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Double Sampling for Stratification

R.P. TREDER and J. SEDRANSK!

ABSTRACT

Double sampling is a common alternative to simple random sampling when there are expected to be gains from
using stratified sampling, but the units cannot be assigned to strata prior to sampling. It is assumed throughout
that the survey objective is estimation of the finite population mean. We compare simple random sampling and
three allocation methods for double sampling: (a) proportional, (b) Rao’s (Rac 1973a,b) and (c) optimal. There
is also an investigation of the effect on sample size selection of misspecification of an important design parameter.

KEY WORDS: Optimal sample sizes; Two phase sampling.

1. INTRODUCTION

Suppose we wish to estimate the finite population mean
in a stratified population, but the units cannot be assigned
to strata prior to sampling. Typically, the number of units
in each stratum is unknown. Then, double sampling is
commonly considered as an alternative to simple random
sampling. With double sampling, a simple random sample
of size n’ is selected from a finite population of N units
with n/ units identified as members of stratum i,
i =1, ..., L. The second phase sample is a set of L
independent simple random subsamples where, in stratum
i, n; units are selected from the »/ identified in the first
phase. Letting y;; denote the value of Y for the j-th unit
in the second phase sample in stratum i, the finite popula-
tion mean, Y, is estimated by

il

L
= E "vi)_)i’
i=1

where w; = n//n’ and y; = ¥4, y,/n;.

Let o(n/) and o(n;) denote, respectively, the set of
values for first phase and second phase sample units in
stratum i, n’ = (ny, ..., n;) and o(n’) the set of
values for all first phase sample units. Also, let 7, be the
mean of the valuesin g(n’), 5/ the sample mean of o(#;),
s/t = E,"'L (5 — ¥/)*/(n/ — 1) the sample variance of
o(n/), S = Zjﬁil(Y,j — Y)2/(N; — 1) the population
variance in stratum i and S the analogous finite population
variance. It is assumed throughout that n’ is sufficiently
large that Pr(n/ = 0) is negligible. Noting that
1 =< n < ni’,

E(Y) = Eyw)(E(Y| o(n’))) = ¥

and

V(Y) = VyuhEL Y| a(n’))
+ E, () {V(Y] a(n’)))

= Va(n’)(yn’)

L 1 1
+ E,(,,,,{ El wis/ 2 (5,- - n——)} 1.1
in
= S? i _ 1
n’ N

+Er{iw~2S~2<£—i>} 1.2)
n [t n; ni’ M .

i=1

We assume the linear cost function
L
C=cn + E cn;, (1.3)
i=1

where ¢’ is the per unit cost associated with sampling a first
phase unit, and ¢; is the per unit cost of measuring Y in
stratum 7. The sample sizes, n’ and the n;, are selected
subject to fixed total cost or to fixed total expected cost.

In this paper we compare three double sampling
designs, differentiated by the way that the sample sizes,
n’ and the n;, are chosen. We also compare these
methods with a simple random sample having the same
fixed total cost.

The alternative designs are presented in Section 2 and
compared in Section 3. Section 4 presents the results of an
investigation of the effect on sample size selection of
misspecification of an important design parameter.
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2. ALTERNATIVE METHODS

2.1 Proportional Allocation

For proportional allocation, n; = nw; where n =
Y £ n;. Then, using (1.2), the variance of Y under propor-
tional allocation, ¥p, can be shown to be

11 1 1)\ &
e (5N () E e
n N n o n) =

where W; = N;/N is the population proportion of units
in stratum i. Substituting n; = nw;in (1.3), the expected
total cost is

Cp=c'n’ + cn, 2.2)
where ¢ = Y% Wc;. Choosing n’ and »n to minimize
(2.1) subject to fixed total expected cost, Cp = C*, yields

C*
n = —, 2.3a
¢’ + Jc'cG ¢ )

C*
n= ——— 2.3b
c+ Jc'c/G ¢ )
where G = S%/S3, 83, =Y, W;S?and S3 = S? — Sj.

Using (2.3),
1

Vp = — {(c' + Jc’cG) 5%

C*
SZ
+ (c + /c'c/c;> S%V} -5 2.4

2.2 Rao’s Allocation

Rao (1973a,b) proposes selecting #; = v;n; where the
»; (0 < v; < 1) are constants fixed in advance of
sampling. Using this allocation in (1.2), the variance of ¥
under Rao’s allocation, Vg, can be shown to be

Vi = ! 1SZ+12L:WSZ1 1 (2.5)
R n N n’ b o v; ' '
The corresponding expected cost, Cpg, is
L
Cr=cn +n' E c;viWi. (2.6)
i=1

The »; which minimize (2.5) subject to Cr = C* satisfy

p = Siic’ , Q.7
Splei
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provided that the right side of (2.7) does not exceed 1 for
any i. Otherwise, an algorithm is required to determine the
optimal »; (see Rao 1973a,b). Since Rao minimizes the
unconditional variance, the optimal »; do not depend on
the observed n/ . After determining the »;, n’ is obtained
from (2.6). Assuming that »? < 1 for each i,

2

1/ & 25
Ve = CT*<I:EI WiSiJe; + SBE) N (2.8)

2.3 Optimal Allocation

The optimal allocation of the sample sizes can be
obtained by minimizing (1.2) directly. For fixed n’ and
n’, select the n; to minimize

L
1 1

) w?S?(— - *,>, 2.9)
n; n;

i=1

subject to fixed remaining cost, C* — ¢’'n’ =Y Lien
and #; < n/. An algorithm is required to determine the
optimal n; given the n/; see Hughes and Rao (1979) and
Treder (1989). One may find the optimal value of n’ by
evaluating (1.2) for a sequence of ‘‘trial’’ values of n’.
For each such n’, one estimates the expected value of
(2.9) using Monte Carlo sampling of n’ (see Booth and
Sedransk (1969) and Treder (1989)). Note that the algorithm
needed to find the optimal #; is straightforward, and the
Monte Carlo sampling of n’ given n’ is simple. There are
several differences between the optimal allocation and
Rao’s allocation. In the former, total costs will not exceed
C* while in the latter the allocation only guarantees that
the budget will be satisfied on the average. In the latter,
the »; are fixed in repeated sampling while in the former,
allocation of the n; depends on the observed n’. Of course,
additional effort (i.e., the Monte Carlo sampling) is
needed to find the optimal allocation. In contrast to the
optimal allocation, Rao’s method permits selection of the
second phase sampling fractions prior to observing the n;
(see (2.7)). See Sections 3 and 4 for additional discussion.

3. COMPARISONS

3.1 Proportional vs Rao’s Allocation

Assuming that »? < 1,i = 1, ..., L, and using (2.4)
and (2.8), it can be shown that

1 S
VP_VR:E“(SW_JE(:)X

28gjc’c + ¢ Sw + S , (3.1
‘ Je
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Table 1

Percent decrease in variance, R, for Rao’s allocation compared to proportional
allocation for a selection of textbook examples

R
Reference L 52 G C* for ¢’ =1 and ¢ =
1 2 5 25
Cochran (1977), p. 93 2 52,448 17,646 0.51 30 15.1 16.6 18.6 21.6
Hansen et al. (1953), p. 205 3 2,835,856 1,467,632 1.07 1,000 48.7 55.1 62.3 70.9
Sukhatme ef al. (1984), p. 118 4 72,238 23,509 0.48 100 11.8 13.5 15.7 18.9
Cochran (1977), p. 111 7 619 343 1.25 1,000 11.2 11.7 12.4 13.7
Hansen et al. (1953), p. 202 8 47,393 45,595 25.36 1,000 10.5 11.0 11.5 12.0
Hansen ef al. (1953), p. 202 11 47,393 44,974 18.59 1,000 229 24.1 25.4 26.7
Hansen ef al. (1953), p. 235 11 2,039,184 820,722 0.67 1,000 21.3 24.8 29.1 35.1
Hansen et al. (1953), p. 202 12 47,393 40,252 5.64 1,000 16.7 18.3 19.8 21.6

Note: R = 100(Vp — Vp)/Vp with Vp and Vg defined in (2.1) and (2.5) and C* is the total budget. The cost function is defined in (1.3), and the

variances (SZ, S%V, G) in (2.3).

where S, = Y £, WS, [c;. Recalling that ¢ = ¥ £, Wc;and
using the Cauchy-Schwarz inequality, S,, — Sc/fc = 0.
Thus, as expected, Vp — Vi = 0. Defining S =L £,
W:S;and 8, =Yz, WS Vy; with v; = ¢/ L f=y Wg;,
and using (3.1), it can be shown that

1 Sp > @
Vo — Ve = —12Jjc’c -} +cd x{Spr—S
g . C*{ <Sw+5> } (W )

1 . = c
+ 5{2H53+c(s+sy)} X <S—S.Y>.

(3.2)

The first term in (3.2) is the reduction in variance if all
sampling costs are equal while the second term in (3.2) is
the reduction if all strata variances are equal. As expected,
ifC,' = candS,- = S, Vp = VR'

We present in Table 1, the values of R = 100(Vp — V)
/Vp corresponding to a set of textbook examples with
¢; = c. In parallel columns we give characteristics of the
associated populations (L, S?, 8%}, G = $%,/5%) and C*
together with the values of R correspondingtoc/c’ = 1,
2, 5 and 25. This set of examples represents a broad range
of conditions where stratified sampling may be used. For
a given value of ¢, the range of values of R indicates the
wide range of gains that may be attained. It is clear from

Table 1 that there may be substantial reductions in
variance if one uses Rao’s allocation, even when second
phase strata sampling costs are equal and in situations
when the stratification is not especially effective (note the
large values of G for three examples). As ¢ increases, R
increases at a rate that is approximately constant (see
Table 1).

3.2 Comparisons with Simple Random Sampling

For comparability with Rao and proportional alloca-
tions, assume a simple random sample of size n* with
expected cost n* ¥ L, Wic, = n*c (see (1.3)). Thus, for a
fixed expected cost, C*, n* = C*/c and

c 1
Var(y,«) = 52(5k N ) = Vs, (3.3)

where 7,+ is the sample mean. Using (2.4) and (3.3),

1
Vg — Vp = CT*{(c —c’)S% — 2SBSWJc_'c}. (3.4)

It can be shown that V5 — Vp = 0 if, and only if,

€ s (JZ? e 0)2 = LBy, (.5
C

where G = $%,/58%. Using (2.8) and (3.3),
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Table 2

Percent decrease in variance for proportional (Rp) and Rao’s (Rp) allocation compared to simple
random sampling for a selection of textbook examples

Rp Ry
Reference L LBp LB
c=1 5 25 c=1 5 25
Cochran (1977), p. 93 2 3.8 2.6 -177.9 11.9 45.7 —136.0 28.3 57.4
Hansen et al. (1953), p. 205 3 6.1 1.1 -102.8 —6.1 26.4 —-4.1 59.9 78.6
Sukhatme ef al. (1984), p. 118 4 3.7 2.7 -132.8 12.8 46.6 —105.3 26.5 56.7
Hansen et al. (1953), p. 210 4 17.4 0.7 -127.7 -21.3 3.6 23.0 58.9 69.4
Cochran (1977), p. 111 7 6.8 4.5 —-197.8 -9.8 23.3 —164.5 3.9 33.8
Hansen et al. (1953), p. 202 8 103.4 5.6 —38.2 -14.1 -4.0 -23.7 -0.9 8.5
Hansen et al. (1953), p. 202 11 76.4 1.7 —44.0 -15.6 -39 -11.0 13.7 23.8
Hansen et al. (1953), p. 235 11 4.5 2.2 —105.8 4.0 37.9 -62.0 32.0 59.7
Hansen et al. (1953), p. 202 12 24.5 4.0 -71.6 -19.9 0.2 —-42.8 3.9 21.8

Note: Using (2.4), (2.8) and (3.3), Rp = 100(Vg — Vp)/Vs, Rg = 100(Vs — Vg)/Vs, and (LBp, LBp) are defined in (3.5) and (3.7). For these
examples, ¢’ = 1 and C*, the total budget for each of the methods, is as in Table 1.

Ve — Vi = < {SZ - (sy + SB\/CI/C>2} ’ (3.6)

C*

where it is again assumed that »? < 1 for all i (see (2.7)).
It is easily seen that Vg — Vi = 0if, and only if,

2
L —S—B_—Z — LBg. 3.7)
" (S-8,)

In practice, one will estimate LBp and LBy in (3.5) and
(3.7) and compare them with the cost ratio, c¢/c’, to decide
if it will be beneficial to use double sampling with propor-
tional or Rao’s allocation rather than simple random
sampling. In Table 2 we present the values of LBp and
LBy, for each of the examples in Table 1. We also include
for c = 1, 5, and 25 the values of R, the per cent reduc-
tion in variance accruing from using a double sampling
method rather than simple random sampling. As noted
above, this set of examples represents a broad range of
conditions where stratified sampling may be used. For a
given value of ¢, the range of values of Rp and Ry
indicates the wide range of gains (over simple random
sampling) that may be obtained.

While LBp = LBy is true in general, LBp > LBy for
many of the examples. The results point to potentially
large gains for double sampling, especially using Rao’s
allocation, when c¢/c’ is large. Conversely, if c¢/c’ is
relatively small, gains are modest and, in some cases,
simple random sampling is preferred. This argues for
careful estimation of LBp, LBg and c/c’.

3.3 Optimal vs Rao’s Allocation

To compare the optimal allocation with that proposed
by Rao, we have considered a wide range of values of the
design parameters ¢’, S?and {(¢, S, W) : i =1, ..., L}.
We took C* = 1,000 and considered L = 2 and 3. The
values of the design parameters for L = 2 are listed in
Table 3. Note that for these examples G = S%/S3 ranges
from 0.01 to 10.00. We assume throughout that N is
sufficiently large that S2/N in (1.2) is negligible.

Table 3

Values of design parameters for the case
of L = 2 strata

Parameter Values
¢’ 0.125, 0.250, 0.500, 1.000
c1 1,4,16
Cy 16
W, 0.5, 0.6, 0.7, 0.8, 0.9
52 70.4, 128, 704
st 1, 4, 16, 64
53 64

Note: All 720 combinations of the above parameters were used. In
addition, we also studied all arrangements of ¢, S, and S7 as
above together with
(@ cy =16;¢c, = 1,4, 16and W = 0.5,0.6,0.7, 0.8, 0.9,
(b) W1 = 0.1,0.2,0.3,0.4; ¢c; = 1,4,16; c; = 16, and
(©) W1 =0.1,02,03,04;¢c; = 16;¢c, = 1, 4, 16.
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To ensure comparability of the two allocations we
proceeded as indicated below for each specification of the
design parameters.

1. Fix a single value of n’. We used both the value of n’
identified as best using (a) Rao’s method and (b) the
optimal allocation.

2. From each of K Monte Carlo replications (K = 200
or 500) we obtain n’ = (n, ..., n;) and then
n = (n, ..., ny) using the optimal allocation and
v = (v, ..., vy) from Rao’s method. For the latter
we use the algorithm which makes appropriate
adjustments when the right side of (2.7) exceeds 1 for
one or more strata.

Since neither # from the optimal method nor 7 from
Rao’s method (n; = w;n/) are necessarily integers we
round the #; and adjust them so that for each sample
the budget is satisfied (up to the approximation
necessitated by having integer values of n’ and n). We
found that if these adjustments were not made there
were anomalous results where the variance of Y using
Rao’s allocation was less than the corresponding
variance using the optimal allocation. This occurred
when the total cost associated with Rao’s procedure
was larger than that for the optimal procedure.

3. To obtain estimates, V(o and Vg, of the conditional
variances, E,. (Y %, w?S?(1/n; — 1/n})}, corres-
ponding to the optimal and Rao’s allocation, we used
the average of Y&, w?S?(1/n; — 1/n}) over the K
replications. The estimates of the unconditional variance,
Var(Y), in (1.2) are denoted by ¥,,,o and ¥, where
Virr = Vigr + (82/n7).

The precision of these estimates was assessed by
estimating the standard errors and coefficients of variation
of Vg and V.. All of the standard errors were less
than 0.0022. The coefficients of variation for ¥,z and
Vc)r were below 0.0074 and 0.023, respectively. Thus, ¥,
and V, provide precise estimates of the unconditional and
conditional variances.

We present in Table 4 estimates of the per cent increase
in the average unconditional variance for Rao’s allocation,
I, = 100 (Viyr — Viyo)/ Viwyo» for some of the design
parameters listed in Table 3. We include results only
for the value of n’ identified as optimal by the optimal
procedure. These results are typical of those seen for the
other specifications in Table 3, those that we considered
for the case L = 3, and those which use the value of n’
identified as optimal by Rao’s method. It is clear from
Table 4 that improvements in precision are small, ranging
from none to about 4%.

We obtained somewhat similar results for the per cent
increase in the conditional variance for Rao’s allocation,
I, = 100(Viyr — V(o) /V(eyo» Where Vg and V0
are obtained by estimating E{ ¥ £, w?S?(1/n; — 1/n}))
using, respectively, Rao’s allocation and the optimal allo-
cation. The results, based on 200 Monte Carlo replications
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and presented using boxplots in Treder (1989, Figures
2.8.2and C.1 - C.3), can be summarized as follows. For
all parameter specifications, the medians of the distribu-
tions of I, are near 0. Most of the values of /. are small:
about 95% of the parameter specifications have distribu-
tions of 7. with third quartiles less than 10%. However,
occasionally, there are large values of I.: about 15% of
the parameter specifications have the maximal value of I,
larger than 20%.

Table 4

Percent increase, I,,, in the average unconditional
variance ¥, for Rao’s allocation compared to
optimal allocation for a selection
of design parameters with
S? = 704,53 = 64,¢c, = 16and ¢’ = 1

2 “
52 G
16 4 1
a. (W, W) = (9, .1)
64 10.000 0.0 0.4 1.4
16 0.419 0.1 0.1 0.1
0.166 0.1 0.1 0.4
1 0.116 0.1 0.3 0.8
b. (Wy, W) = (.7,.3)
64 10.000 0.0 0.7 3.6
16 0.760 0.0 0.2 0.7
4 0.455 0.1 0.3 1.4
1 0.394 0.0 0.7 0.9
c. (Wy, W3) = (.5, .5)
64 10.000 0.0 1.0 4.1
16 1.316 0.0 0.4 0.9
4 0.934 0.0 0.6 1.8
1 0.858 0.0 0.2 0.0

Note: I, = 100(V(,)r — V()0)/V (u)0- See the note to Table 1 for
definitions of the costs and variances.

These results can be explained, in part, by defining
the optimal second phase sample size in stratum i by
n; = £;(n’) - n/ where the dependence of »; on the
observed n’ is emphasized by writing &;(n’) and
0 < £;(n’) < 1. Then, one may find the optimal alloca-
tion by choosing the £;(n’) to minimize (for fixed n’)

1 ¥ w;S?
nl Sl(nl

i=1

, 3.8
) (3-8)

subjectto Y L  e;n/ - E4(n’) = C* — ¢’n’ (see 2.9).



100

By contrast, for the Rao allocation, for fixed n’, one
selects the »; to minimize

1 L

subject to n’ Y &, c;Ww; = C* — ¢’n’, i.e. fixed
expected cost.

Minimizing (3.8) rather than (3.9) will yield a smaller
conditional and, thus, unconditional variance. However,
when n’ is large, the difference between (3.8) and (3.9) will
be small.

W.S?
—, (3.9
Vi

3.4 Recommendations

Given reasonable estimates of the design parameters,
one should first compare the cost ratio, ¢/c’, with lower
bounds, LBp and LBg, in (3.5) and (3.7) to see whether
it is preferable to use double sampling rather than simple
random sampling. These assessments must be done
carefully because inappropriate use of double sampling
may result in a reduction in precision. If there are good
estimates of the design parameters, using Rao’s allocation
is preferable to proportional allocation.

Given the importance of adhering to a fixed budget we
recommend the use of a modification of Rao’s procedure:
Use Rao’s procedure to find the ‘‘optimal’’ value of
n’. Then, given the n/, use the optimal allocation
procedure (i.e. minimize (2.9)) to find the n;. This
method guarantees that the budget will be satisfied
for each sample, preserves most of the (small) gain
in precision from using the optimal allocation and

is easy to implement.

An alternative is to use Rao’s procedure to find the
“‘optimal’’ values of n’ and the »;. Then implement an
algorithm to round and modify the n; (n; = v;n/) to
ensure that the budget is satisfied for each sample. Unfor-
tunately, it is difficult to develop the part of the algorithm
needed to insure against cost overruns.
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However, to avoid the large values of the proportional
error in the conditional variance (i.e. I_,) that occur occa-
sionally, one must use the optimal values of n’ and the n;.

Each of these methods requires knowledge of some
design parameters. For Rao’s allocation, the optimal »;
require that the W, and S? be specified. One can see from
(2.9) that for the optimal allocation, the optimal #; depend
on the S? but not on the W;. However, the optimal choice
of n’ requires that the W; be specified. Alternatively,
Srinath (1971) and Rao (1973a) have suggested a procedure
which requires knowledge of the S? but not the W,. Clearly,
Rao’s allocation requires the greatest knowledge of the
design parameters and Srinath’s procedure the least. Since
the choice of n’ is, typically, robust to misspecification of
design parameters (see, e.g., Sedransk 1965, Section 4.2.3),
the optimal method may work well in the circumstances
for which Srinath’s method was designed.

4. SENSITIVITY OF ALLOCATIONS TO
ESTIMATION OF DESIGN
PARAMETERS

The preceding analysis assumes that the sample allocations
are minimally affected by errors in the specification of the
design parameters. In this section we investigate, in a simple
case, the effect on Var (Y) of the misspecification of an
important design parameter. With proportional allocation,
the choice of n’ and n depends only on G = 5%,/8%, ¢’
and c (see (2.3)). Estimating G by G and substituting the
resulting values of n’ and »n from (2.3) in (2.1),

Ve(Y 1 ’ "cG .
P( )G —_— e (ii.fﬁ + ¢ + C'C/G)
G

1 1
~ ;[(1 + (—;), @.1)

where G is the correct value of 8%/S3 and G is used only
to determine n’ and n.

s3  C*

Table §

Per cent increase in unconditional variance, I, for proportional allocation when G is estimated by G.
C* = 1,000,¢c’ =landc; = ¢, = 16

G

G
1/100 1/36 1/16 1/4 1 4 16 36 100
1/100 0.0 6.0 19.8 69.3 174.9 389.8 817.3 817.3 817.3
1/36 6.2 0.0 4.4 33.1 103.8 251.4 547.7 547.7 547.7
1/16 21.9 3.9 0.0 12.1 57.1 156.2 357.9 357.9 357.9
1/4 71.7 30.7 12.6 0.0 11.8 51.2 138.5 138.5 138.5
1 128.9 67.2 37.3 7.3 0.0 7.5 35.9 35.9 35.9
4 179.1 101.6 63.3 22.3 5.7 0.0 5.4 5.4 5.4
16 210.2 123.4 80.3 33.5 12.9 2.3 0.0 0.0 0.0
36 220.4 130.7 86.0 37.4 15.7 4.0 0.0 0.0 0.0
100 225.9 134.6 89.1 39.5 17.2 4.9 0.0 0.0 0.0

Note: [ is defined in (4.3), G = S%V/S% and the cost function is given by (1.3).
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The optimal value of Var ( }_;) (i.e. when using G) in (2.4)
can be expressed as

Ve(¥)o _ 1 (¢
———= ===+ c+ 2/c’c/G
St C*(G )
1 1
- {1+ ). 4.2
N( G) @2

If (1/N)(1 + 1/G) is negligible, the per cent increa§e in
variance due to estimating G, I = 100{ Vp(Y)g — Va(¥)¢)
/Ve(Y)g, is, from (4.1) and (4.2),

(1= G) +ere’ 6 —2G + (G/6)) |
(1 4+ JeG/c')?

I= 00.

(4.3)

Note that (4.3) depends only on G, G and c¢/c’.

We present in Table 5 the values of I for C* = 1,000,
¢’ = 1,¢; = ¢, = 16 and nine values of G and G. The
following conclusions are based on the results in Table
2.10.1 of Treder (1989) which includes additional values
of G and G. Aslong as G is within the interval [ G/4, 4G],
using G to find (n’, n) increases the variance by no more
than 15%, typically less. If G is in the interval [G/2, 2G],
the increase in variance due to misspecification is about
4% or less. As G increases, the increase in variance
associated with such intervals (e.g., [G/4, 4G]) decreases.
This happens because for large G, one has n’ = n and
both G and G yield the same allocation. One manifesta-
tion of this result is the array of zeros in the lower right
corner of Table 5. When G is small, that is when stratifica-
tion is good, the sample allocation is more sensitive to
incorrect specification of G than when G is large. These
findings are little influenced by the values assigned to
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¢; = ¢,. In summary, for proportional allocation, fairly
large misspecifications of the design parameter (G) lead
to relatively small increases in variance.
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