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Conditional Properties of Post-Stratified Estimators
Under Normal Theory

ROBERT J. CASADY and RICHARD VALLIANT!

ABSTRACT

Post-stratification is a common technique for improving precision of estimators by using data items not available
at the design stage of a survey. In large, complex samples, the vector of Horvitz-Thompson estimators of survey
target variables and of post-stratum population sizes will, under appropriate conditions, be approximately multivariate
normal. This large sample normality leads to a new post-stratified regression estimator, which is analogous to the
linear regression estimator in simple random sampling. We derive the large sample design bias and mean squared
errors of this new estimator, the standard post-stratified estimator, the Horvitz-Thompson estimator, and a ratio
estimator. We use both real and artificial populations to study empirically the conditional and unconditional properties

of the estimators in multistage sampling.

KEY WORDS: Asymptotic normality; Regression estimator; Defective frames; Ratio estimator; Horvitz-Thompson

estimator.

1. INTRODUCTION

1.1 Background

A major thrust in sampling theory in the last twenty
years has been to devise ways of restricting the set of
samples used for inference. In a purely design-based
approach, as described in Hansen, Madow, and Tepping
(1983), no such restrictions are imposed. Statistical pro-
perties are calculated by averaging over the set of all
samples that might have been selected using a particular
design. Although it is generally conceded that some type
of design-based, conditional inference is desirable (Fuller
1981, Rao 1985, Hidiroglou and Sarndal 1989), satisfac-
tory theory has yet to be developed except in relatively
simple cases. Alternative approaches are prediction
theory, developed by Royall (1971) and many others, and
the Bayesian approach, found in Ericson (1969), which
avoid averaging over repeated samples through the use of
superpopulation models. A design-based approach to
conditioning was introduced by Robinson (1987) for the
particular case of ratio estimates in sample surveys.
Robinson applied large sample theory and approximate
normality of certain statistics to produce a conditional,
design-based theory for the ratio estimator.

In this paper, we extend that line of reasoning to the
problem of post-stratification. Convincing arguments
have been made in the past by Durbin (1969), Holt and
Smith (1979) and Yates (1960) that post-stratified samples
should be analyzed conditional on the sample distribution
of units among the post-strata. However, as Rao (1985)
has noted, the difficulties in developing an exact, design-
based, finite sample theory for post-stratification in general

sample designs may be intractable. Model-based, condi-
tional analyses of post-stratified samples are presented in
Little (1991) and Valliant (1993). The alternative pursued
here is design-based and uses large sample, approximate
normality in a way similar to that of Robinson (1987) as
a means studying conditional properties of estimators.

1.2 Basic Definitions and Notation

The target population is a well defined collection of
elementary (or analytic) units. For many applications the
elementary units are either persons or establishments. We
assume the target population has been partitioned into first
stage sampling units (FSUs). For person based surveys the
FSUs are commonly households, groups of households or
even counties, while for establishment based surveys it is
not uncommon that the individual establishment is an FSU.
In any event, the collection of FSUs will be referred to as
the first stage sampling frame (or just sampling frame).
It is assumed that there are M FSUs in the sampling frame
and they arelabeled 1,2, ..., M. Wealso assume that the
population units can be partitioned into K ‘‘post-strata’’
which can be used for the purposes of estimation.

We let y represent the value of the characteristic of interest
(e.g. weekly income, number of hours worked last week,
restricted activity days in last two weeks, etc.) for an ele-
mentary unit. Associated with the i FSU are 2K real
numbers:

yix = aggregate of the y values for the elementary units
in the /™ FSU which are in the k™ post-stratum,
N;; = number of elementary units in the i FSU which

are in the k' post-stratum.
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For each post-stratum we then define

Y, = LM,y = aggregate of the y values for all ele-
mentary units in the K post-stratum,

N, = Y ¥, N, =total number of elementary units in
the k™ post-stratum.

In what follows we assume that the NV, are known
fixed values. In some surveys, the N., may actually be
estimates themselves but our analysis is conditional on the
set of N.; used in estimation. In the Current Population
Survey in the United States, for example, each N, is a
population count projected from the previous decennial
census using demographic methods. The population aggre-
gate of the y values is given by Y.. = YK | Y,and the
total population size by N.. = Y &_; N.;. In sections 1-3,
we assume that the sampling frame provides ‘‘coverage’’
of the entire target population. In section 4, we consider the
problem of a defective frame, i.e. one in which the coverage
of the frame differs from that of the target population.

1.3 Sample Design and Basic Estimation

Suppose that the first stage sampling frame is parti-
tioned into L strata and that a multi-stage, stratified design
is used with a total sample of m FSUs. In the following,
the subscript representing design strata is suppressed in
order to simplify the notation. For the subsequent theory,
it is unnecessary to explicitly define sampling and estima-
tion procedures for second and higher levels of the design.
However, for every sample FSU, we require estimators
Siwand Ny so that By, [§] = yeand By, [Nyl = Ny
where the notation E, ., indicates the design-expectation
over stages 2 and higher. Letting =; be the probability that
the i FSU is included in the sample and w; = 1/, it
follows that the estimator Y., = Y7, w,; is unbiased for
Y., and the estimator N, = Y./, w;Nj, is unbiased for N.;.

1.4 An Analogue to Robinson’s Asymptotic Result

Robinson (1987) studied the ratio estimator (X/%;) 7,
under simple random sampling with y, being the sample
mean of a target variable y, X, being the sample mean of
an auxiliary variable x, and X the population mean of x.
Under certain conditions (J,, X,) will be asymptotically,
bivariate normal in large simple random samples. From
Robinson’s results it follows that the linear regression
estimator y, + B(X — X,) is asymptotically design-
unbiased conditional on ;. Results in this section extend
that result to complex samples.

Following Krewski and Rao (1981), we can establish
our asymptotic results as L — oo within the framework of
a sequence of finite populations {II; } with L stratainII,.
It should be understood that we implicitly assume (without
formal statement) the sample design and regularity conditions
as specified in Krewski and Rao and more fully developed
in Rao and Wu (1985). Details of proofs add little to those
in the literature and are omitted.
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Converting to matrix notation, we let Y =
(Y. YR, N =[Ny ... N4l Y=1Y .77,
N=[N,...Ny] and V = var{[Y N]’}] where
Y = (1/N..)Yand N = (1/N..)N. Note that ¥, which
uses N.. in the denominator, is a notational convenience
and does not estimate means in the post-strata. Analogous
to conditions C4 and C5 of Krewski and Rao (1981), we
assume that

. Yo
Iim — =gy, for k=1,2,...,K, 1
M N, i ¢}

N.
lim N—"=¢k>o for k=1,2,...,K, and (2)

L—o

Yu L

lim mV =% = [ ] (positive definite), (3)
Lme Yo La

where Y is partitioned in the obvious manner. Note that
we have again suppressed the subscript representing design
strata. Assumptions (1)-(3) simply require that certain key
quantities stabilize in large populations. Condition (2), in
particular, assures that no post-stratum is empty as the
population size increases. We now state the following.

Result: Assume the sample design and regularity conditions
specified in Krewski and Rao and that AZ§2X exists; then,
given NV, the conditional distribution of Yis asymptotically
MM, + Y155 (N —MzA),m—ch), where ¥, = ¥ —
L12X%' Yo, M, = lim Y = [¢; p ... ¢k pgl’ and
M, =Llin;N = [¢) ... ¢kl’.

Proof. This result is analogous to the result for K = 1
given by Robinson (1987) and follows directly from the
fact that the random vector

./2 Y — M — T35 (N = My)
m

N — M,

tends in distribution to

Mb) Ls))

Strictly, as in Robinson, we consider the conditional dis-
tribution of ¥ for NV in a cell of size e ~"* for small e.
Note that in some sample designs 1’N = N.. (such as
those in which a fixed number of elementary units are
selected with equal probabilities) in which case ¥5;' does
not exist; in such cases only the first K — 1 post-strata are
considered for the purpose of conditioning.

In the next section, the asymptotic mean of ¥ is used
to motivate a linear regression estimator of the population
mean of the y’s.
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2. CONDITIONAL PROPERTIES OF ESTIMATORS
FOR THE POPULATION MEAN

2.1 Estimators for the Population Mean

The population mean is, by definition,
K
p = lim(Y./N.) = lim (1"¥/1I'N) = Z i bk
k=1

where 1’ is a row vector of K ones. Note that the mean
u is not a finite population parameter but rather a limiting
value. In large populations (L — o) u and the actual finite
population mean will be arbitrarily close. Four estimators
of the population mean will be considered. The first three
are standard estimators found in the literature while the
fourth is a new estimator motivated by the asymptotic,
joint normality of ¥ and NV:

(1) Horvitz-Thompson estimator
Y‘}HT = IIY/I,N = 1/;.
(2) Ratio estimator

Yo = 1"P/1'N = 1"Y/1'N.

(3) Post-stratified estimator

where

r’ = [N,/N,, ...
(4) Linear regression estimator
Yir = [1(Y = LpEn' (N — My))].

The linear regression estimator is motivated by the form
of the large sample mean of the conditional random
variable ¥ | N listed at the end of section 1.4 and is very
similar to the generalized regression estimator discussed
by Sarndal, Swensson and Wretman (1992). The linear
regression estimator (4) was also discussed in the context
of calibration estimation by Rao (1992). It should be noted
that the ratio estimator does not require that N, or their
sum N.. be known. The Horvitz-Thompson estimator
only requires that N.. be known, whereas the post-
stratified and linear regression estimators require that
{N.,| k=1, ..., K} beknown. In practice, the linear
regression estimator has the additional complication that
the covariance matrices ¥, and ¥ ,, are unknown and
must be estimated from the sample. In implementing I—}L R
in section 3, the known finite population quantities
(1/N..)N will be used in place of the limiting vector M,.
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2.2 Conditional Expectations and Variances of the
Estimators

Using the asymptotic setup given earlier, the expecta-
tions and variances of the four estimators can be computed
conditional on N. For the case of post-stratification, condi-
tioning on Nina complex design is a natural extension of
conditioning on the achieved post-stratum sample sizes in
a simple random sample. In other situations, however, the
question of what to condition on is a difficult one that may
not have a unique answer (e.g., see Kiefer 1977). First,
define the following three matrices:

H=YpYn',
R =H — D(u), and
P =H — D(w),

where D(u) = diag(u, ..., #) and D(ug) =
diag{(u, ..., ug) are K x K diagonal matrices . Below,
we state the mean and variance of the four estimators
without providing any details of the calculations. When
the sample of first-stage units is large, each of the esti-
mators has essentially the same conditional variance. The
Horvitz-Thompson, ratio, and post-stratified estimators
are, however, conditionally biased, whereas the linear
regression estimator is not. Thus, the linear regression
estimator has the smallest asymptotic mean square error
among the four estimators considered here. Rao (1992)
also noted the optimality of the regression estimator within
a certain class of difference estimators and its negligible
large sample bias.

(1) Horvitz-Thompson estimator:
E[Pyr| N1 = p + [I'H(N — M,)]
var[ Yur| NI = m~'[1" (X1 — Lnln'T.01]
=m UV} = Vyre-

(2) Ratio estimator:

2 =3 N 2
E[Yz| N] =p + <]\_7_> [1'R(N — M,)]
= +[1'R(N = My)] + o(m™1)
var[ Yz | N1 = (N../N.) Ve

= VHT(C) + O(m_(3/2)).
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(3) Post-stratified estimator:
E(Yps| N1 = p + [F'P(N — My)]

=pu+ [l’P(Z\:’ — My)] +o(m™)

var[ ¥ps | 1\:’] m=r V.r)

= VHT(C) + o(m—(3/2)).

(4) Linear regression estimator:

As noted in section 1, some minor modifications of the
above formulas are necessary for designs, such as simple
random sampling, in which 1 'N.. = N... The derivation
of the requisite modifications is straightforward and is not
detailed here.

The large-sample biases of the first three estimators
depend on N — M,. In other words, their biases are
determined by how well the sample estimates the popula-
tion distribution among the post-strata. In some special
cases each of the first three can be conditionally unbiased.
The post-stratified estimator, for example, will be approx-
imately unbiased if 1’ (H — D (u;)) = 0’. This occurs
in simple random sampling and is possible, though certainly
not generally true, in more complex designs. The matrix
H can be interpreted as the slope in a multivariate regres-
sion of ¥ on NV or of ¥ on N when the sample estimates
are close to the population values. Thinking heuristically
in superpopulation terms, if E;(y;,) = pr Ny, as in
Valliant (1993), with E; denoting an expectation with
respect to the model, then E; (Y ;) = p, N.4. The slope of
the regression of Y., on N, is then u; and, in the unusual
case in which the Y.,’s are independent, H is diagonal.
In fact H = D(py), so the conditional design-bias of
the post-stratified estimator would be zero. If, on the
other hand, the model has an intercept, i.e. if E;(Y,) =
oy + upN.y, then the post-stratified estimator may have
a substantial conditional design-bias. We will use this line
of reasoning in the empirical study in section 3 to devise
a population for which Y, is conditionally biased.

Similar model-based thinking can be applied to the
Horvitz-Thompson and ratio estimators to identify
populations where the conditional design-biases will be
predictab}y small for large samples. Suppose, as above,
that the Y.;’s are independent. If each post-stratum total
is unrelated to the number of units in the post-stratum, i.e.
a peculiar situation in which E;(Y.,) does not depend
on N, then IA/HT is conditionally design-unbiased. If
E:(Y. ) = uN.,, implying that all elementary population
units have the same mean regardless of post-stratum, then
?R is conditionally design-unbiased.
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2.3 Unconditional Expectations and Variances of the
Estimators

Unconditionally, all estimators are approximately
design-unbiased as noted below. The relative sizes of the
variances depend on the values of Y5, Y5, p, and
D(py). This is similar to the case of simple random
sampling of a target y and an auxiliary x. In that case,
whether the ratio estimator, y, X/%,, or the regression
estimator, J;, + b(X — X,), has smaller design-variance
also depends on the values of certain population parameters.

(1) Horvitz-Thompson estimator:

(2) Ratio estimator:
E(¥x] = ¢ + o(m™)

var[Yg] = m ' [1'[ Ty — 20Xy + p2Lxnll]

+ o(m~ 672y,

(3) Post-stratified estimator:

E[Ypsl = p + o(m ™Y

var[ Yps] = m ' [1' [T} — 2D(u) T o
+ D(w) L2 D (m)11] + ofm~C2).

(4) Linear regression estimator:

The unconditional expectation and variance are the
same as the conditional expectation and variance.

3. SIMULATION RESULTS

The theory developed in the preceding sections was
tested in a set of simulation studies using three separate
populations. The population size and basic sample design
parameters for the three studies are listed in Table 1. The
first population consists of a subset of the persons included
in the first quarter sample of the 1985 National Health
Interview Survey (NHIS) and the second population consists
of a subset of the persons included in the September 1988
sample from the Current Population Survey (CPS). Both
the NHIS and CPS are sample surveys conducted by the
U.S. government. The variable of interest for the NHIS
population is the number of restricted activity days in the
two weeks prior to the interview and the variable of interest
for the CPS population is weekly wages per person.
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Table 1

Population Size and Basic Sample Design Parameters
for Three Simulation Studies

Pop. No. of g?n. (ii
Population Size FSUs FSSS
N M §
m
HIS 2,934 1,100 115
CPS 10,841 2,826 200
Artificial 22,001 2,000 200

Post-strata in the NHIS and CPS populations were
formed on the basis of demographic characteristics (as is
typically done in household surveys) in order to create
population sub-groups that were homogenous with respect
to the variable of interest. For the NHIS population the
variables age and sex were used to define 4 post-strata and
for the CPS population the variables age, race, and sex
were used to define 8 post-strata.

The third population is artificial; it was created with the
intention of producing a substantial conditional bias in
the post-stratified estimator of the mean. As noted in
section 2.2, Ypg will be conditionally biased if the FSU
post-stratum totals for the variable of interest, conditional
on the number of units in each FSU/post-stratum, follow
a model with a non zero intercept. With this in mind, we
generated the population in such a way that

E(ix| Nig) = o +BNy + yNii, )

where N, is the number of units in the k™ post-stratum
for the /" FSU and o, 6 and v are constants. Specificaily,
five post-strata were used with oy, = 100k (k =1, ..., 5),
8 = 10andy = —.05.Intotal two thousand FSUs were
generated with the total number of units in the i™ FSU,
say N;., being a Poisson random variable with mean 10.
Then, conditional on &;., the numbers of units in the five
post-strata (i.e., Ny, Ni, ..., Nis) for the i FSU were
determined using a multinomial distribution with para-
meters N;. and p, = 20fork = 1,2, ..., 5.

For FSUs having N;, = 1, the value of the variable of
interest for the /™ unit in the £" post-stratum for the /™
FSU was a realization of the random variable

Yiik = ap/Nig + B+ ¥Ny + €1; + e + €354V,

(J=1, ..., Ny; Ny = 1),
where €;, € and e;;;; are three independent standar-
dized chi-square (6 d.f.) random variables. This structure
implies that E(y;, | N;¢) is given by (4). Furthermore, the
values of the variable of interest for units within an FSU
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are correlated and the correlation depends upon whether
the units are in the same post-stratum or not. This same
algorithm was used in each of the 100 design strata. Twenty
FSUs were generated in each design stratum giving a total
of 2,000 FSUs.

A single-stage stratified design was used for the NHIS
population with “*households’’ being the FSUs. Ten design
strata were used and an approximate 10% simple random
sample of households was selected without replacement
from each stratum. Each sample consisted of 115 house-
holds and each sample household was enumerated com-
pletely. A total of 5,000 such samples was selected for the
simulation study.

Two-stage stratified sample designs were used for both
the CPS and artificial populations. For the CPS popula-
tion, geographic segments, employed in the original survey
and composed of about four neighboring households,
were used as FSUs and persons were the second-stage
units. In both populations, 100 design strata were created
with each stratum having approximately the same number
of FSUs and a sample of m = 2 FSUs was selected with
probability proportional to size from each stratum using
the systematic sampling method described by Hansen,
Hurwitz and Madow (1953, p. 343). Thus, 200 FSUs were
selected for both populations. Second stage selection was
also similar for both populations. For the CPS population
a simple random sample of 4 persons was selected without
replacement in each sample FSU having N;. > 4 and all
persons were selected in each sample FSU where N;. < 4.
For the artificial population the within FSU sample size
was set at 15 rather than 4 which resulted in the complete
enumeration of most sample FSUs. A total of 5,000 samples
were selected from each of the populations for the simula-
tion study.

In each sample, we computed I_?HT, ):’R, ):]PS and two
versions of Y;p. For the first version of the regression
estimator, denoted Y; z(emp) in the tables, H was estimated
separately from each sample as would be required in prac-
tice. Each component of ¥ ,, and ¥ ,, was estimated
using the ultimate cluster estimator of covariance, appro-
priate to the design, as defined in Hansen, ef a/. (1953,
p.419). The second version, denoted Y, g(theo) , used the
same value of H in each sample, which was an estimate
more nearly equal to the theoretical value of the H matrix.
For the CPS and artificial populations, the theoretical H
matrix was estimated from empirical covariances derived
from separate simulation runs of 5,000 samples. For the
NHIS population the design was simple enough that a
direct theoretical calculation of H was done. As the sample
of FSUs becomes large, the performance of I_}LR(emp)
should approach that of Y, r(theo). The performance of
¥; r(theo) is, consequently, a gauge of the best that can be
expected from the empirical version of the regression
estimator for a given sample size.
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Restricted activity days Restricted activity days
025 1 | | | T T T | | 025
0.20 — -— 0.20
0.15 |~ — 0.15
0.10 — 0.10
0.05 — — 0.05
0 0
-0.05 |— — -0.05
0.10 | ] | | | | 1 I | 0.10
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Theoretical bias factors
HT e PS ® | (emp) o L(theo) —-—---— Rato
Figure 1. HIS simulation, m =115
Weekly wages Weekly wages
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Theoretical bias factors

.......... PS ® |_(emp) o L(theo)

Figure 2. CPS simulation, m = 200
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3 3
[ ] ) .
2 — o —] 2
L — 1
g B
0 (o] . 0
Q
-1 — — 1
2 l | ] | ] | ] 2
-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
Theoretical bias factors
HT e PS ® L(emp) o L{theo)
Figure 3. Artificial population simulation, m = 200

Table 2 lists unconditional results summarized over all
5,000 samples from each population. Empirical root mean
square errors (rmse’s) were calculated as rAmse()_A’) =
[L5_,(Y, — Y)*/S]” with § = 5,000 and ¥, being one
of the estimates of the population mean from sample s.
In the CPS and artificial populations, results for the
Horvitz-Thompson and the ratio estimators were nearly
identical so that only the former is shown. Across all
samples, the bias of each of the estimators was negligible.
As anticipated by the theory, ¥, g(theo) was the most
precise of the choices, although the largest gain compared
to Ypg was only 4.7% in the artificial population. The
need to estimate H destabilizes the regression estimator as
shown in the results for }_;LR(emp). For the NHIS and
CPS populations, YLB(emp) has a larger root mse than
both Y;g(theo) and Ypg. The most noticeable loss is for
the NHIS population where the root mse of )A’LR(empA) is
about 15% larger than that of either ¥, g(theo) or Yps.
This result is consistent with the smaller FSU sample
size and hence less stable estimate of H for the NHIS
population.

Figures 1-3 present conditional simulation results. The
5,000 samples were sorted by the theoretical bias factors
presented in section 2.2. The sorting was done separately
for each of the estimators of the population mean. In the

cases of the two regression estimators, which are theoret-
ically unbiased in large samples, the bias factor for ¥pg
was used for sorting. The sorted samples were then put
into 25 groups of 200 samples each and empirical biases
and root mse’s were computed within each group. The
group results were then plotted versus theoretical bias
factors in the figures. The upper sets of points in each
figure are the empirical root mse’s of the groups, while the
lower sets are empirical biases. The two regression estima-
tors are conditionally unbiased as expected. The other esti-
mators, however, have substantial conditional biases that,
in the most extreme sets of samples, are important parts
of the mse’s. For the CPS population, the range of the bias
factors for Yy ris so much larger (—10to 10) than that of
the other estimators that we have omitted Yy from the
plot for clarity. In the neighborhood of the balance point,
N = N, all estimators perform about the same, but,
because of a lack of data at the design stage, we have no
control on how close to balance a particular sample may
be. The safest choice for controlling conditional bias is,
thus, ¥; g(emp). This finding is similar to that of Valliant
(1990), who noted that, in one-stage, stratified random or
systematic sampling, the separate linear regression
estimator is a good choice for controlling bias, conditional
on the sample mean of an auxiliary variable.
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Table 2

Simulation Results for Three Populations.
5,000 Samples were Selected from Each Population

Estimator bﬁ:l_):’ rmse ( }_;) 100*[@ — 1]
(%) rmse (Y pg)
HIS population
Yur 12 .141 .05
Yr .10 .141 .02
Yps 11 .141 0
Y, p(emp) .19 .162 14.71
¥, r(theo) .08 .140 - .96
CPS population
Yor - .01 10.25 15.8
Yps 0 8.85 0
¥, r(emp) -.03 9.11 3.0
Y, g(theo)  —.01 8.79 -6
Artificial population
Yer .02 2.30 -2.93
Yps 12 2.37 0
¥, r(emp) .04 2.31 —2.41
Y, r(theo) .02 2.26 —4.70

4. DEFECTIVE FRAMES

The conditional biases discussed in the previous sections
were of a technical, mathematical nature. A more serious,
practical problem in many surveys, that can also lead to
bias, is poor coverage of the target population; we address
this situation in this section.

4.1 The Basic Problem of Defective Frames

In most real world applications not all of the elemen-
tary units in the population are included in the sampling
frame. In household surveys, it is not unusual for some
demographic subgroups, especially minorities, to be poorly
covered by the sampling frame. Bailar (1989), for example,
notes that in 1985 the sample estimate from the CPS of
the total number of Black males, ages 22-24, was only 73%
of an independent estimate of the total population of that
group. Corresponding percentages for Black males, ages
25-29 and 60-61, were 80% and 76%.
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To formalize the discussion of this type of coverage
problem, suppose that N., now refers to the number of
elementary units in the frame and that N, is the actual
number of population elements in the £'" post-stratum.
In the discussion below terms with a dot on the top are
population values while terms with no dot are frame
values. Letting Y., be the aggregate of the y values over
all population elements in the k™ post-stratum, then it
follows that the true population mean is given by

Y.y

T0-
|z

i

Z

K Y- K
. k Lok L.
—Jin ¥ = Y b
' - k=1 - N'k k=1
N

=

=
1l

Obviously, all four of the estimators of the mean given in
section 2 are biased (both conditionally and uncondi-
tionally) for j; the additional bias term being given by
u — pfor all of the estimators. It should be noted that this
bias term is o(1) so it will dominate the other bias terms
listed in section 2.2 as the number of FSUs increases. There
is another even more basic problem; namely, in most cases
the individual frame values M., are not known so only the
ratio estimator is well defined. For example, the Horvitz-
Thompson estimator of the mean as defined in section 2
requires N. ., the total number of units in the frame, but
N..may be unknown. On the other hand, the N, (or least
the proportions ¢,) may be known from independent
sources and hence be available for the purposes of
estimator construction. In household surveys, for instance,
the N, may come from intercensal projections of popula-
tion counts.

Before attempting to construct unbiased estimators for
4 it should be noted that

K
= p= E (dr — &) (px — fii0)

k=1

K K
+ E (dr — bu)irx + E Grlpx — ) -

k=1 k=1

So, if we assume that for each post-strata the mean of the
units in the frame is equal to the true population mean,
(i.e. uy = jy for every k) then the bias term reduces to

K K
p— = Y (G = dme = Y (S — e

k=1 k=1

This is very strong (and also very expedient) assumption;
however, addressing the problem of defective frame bias
without such a condition is virtually impossible.
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4.2 Alternative Estimators

The basic strategy is to construct an estimator for the
defective frame bias, u — g, and then subtract this esti-
mator from the estimators studied earlier. Two cases need
to be considered:

IA
-~
IA

Case 1. The frame parameters {¢;, 1
are unknown, and

K}

IA

Case 2. The frame parameters {¢,, | < k = K}

are known.

Case 1. For this case only the ratio estimator is well defined
and the only obvious candidate for an estimator of the
bias is

K 5 K 5
~ NA/‘. . Y.k 2 . Y-k
B, = (T—¢k>T=YR_E¢‘kT-
L \V. - N

Using the strategy given above, the resulting estimator for

Lis

This is the “‘post-stratified’’ estimator usually found in
practice. It is straightforward to verify the following pro-
perties of Y:

E[Y, | Nl =i+ [p'P(N — M)] + o(m™")

pe [ 8]
¢ ¢ ok

var[ V)| N} = m~'[p'V.p) + o(m~ )

where

E[Y,] = 4+ o(m™h

var[ Y1 = m~'p [T — 2D (m) Lo

+ D(pi) Lo D(pg)lpl + o(m_(3/2))‘

The attempt to correct for the defective frame bias is
successtul in the sense that Y, is unconditionally unbiased
for . However, the conditional bias is still present.

Case 2. For this case it can be verified that the estimator

R - N
B, = (1 —P)'[Y— 21222_21(]\7 _M2>:|,
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is approximately, conditionally unbiased for p — g and,
as Y, p is conditionally unbiased for g, it follows directly
that the estimator

= -~ - = N
Yy=Yr -8B, =p’ [Y - Ynra! (1\"’* - Mz)]

is both conditionally and unconditionally, approximately
unbiased for j. It can also be verified that

var[)_}2| ]\:7] =var[Y,] = m~ ' [p'V.p].

In addition to the problems of the linear regression
estimator cited earlier, this estimator is usually not even
well defined as the frame parameters {¢,, ] < k <K} are
rarely, if ever, known when the frame is defective.

5. CONCLUSION

This study has generalized the asymptotic techniques
suggested by Robinson (1987) to study the problem of post-
stratification from a design-based, conditional point-of-
view. An important paper in the conditional study of post-
stratification was that of Holt and Smith (1979), one of
whose basic premises was that ?ps is conditionally un-
biased. This will be true (at least asymptotically) only if
1'(H — D(w,)) = 0’; so, in general, this premise is false.
In fact, simple random sampling of elementary units may be
one of the few realistic cases where this basic premise is true,

From a conditional point of view the linear regression
estimator is preferable among the four studied here. Only
the regression estimator is conditionally unbiased. The
post-stratified estimator is no better (or worse) than either
the Horvitz-Thompson or the ratio estimator; all have con-
ditional bias terms of order m ~ ("), All of the estimators
have the same conditional variance to terms of order m ~!;
furthermore, the conditional variance does not depend on
N, the vector of estimated proportions in the post-strata.
Consequently, because of its conditional unbiasedness, the
regression estimator has the smallest conditional mean
square error.

The Horvitz-Thompson, ratio, and post-stratified esti-
mators are unconditionally unbiased. Although somewhat
illogical, one might attempt to make a case for the esti-
mators by comparing their unconditional properties with
the conditional properties of the linear regression estimator.
But even from this mixed perspective, the ?L r(theo) esti-
mator is clearly superior to the others. Not only is it condi-
tionally unbiased, but the conditional variance of the linear
regression estimator can be no larger than the unconditional
variance of any of the other estimators. In large FSU samples,
the empirical version of the regression estimator will inherit
these good properties of I_?LR(theo) and also perform well.
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The problem of a defectiv : frame introduces complica-
tions not found otherwise. Each of the estimators of the
mean studied here is biased both conditionally and uncon-
ditionally. Bias adjustments are possible only under the
restrictive assumption that the mean of units within each
post-stratum is the same for all population units whether
they are included or excluded from the frame.

An area we have not addressed is variance estimation.
A design-based variance estimator for the regression esti-
mator can be obtained using the methods of Sarndal,
Swensson and Wretman (1989).
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