the sum of u/ is equal to 1.

3.3 A Numerical Algorithm for Determining the
Optimum Solution to the General Case

An iterative numerical resolution of the problem may
be achieved as follows.

Step 1: An approximate sample allocation is set in each
group (7, units in group g). The process may be
facilitated by using the approximate solution
based on the hypotheses in point (a) or point (b).

Step 2: The value of A, is determined from relations
(3.1.5):

_ 2 2
A\, = an+g/7'g.
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Step 3: m is determined from relations (3.1.8). Specifi-
cally, the sum of =y, sets the number of PUs to be
drawn.

Step 4: ny, is determined from relations (3.1.4). Subse-
quent iteration is possible by returning to step 2,
in the expectation that the algorithm will converge
toward the optimization solution.

Comment: The probability of drawing a type g unit is

A7
7rk”kg/ng = (-C‘-) Tg/Nig-
g

Because it does not depend on primary unit &, it is the same
for each unit in a given group g (equal probability survey).
Size n,, or at least its mathematical expectation, may be
deduced from the sample in group g. In practice, sample
size is sometimes set arbitrarily: this entails determining
\, or, implicitly, variances V,. This is another fairly
common result.

4. OPTIMUM ESTIMATE ASSISTED BY A
MEASURE OF THE DIFFICULTY
OF CODING A RECORD

The task is to estimate the proportion of forms con-
taining a coding error in universe U of all forms coded in
a given week by one regional branch. The problem is
identified by the following characteristic: because all IFs
are precoded, it is possible, using information drawn from
the trial census, to attribute to each one a positive
numerical variable X, representing its ‘‘difficulty’’. This
variable is calibrated in such a way that Y; (equal to 1 if
there is an error and 0 if there is not) has an “‘expectation”
proportional to X;.

The same cost control considerations suggest a two-
stage survey.

— In the first stage of the survey, we draw a sample s, of
districts k (primary units), with 7, unequal probabilities
to be determined. ¢ denotes the probability of inclu-
sion, double in value in this instance.

- In the second stage of the survey, a sample s, of final
units (forms) in primary unit sample & is drawn.
denotes the probability of inclusion of the unit in primary
unit £, m;x the probability of inclusion of the pair (i,j)
in the primary unit; and s = Uy, Sk, the sample of
final units.

Xi = Y X, denotes the total of X; in primary unit
k, X = Yrev, Xe = Lu Xi and similar notations are
used for all the variables. (U, denotes the population of
primary units - districts, U the population of final units -
forms).

Deville: Optimum Two-Stage Sample Design

The aim is to estimate a quantity in the form R =
Y Y/ Yy W;where W;is a known variable for each form.
This may be W; = 1 or W, = X, whichever measure of
the error rate seems the more satisfactory.

4.1 Selection of Estimator and Variance

(a) For primary unit k, the total Y; of the Y] for i€k is
commonly estimated by the ratio

Y = Xk( E Yi/7fi|k>/< E Xi/7l'i1k> = Xy dy
Sk Sk
where 4, estimates @, = Y, /X, with a slight biais.

(b) To estimate ratio Y/X, we use

rhio Yalk
s] Ky S1 Tk

A ko _
y Xy X
s Tk sy Tk
(¢) If we wish to estimate R, we note that
Y X
X w

where X and W are known totals (e.g. total difficulty, total
number of forms). As variable X; was selected for its
good correlation with Y;, an a priori valuable estimator
of Ris

R=a

T[>

and the only real question concerns the estimate of
a = Ekaka/X.

(d) we have
Var(d) = Var E(d| s)) + E Var(d| s;).

For the first term, taking into account the fact that d,
is an approximate unbiased estimator of ¢, , we may write

Var E(d|s;) = )%Var( ) M)

s] s

+2Y (4 - a)(a - a) M) @.1.1)

k#l Tk Ty
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For the second term, conditional on s;, we have

Z 4t o
Var S = (E > E Var(ak)—.
E Xy st Tk 51

Tk
For this quantity, the expectation is approximately

X7
X~2 ), E Var(d,| s,)2%, 4.1.2)
k

Tk

with

Y;
§ 7ri\k

% — Var 2 Y -
E A ik

s ik

Var(d, | s;) = Var

y (Y, — a X))?
Xk

i€k Tk

) (Y; -~ &, X)) (Y; — ”ka)Wijlk>_

kol Tijk Tk

As in the preceding sections, we arrive at formulae that
are complex and, in the final analysis, unusable. A model
will simplify things somewhat.

4.2 Introduction of a Model

The model has the same structure as those used
previously:

(a) a,is an independent random variable with the same
expectation and the same variance:

E:q.=a Var, q; = o’

The variance takes into account operator influence,
which we make no attempt to isolate, and also such factors
as day of the week, time of day, day of the month ezc.. . .

(b) Conditional on a,, Y;in primary unit k is an indepen-
dent Bernoulli variable with E; (Y;| k) = a,X;

Var (Y;] k) = ap X; — a}f X?.
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Comment:

Variable X;, which has no actual concrete meaning, is
defined to within one factor of scale. Conversely a.X; and
0X;, being probabilities, have an invariant physical inter-
pretation. In what follows, one must always keep in mind
that the results are invariant if X; is multiplied by an
arbitrary factor, on condition that ¢ and o are divided by
the same factor. Var (@) in particular has no concrete
meaning; Var (4X) is an exception.

As before, we examine anticipated variance, expecta-
tion under the model of the sum of (4.1.1) and (4.1.2).

For the first term, the expectation of the cross products
is of course zero. The expectation under the model for this
term is thus:

X2
X—zozz_k
ko Tk

For the second term, we find (in light of the definitions
given in 4.2.a and 4.2.b)
_ X2 (@ X; — at X?)
2 E Ak = E E, (X — apAj)
r Tk X Tijk

_x2 Y 1 y aX; — (a* + aZ)X,-Z.

k Tk i Tk

Therefore, overall

X7
E; Var(aX) = o ), =
keU, Tk

) 1 Y aX; — (a* + aZ)X,?‘

keU, Tk ick Tiik

No algebraic miracle occurs here. For simplification,
we assume that (a? + ¢2)X? is negligible in the face of
aX;. Numerically, we may expect aX; = 2to 5 x 1072
and (@ + ¢%)X? = 3t0 30 x 10 ~*: whence the approx-
imation

DV D M S

keU, Tk keU, Tk ick Wik

E; Var(4X) =

4.3 Sample Design Optimization

We use the following cost function:

C= Y (C, + Cinp).

S1



180

Here, ny = Yiex Wik is the size of the sample drawn in
district k (supposedly set at fixed size s;). Its expectation
is

Cr= E e (Co + Criy).
keU,
Let
T = nkP,-(with Y p = 1) and Oy = m ng.

i€k

The problem of optimization is now

Min: CO E Ty + Cl E Qk
k k

2
under:022&(+a2~l~2)—(i<’%.

P k Ok iex B

In this form, we are pleased to observe that the terms
in ¥; X;/P; may be minimized independently of the other
terms. In other words, n;, has no impact on this term.
Leaving optimization of the second stage of the survey
until later, S 2 denotes the optimized value of ¥;X;/P,.

With a Lagrange multiplier A, by differentiation with
respect to m, and @, we obtain

Xi
*C, = \o? — le.
Tk

7, proportional to X, | (4.3.1)

*2 v YV o%

C,\" S
*Cp = )\aSL whence | n, = {=2) — == |.(4.3.2)
Ot

Specifically, the primary units are drawn with pro-
babilities proportional to total difficulty, a standard
resolution (see for example Sdrndal, Swensson, Wretman,
1992, Chapter 12).

We now move on to sub-district sampling (second stage
of survey).

Beginning with a simple, straightforward case, forms
are drawn one by one. Minimization produces P; propor-
tional to [X; . A simple calculation shows that S} =
Y ick 4X; . We can now calculate n; using (4.3.2), and our
problem is fully resolved.

In practice, things are more complicated. For fairly
obvious reasons, only forms for entire households are
selected. In other words, the second stage of the survey is
a cluster survey. The values of P, are the same (i.e. P,,)
for all the members of a given cluster (household) m.

Deville: Optimum Two-Stage Sample Design

Let X, be the sum of X individuals i in household m.
The problem is to minimize ¥ X,,/P,, under ¥ n,,P,, = 1,
with #n,, the size of household m. We easily reach solution

P = o L n %
with X,, = X,,/n,,, mean difficulty of forms IF in

household m. From this we determine S} = Yn,, [X,,.

This solution enables us to determine the number 7, of
Sfinal units to be drawn using (4.3.2). However, the number
of clusters (households) has not been determined: this snag
was predictable. In fact, the cost function does not imply
this constraint. To obtain the number 1, of clusters to be
drawn, we arrange matters so that the expectation of the
number of final units is equal to n,. Thus,

mk( )y 47)/ X,
whence

Y%
Y %,

my = R

Taking into account (4.3.2), we also have

C\"a” 2‘17’"
e (G) 0

Cl g Xk

and the probability a given household being drawn is thus

My X, )
¥ %,

Following a number of algebraic manipulations, the
value of the optimum variance is found to be:

E, Var (4X)opy = (eX)* (|, aa "8 (C\"
£ oFT = T s x \c,) )

This form respects the homogeneous character of the
different factors. In particular, we have a S /X =
a” S*/aX: the denominator may be interpreted as total
number of errors in a lot; the numerator is homogeneous
for a given size.
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We now have a full solution to the problem.

Comment 1:

In both cases discussed, S} is multiplied by C”* if X; is
multiplied by C. The formula that gives », is thus invariant
on the scale of measurement.

Comment 2:

The solution that entails drawing clusters favours small
clusters made up of final units with a high index of difficulty.

Comment 3:

As in preceding sections, we determine the probability of
single selection, but not the probability of dual selection.
Therefore the algorithm for the draw, which sets the latter,
has no influence. This is quite common, keeping in mind
that the complementary data used to optimize the draw
determines m; and m;; but have no influence on dual
probabilities.

5. APPLICATIONS TO CONTROL BY SURVEY
OF THE QUALITY OF THE 1990
FRENCH CENSUS

5.1 Problem of Data Capture Control

The sampling techniques described in sections 2 and 3
were designed to control data capture for the 1990 Census.
A brief description of the operation would enhance
understanding of the nature of the statistical problems
involved.

The basic collection unit is the district, which corre-
sponds, in a city, to a block of houses and, in the country,
to a village or group of hamlets. It covers a population
that ranges from zero inhabitants to approximately 2,000
(the mean values are 150 dwellings and approximately
350 inhabitants).

When collection is completed and the results are
audited, the various census forms (specifically individual
forms (IF) and dwelling forms (DF)) are meticulously
counted for each district. The summary data for a district
are computerized; the forms themselves, collated into
district files, are forwarded to data capture.

Groups of districts comprising approximately 100,000
dwellings are constructed. The processing units (PU) are
processed for INSEE by contractors. INSEE, the “‘client”’
in terms of control theory, monitors the quality of each
contractor’s work by sampling a specific number of forms
in each PU.

The aim of the survey described in paragraph 2 is to
estimate, to an accuracy (standard deviation) of one point,
the proportion of forms containing an error in each PU.
The maximum proportion of forms containing an error
cannot exceed 4%. A trial census covering approximately
400 districts allows for an estimate of the values of the two
model parameters. We find:
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o2 = P? = 14.10~*
7% =P =4102.

Cost function (1.1) is assessed in terms of working
time. Based on on-site control measures, 5 minutes is the
estimate of the time required to process one district folder
(from the time it is taken from the shelf to the time it is
returned there) and 30 seconds the estimate of the time
required to process one IF. With the numerical data,
design optimization based on the hypotheses in section 1
allows for control of 40 districts per processing lot and
16 forms per district.

After discussing the solution with the team responsible
for the census, it emerged that two types of documents
(individual forms (IF) and dwelling forms (DF)) were to
be controlled. The first approximation had taken no
account of the latter, which are less likely to contain errors
and take only about half as long to code as IFs. However,
some districts (e.g. a commune with a thriving tourist
industry) contain a large majority of secondary dwellings,
and so produce many DFs but very few IFs. Because the
situation required in-depth study, the theory given in
section 3 was developed.

In the case of the census, the number of groups G is
equal to 2 (g = 1 for the IFs and g = 2 for the DFs).
The numerical data for the two groups are:

oy = P =P (1 — P)
— of = P, — 2P},

. P, = 0,04

- P, =001 o,=P, 13=P,—P;,

-, = (0,0075)? ©V, = (0,0150)2.

For the cost function, we selected C, = 5 minutes,
C; = 0.5 minute and C, = 0.25 minute. Optimization
of the problem according to the hypotheses in section 3.2.b
entailed examining 73 districts per processing unit. In
practical terms, it meant processing 15 individual forms
(and related DFs) for each district. For the districts that
produce fewer than 15 IFs, all IFs were processed. For
districts with zero IFs, 4 DFs were processed (if this number
was less than the number of DFs in the district).

Comment:

The method described in part 2 seems to have a fairly broad
field of application. One example: it was used to sample
the 1992 French survey on migration of foreign nationals.
For population centres with under 20,000 inhabitants, the
sample was drawn in two stages. The first stage of the
survey covered the 90 departments in which this type of
population centre occurs. The foreign population (based
on the census) was divided into 8 nationality groups, for
which equally accurate indicators had to be found.
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5.2 Problems Related to Coding

The second step in data preparation is known as
operation COLIBRI (Codification en Ligne des Bulletins
du Recensement des Individus). The operators in the
regional branches of INSEE receive forms classified by
district and code them for the 25% survey.

In practice, each operator works at a monitor that
displays the identifier of the next dwelling to be included
in the 25% sample, for which all IFs must be coded.

Coding quality is also controlled by survey. The control
unit is all the work done in one week in a regional branch.
The entire operation takes a little over one year in the
22 regional branches, and entails more than 1,000 surveys.
The household is the unit to be controlled (i.e. all the
IFs in a household drawn for inclusion in the control
sample). The objective is to estimate the proportion of
forms containing an error. This is done by automatic
detection of forms in which there is a no match situation.
The number of errors is determined by reconciliation.
The control theory is discussed in section 4 of this paper.
The index of difficulty of the forms was developed from
the data captured for a study based on the previous census
and by test. The procedure and results related to these
control measures are described in detail in G. Badeyan
(1992).

The practical and numerical application of the theory
rests on hypotheses concerning the orders of magnitude
of the different parameters (which requires linking them
to a simple physical interpretation). In the census prepara-
tion phase, without accurate prior measurement, we used
the values /¢ = 0.5 and C,/C, = 0.1.

Pursuant to a number of hypotheses concerning the
other parameters, and after discussing the matter with
experts, it was decided that the control would cover
50 districts, with approximately 20 IFs controlled in each
one (by region and by week). Since model parameters
can be re-estimated at any stage in the process, the initial
order of magnitude can obviously be adjusted as the
survey proceeds.

Final Comment:

The problem produces somewhat surprising results that
are worthy of consideration.

In the first instance, as we assumed it would be possible
to separate each form, the forms were drawn with a prob-
ability proportional to individual difficulty. We assumed,
to some extent, that the cost of using individual infor-
mation was zero.

In the second instance, the actual control process, it was
assumed that cost was infinite and the only information
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with negligible cost was the information related to an
entire household. The solution shows that the probability
of drawing an individual (IF) as a function of the mean
difficulty of coding the forms for the entire household of
which the individual is a member.

The same phenomenon occurs in the district draw. If
it is possible to separate the IFs, they are drawn with
probabilities proportional to total difficulty; within a
district, the difficult IF has a greater probability of selec-
tion. Conversely, suppose we are unable to separate IFs
within a district. This will be the case, for example, if the
designation of IFs to be controlled cannot be implemented
in real time because of inadequate processing facilities.
Districts would then be selected in proportion to mean
difficulty: within a district, it would be necessary to
proceed by simple random sampling.

In the first instance, the survey gives precedence to large
districts, from which difficult IFs tend to be drawn. In the
second instance, precedence is given to small difficult
districts, from which forms are selected with equal prob-
ability. In both instances, we are seeking to increase the
probability of surveying difficult IFs. The difference
resides simply in the possibility (i.e. the cost) of collecting
information when we need it.
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