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Poisson-Poisson and Binomial-Poisson
Sampling in Forestry
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ABSTRACT

Binomial-Poisson and Poisson-Poisson sampling are introduced for use in forest sampling. Several estimators of
the population total are discussed for these designs. Simulation comparisons of the properties of the estimators
were made for three small forestry populations. A modification of the standard estimator used for Poisson sampling
and a new estimator, called a modified Srivastava estimator, appear to be most efficient. The latter is unfortunately

badly biased for all 3 populations.
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1. INTRODUCTION

Volume estimation in forestry has been highly devel-
oped in the sense that very efficient sampling strategies are
available to estimate total volume (Schreuder and Ouyang
1992). Estimating and measuring defect is often not built
into these strategies since measuring defect is difficult and
not economically justified in most stands. But in high
value stands two-phase strategies such as Poisson-Poisson
sampling may be suitable where defect is measured on trees
at the second phase. To sample truck loads of logs,
binomial-Poisson sampling may be a suitable sampling
design.

The purpose of this article is to present the theory of
binomial-Poisson and Poisson-Poisson sampling and
discuss some of the properties of estimators for these
designs based on simulation.

2. REVIEW OF LITERATURE

Singh and Singh (1965) developed the theory for two-
phase sampling with probability proportional to size (pps)
sampling at the second phase. Furthermore, Sdrndal and
Swensson (1987) gave a general theory of two-phase
sampling. A list of sampling units is assumed to be
available at the first phase prior to sampling.

Hajek (1957) developed Poisson sampling and Grosen-
baugh (1964) suggested its use for one-phase unequal
probability sampling when no list is available. Poisson
sampling is a scheme such that each unit in a population,
say unit /, is drawn into the sample independently with
probability p;. Thus the inclusion probability of unit i is

equal to p;, and joint inclusion probability of units i and
J is equal to p;p,. Binomial sampling, also often called
Bernoulli sampling, is a special case of Poisson sampling
when all p; are equal.

In forest survey, Poisson sampling is often implemented
as follows (Schreuder et al. 1968).

1. Visit the N units (say trees) in the population in any
order and measure or ocularly estimate the value of a
covariate x; (i = 1, ..., N) highly correlated with
the value of interest y; (i = 1, ..., N).

2. As each x; is observed, compare it with a random
integer, 8;, randomly selected from the range
1 < 6; < L, where L is an integer selected prior to
sampling. L is picked such that L = X/n, where
X = total for the covariate in the population and n,
is the desired sample size. X is usually not known before
sampling and needs to be estimated.

3. If §; < x;, select the unit for the sample and measure
Yi-
Implementation of this method results in a sample of
size n, where E(n) = n, (if a good estimate of X was

made prior to sampling). In binomial sampling all the
x;(i = 1, ..., N) are the same (Goodman 1949).

3. SAMPLING METHODS

The United States Forest Service Region 6 (Wendall
L. Jones - personal communication) uses a truck load
sampling method as follows: as trucks pull up to the mill
a binomial sampling technique is used to randomly select
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trucks to be sampled, with p = 0.10 say. These truck loads
are measured for volume. A problem with this approach
is that there are long runs of no trucks being sampled. As
communicated to one of the authors, this was considered
highly undesirable from a practical point of view. An alter-
native approach, which should decrease the frequency of
long runs of no samples, and could be more efficient is to
use binomial - Poisson sampling instead as follows:
Apply binomial sampling with a larger p (say p = 0.30).
The scaler visually estimates volume on the selected loads.
A Poisson subsample of these loads is then selected with
probability proportional to the estimated volumes and the
loads selected at this phase are scaled for volume. This is
binomial-Poisson sampling.

For high-value timber stands in the Pacific Northwest
of the United States highly accurate estimates of net
volume, that is, usable volume is often desired. Actually
cutting down and destructively measuring sample trees is
the most reliable method of determining net volume, i.e.
total volume minus defective volume (Johnson and
Hartman 1972). Poisson-Poisson sampling may be a good
sampling design in this situation. The procedure is:

1. Select n; out of the N trees in the population by
Poisson sampling, selecting the trees proportional to
some estimate of gross volume, say x; = diameter at
breast height squared (d%). With Poisson sampling
actual sample size is random, say n; where E(n;) = n,.
Ocularly estimate say x, = ocular net volume.

2. Select n, out of the n; sample trees proportional to x;,
by Poisson sampling. Here E(n,) = n,, is the expected
sample size at the second phase.

The n, sample trees are then cut and destructively
measured for gross, net, and defective volume. To maintain
maximum efficiency in both inventory and operations it
is probably best to implement both sampling phases at
once and mark the n, sample trees at inventory time.
Ascertaining usable volume for these n, trees is done later
either by a different crew or by carrying the sample trees
into a sawmill to process them for actual wood products.
Binomial-Poisson sampling is a special case of this. (If the
second phase is implemented separately from the first
phase then a list of sampling units is available to imple-
ment the second phase and some pps procedure with fixed
sampling size should be used instead of Poisson sampling.
This approach is usually inefficient because it requires two
trips to the field location).

4. NOTATION

N = Population size (not known until sampling is
completed).
n, = Expected sample size in one-phase Poisson

sampling.

n = Achieved sample size in one-phase Poisson
sampling.

gy = Expected sample size of first phase in two-phase
Poisson sampling.

ny = Achieved sample size of first phase in two-phase
Poisson sampling.

n,, = Expected sample size of second phase in two-
phase Poisson sampling.

ny = Achieved sample size of second phase in two-
phase Poisson sampling.

Y = Total usable volume in the population (to be
estimated by two-phase sampling), Y = ¥, y;.

Xy = Covariate value for tree i at phase 1, say tree
diameter at breast height squared (D?).

X = YN, x;; (known after implementing the first

phase in the entire population).

m;(P) = Probability of selecting tree i in one-phase Poisson
sampling (= n.x;/X;). If all the =;(P) are
equal, this is one-phase binomial sampling.

T = Probability of selecting tree i at phase 1
(= nexi/ X,).

X = Covariate value for tree i at phase 2, say ocular

estimate of net volume.

X, = Total amount of ocularly-estimated volume in
the population (only obtained for the n; sample
trees at the first phase so X, can only be

estimated).
T = Probability of selecting tree i at the second phase
(= neyxyi/ Lid1xy)-
¥i = Value of interest for tree i (say net volume).
i = Probability of selecting tree i through both

sampling phases (= ;7).

wF = Approximate probability of selecting tree i
through both sampling phases ( = #§;7$; where
7Y = mxy/ X, and 7% = noxy/ YLy xy)

S. THEORY

For Poisson sampling, the estimator
n
Y=Y yim(py, )
i=1

is unbiased but very inefficient and should be replaced
by the following approximately unbiased estimator
(Grosenbaugh 1964):

Y, {EYH if n>0}

n

2
0 if n=0.
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The variance of Y,, as given in Brewer and Hanif
(1983), is

V(Y,)
w ) 2
=Y, m(P)[1 - m(P)] [—y—- - X] + poY?,
b i n

where po = P(n = 0).

For Poisson-Poisson (PP) sampling, an estimator for
Y analogous to ¥, above is the unbiased estimator

ny
Y, = Z yilm;. 3
i=1

This estimator can be horribly inefficient as pointed out
for Y, in Poisson sampling (Schreuder et al. 1968).

The variance of ¥, can be written down by using the
general formulas developed by Sdrndal and Swensson
(1987) for unbiased estimation in double sampling:

V(¥)

N n
1 —7, L /1 = 1 \2
( U 1l> 12 1{ ( m 2’)(:')},
-1 1 Z 2 li

i i=1

where E, denotes expectation over the first-phase sample.
Since Y, is not efficient we do not give its variance
estimator. Analogous to the more efficient adjusted
estimator in Poisson sampling we have the approximately
unbiased estimator

2
Y, = Y witat = Yi(na/m) (no/m). (4

i=1

The variance of Y, is:

T Rey

-~ N . Y 2
V(YZ) =p(¢) YZ 4 E 1rl,-(l —_ 7('1i) (& — _)

i=1

Yi mY \?
+ pl(sl){ (1 — 7f2i)( - ) } ,
E E ’ T1iT2; Ne1Ney

S|#P i€s)

where s, denotes the first-phase sample, p(¢) is the
probability of drawing an empty sample, which is equal to

p(®) = pi($) + ) Pi(s)P2(9),

s1#d
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and p, and p, denote respectively the sampling design for
the first-phase and the second-phase sampling design
conditional on the sample drawn in the first-phase.

Usually, population size is large and the first phase
sample size is also large (compared to the second phase
sample size). Thus we can safely assume p;(¢) = 0
(compared to p,(¢)). For example, if we draw a first
phase sample with expected sample size 50 out of a popula-
tion of size 500, and then we draw a second phase sample
with expected sample size 20 out of the first phase sample,
all by using bionomial sampling, the inclusion probability
in the first phase is 0.1 and the probability to draw an
empty first phase sample is (0.9)°%; but the inclusion
probability in the second phase is roughly .04 and the
probability to draw an empty second phase sample is
(0.6)>°. Notice that (0.9)°® = (0.3487)%0 < < (0.6)®
Thus, in most practical applications,

p1(9) = 0.

A variance estimator of Y, can hence be easily given:

vi(Y,) = py(¢) Y}

ReiNen & %
+ —eloe Y = m) i/ — Yo/ ner)?/m

nin,
VAR
n; 2> ] )
BT

Estimator (5) should work well in usual applications.
Sometimes when ocularly estimating net volume, however,
the field worker may estimate that a tree has no value but
turns out to be incorrect. Thus, some Xx,;, hence ,;, will
be zero (in the simulations a small value is added to those
so that m,; > 0). In this case, a more stable term is
needed to replace the last term in (5). Notice that

i=1

n ) .
+—82[E(1—7F2i)(y' -
LD 12

N,y o4 _
-2 (1 — ) i/ m — Ya/ne)?/my

R

is an improved estimator of

]
Y Tl = m) G/my — Ya/ng)®. ()

i=1

To ensure that the estimator does not become too large
when one or more 7, are close to zero, we use the
following estimator
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- yi _ \?
{[gﬂ'li(l —7f1i)<7rli nel)]/
ny
[ E Wzr]}nez- @)

i=1

If we consider x,; as the auxiliary characteristic of
m(1 — m;) (i/my — Ya/ne)?, then (7) is a ratio
estimator of (6), since my; &< xp; fori = 1, ..., n;. But
since x,, is not necessarily approximately proportional to
my; (1 — wy) (vi/my — Yz/nel)z, (7) may not be a very
efficient estimator of (6). The advantage of using (7) is that
Y "2, 7y will not be close to zero, so that (7) will be

stable.

This leads to the following variance estimator:

vo(¥y) = pa(9) T3
nana[ & _ (2~ 2V ¥
+ n, [ Z: (1 7I'1,) (1r” nel) ]/ E T

i=1
ny . % 2
+"—"22(1—7r2,~)(y’ —fﬁ>, ®)
i

T2 e Ne,

which is less affected by small probabilities than (5) and
hence is more stable. We will use (8) instead of (5) as a
variance estimator of Y;.

Let E, denote the expectation with respect to the
first phase and E, denote the expectation with respect to
the second phase. Since #, is the actual sample size and
E n, = E\E;n, = E\n,, the adjusted estimator in PP
sampling should be En,,/n, Y;. But the quantity E;n,; is
not available and is replaced by n,; to obtain the
following estimator:

Y, = 22y, ©)
ny

¥; should also have very small bias and the variance of
Y is

N
. 1 — 7y
V(h) = p@)Y + Y ——
i=1 L

+ Yoo ¥ —m (2 - g3
l l TinT  Ne

SEQ i€8)

A variance estimator of ¥ is

v(¥3) = py ()73

ny 2
e Yi
+ — E (1 — )
ny [ o i (7(1,'7['2,‘) ]

i=1
12 , % 2
+E(1—7r2,-)(y' ——Yﬁ). (10)
i=1

LSTLP Ne

Another possible estimator is based on the idea that we
first want an efficient estimator of the first-phase infor-
mation. This is aceomplished by an analogous estimator
to ¥, in eq. (2):

ny
Y, (2) = E (yi/ma)nega/ny if ny > 0.

i=1

This estimator can be expanded to estimate Y by dividing
the first-phase sample by its probability of selection and
we obtain

ny N
Y, = [f;(z)/{HpuH (1 -pu)}]/?“’ an

i€s Jé€s

where jesindicates that unit / is in the sample, j¢s indicates
that j is not in the sample, p;; = nq,x;;/X;, and 2V~ 1 is
the number of all samples.

The variance of ¥ is

V(¥ = (2'2<N-”>[ Y T(sl)z/pl(sl)] - ¥

NEX

+ (272N 2 {E (1 — ;)

S| #¢ i€s)

Vi 1 2 2
L — ZT(s)) | +Pa(Dd)T(s51)°¢/P1(51)5

T He

where T'(s;) is the total of y over s;. It can be easily
derived by using the formula

V() = ViEy(Ya) + EiVa(Ya),

and the variance given for ¥,.
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This estimator is expected to be highly unstable. A
possible improvement is to condition the estimator on the
actual sample size obtained, i.e.,

Y5 =| Y,(2)

[ﬁ [ (1 = rlj)]

i€s Jes . , (12)
Py(ny)

where P, (n;) is the probability of drawing a first phase
sample of size n,.

To compute this probability, let I; be the random
variable which is 1 if unit i is in the sample and 0 otherwise.
Hencen; = LN, I, and

N
E(ny) = n,, Var(n)) = E (1

i=1

- ;) =d.

If

o(r) = (2m) "2 exp[—%rzl,

1 m
Im(r) = [ﬁ]qs(r) [1 + ) pj(r)],

Jj=1

where P;(r) are Edgeworth polynomials. Then

P;(ny) = f,1(r) and specifically, form = 2

1 1 - 27
P = = —_— — 3
1(ny) = f2(r) [[d]¢(r)|:l+ 6Jd (r 3r)
+—LM(r4—6r2+3)
41 d
10 (1 —27)°

(r — 15r* + 457 — 15) |,
6! d
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N
E (1 — 7y)
i=1

(Hé4jek 1981).

Y, and Y; are only given for completeness. They are
not considered further since both are unstable.

An alternative to ¥, and Y; is to correct Y,(2) using an
expansion factor based on the information for covariate
x; . These estimators are sensible if ¥,(2)/ ¥ 1, x;is an
approximately unbiased estimator of R = Y/X; which is
true for binomial-Poisson (BP) but not for PP sampling.
This fact is verified by simulation, but the reason why
approximate unbiasedness holds for binomial-Poisson is
that Y ,(2)/ ¥ 1, x;; under binomial sampling is similar to
the ratio estimator under simple random sampling. Hence
the following estimator is only appropriate for BP
sampling.

ny
Ys = X, I:?a(z) E xli] . (13)

i=1

The variance of ¥ is

+ p2(9) n%ﬁfl]} .

Another promising estimator is based on Srivastava’s
(1985) proposed unbiased estimator Y, based on the
sample weight function concept. Srivastava and Ouyang
(1992) developed a structure for the sample weight in order
that Y,,, has zero variance at some points of the parameter
space {¥i, ..., ¥n}. The sample weight function can use
any information other than that given in a sample.
Examples of this kind of information have been given in
Srivastava and Ouyang (1992) and Ouyang and Schreuder
(1992). If the information can be formulated as a model

yi=a+ 6x+e,i=1,...,N, 14)
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then the so called ‘‘generalized ratio estimator approxima-
tion”’ (Ouyang et al. (1992)) can be used which gives the
following estimator of the population total:

Y,

Y; = o2 Y*, (15)
Z Y (mymy)

i=1

with @ and B weighted regression coefficients, and y¥
calculated by y*= d + Bx;;and Y* = YN, y&

Note that ¥, is dependent on the model assumption.

6. SIMULATIONS

Simulation samples with first-and second-phase
samples of expected sizes 50 and 20 in Poisson-Poisson and
binomial-Poisson sampling were each drawn from three
populations. Two populations were high-value fir, cedar
and pine trees. Population 1, called BLM1 (Data from
unpublished report ‘‘Comparison of volume estimates
made by several timber measurement methods in western
Oregon’’ by G. B. Hartman. Feb., 1971. Bureau of Land
Management, Portland, Oregon), contained 331 trees and
population 2, called BLM2, included 510 trees (Johnson
and Hartman 1972). Measured variables on each tree were:
net volume scaled (nvs), net volume dendrometered (nvd),
and diameter at breast height (d). Here nvs (= y) is the
variable of interest, x; = d? is used in the first phase of
PP sampling and x, = nvd is the more expensively but
presumably additionally useful covariate obtained at the
second level of PP sampling; 200,000 simulations were
performed. Ideally, one would like the first- and second-
level covariates to be relatively uncorrelated yet both
highly correlated with y. These would be d? or nvd at the
first phase and some measure of defect at the second-
phase. Unfortunately, to do this in a satisfactory manner
requires separating trees into a class where the field worker
is comfortable estimating defect and another class for which
he does not. This was not done for the available data. In
BP sampling trees were selected with equal probabilities
at the first phase and proportional to x, at the second
phase. Population 3, a mapped data set, called Surinam,
was also used since it was cleaner than the other popula-
tions in terms of having available more sensible variables
for Poisson-Poisson sampling. The population consists of
a 60-ha mapped Surinam forest for which only species and
diameters were recorded (Schreuder et al. 1987). Tree
heights and standing tree volumes for other species were
superimposed on these trees as described in Schreuder
et al. (1992). The resulting population consists of 5,525
trees for which tree diameter (d), height (%) and volume
(v) were available. This yielded covariates x;, = A% and

x, = standing gross tree volume for PP sampling. For
BP sampling x, was used at the second phase. Board foot
volume (y) was also added to the data set. Included are
10 trees for which d?h is large (= 60,000) but bd. ft.
volume is essentially zero; 10,000 simulations were per-
formed for the Surinam data. Results for BLM1, BLM2,
and Surinam are given in Tables 1, 2 and 3 respectively.

Table 1

Simulation results for BLM1 (N = 331) population.
200,000 simulations were performed using x; = D?
and x, = nvd as covariates*

Bias SE EASE
Estimator
BP PP BP PP BP PP

¥, 0.021 0.011 42.495 53.228

Y, —0.045 -—-0.770 37.272 48.219 97.787 97.806
Y3 —-0.050 —-0.777 39.819 49.349 97.492 96.763
Y5 0.012 39.992

Y5 —0.036 3.650 18.881 21.885

Table 2

Simulation results for BLM2 (N = 510) population.
200,000 simulations were performed using x; = D?
and x, = nvd as covariates*

Bias SE EASE

Estimator
BP PP BP PP BP PP

Y, 0.146 0.059 95.708 62.500

7 0.055 —0.424 90.247 55.876 100.325 98.583
7, 0.050 —0.411 91.259 58.701 99.779 98.679
Ys 0.146 94.100

Y7 0.436 4.391 26.788 19.855

Table 3

Simulation results for Surinam (N = 5,525) population.
10,000 simulations were performed using x; = D
and x, = ocular estimate of net volume*

Bias SE EASE

Estimator
BP PP BP PP BP PP

Y; 0.764 0.364 25.709 25.924

¥, 0290 -0402 15.636 10.845 97.492 97.37
13 0.019 —0.463 20.989 17.886 100.364 98.945
P 1.013 20.822

Y, 2.27 2.426 22.428 17.397

* All tables give bias and standard error (SE) expressed as a percentage
of the population net volume. The estimated average standard error
(EASE) is expressed as a percentage of the simulation standard error.
Expected sample sizes are n,; = 50 and ngy = 20 for both binomial-
Poisson (BP) and Poisson-Poisson (PP) sampling.
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7. RESULTS AND DISCUSSION

For PP sampling Y, is the most efficient estimator of
the three (¥;, Y5, and Y;) relatively assumption-free
estimators for BLM1 and BLM2; ¥, is slightly less effi-
cient than Y;. Note that ¥; is even more efficient than Y,
but ¥; has a serious bias in some cases. The variance
estimators for ¥; and Y3, v(Y;) and v(¥3), in eq. (8) and
(10) are approximately unbiased.

For BP sampling, ¥; has negligible bias and the smallest
standard error of all the estimators. ¥, is considerably
less efficient than ¥; for BLM1 and BLM2 but more effi-
cient than the other estimators. The variance estimators
for both ¥, and ¥; are approximately unbiased.

Note for BLM1, BP sampling is always more efficient
than PP sampling whereas for BLM2 PP sampling is more
efficient with ¥;, ¥, and ¥;. This is because x; is not the
logical variable to measure after the effect of x; is
removed. Unfortunately a better variable to assess defect
was not available for these data. For BLMI1 x, did not but
for BLM2 it did improve estimation.

For both PP and BP sampling, using population Surinam,
Y, is again the most efficient estimator of the three (Y,
Y, and Y;) relatively assumption-free estimators. Y; is
considerably less efficient than ¥;. ¥ is less efficient than
Y, and is substantially more biased for this population.
v(Y;) and v(Y;) seems to be a approximately unbiased
variance estimators for ¥; and Y;. For this population PP
sampling is more efficient than BP sampling with Y,
showing that in this case both x; = d?#and x, = standing
gross total volume are useful in sampling.

Actually, it is not surprising to see Y, is the most effi-
cient estimator, since it uses the most amount of information
at both the design and estimation stages. Estimator ¥;
tends to be even more efficient in terms of mean squared
error, but with larger bias. This is because Y7 is based on
the model given in equation (14). If the model is correct,
¥, should be preferred over ¥;, since ¥; incorporates even
more information from the population. But otherwise, ¥,
should be preferred. ¥, is not recommended if model (14)
is not justified.

8. RECOMMENDATIONS

1. Both Poisson-Poisson and binomial-Poisson sampling
are useful in practical forest sampling. With either pro-
cedure, estimator Y, should be used. This estimator,
with negligible bias and high efficiency, is analogous
to the adjusted estimator Y, used in Poisson sampling
and has a reliable variance estimator.

2. Estimator Y¥; is considerably more efficient than ¥; for 2
populations but should not be used in preference to ¥,
until it has been more fully investigated in additional studies.
Y, tends to be seriously biased in these simulations.
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