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Robustness and Optimal Design Under Prediction
Models for Finite Populations
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ABSTRACT

In many finite population sampling problems the design that is optimal in the sense of minimizing the
variance of the best linear unbiased estimator under a particular working model is bad in the sense of
robustness — it leaves the estimator extremely vulnerable to bias if the working model is incorrect. However
there are some important models under which one design provides both efficiency and robustness. We
present a theorem that identifies such models and their optimal designs.
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1. INTRODUCTION

The “‘ratio estimator’’ of a finite population total 7 = y; + ... + yyis T = NXJ;/X,,
where ¥ = (x; + ... + xy)/Nis the known population mean of an auxiliary variable and
%, and y, are sample means. This is the best linear unbiased (BLU) estimator of T under the
model M:

E(Y;) = Bx;,

_ 02 X; i = _]
cov(¥, 1)) = {0 else.
This estimator is biased under alternative models having different regression functions, in
general, but protection against bias under specific alternatives can be assured by careful choice
of the sample, as will be described below.

Throughout this paper we will be concerned with populations for which a particular model,
such as M, is believed to apply, at least to a satisfactory degree of approximation. Our inferences
will be made with reference to this model. For example, we will call an estimator 7 unbiased
only if Ey,(T — T) = 0. On the other hand, we recognize that the model is an approximation
and that it might be seriously wrong. Thus we describe it as a working model, and seek sampling
and estimation procedures that are robust in the sense of performing well, not only under that
working model, but also under alternative models that might better describe the relationships
between variables in our population.

We denote by M (89,8, ... 6, : v) the general polynomial regression model:

J
E(Y) = E 5j5jxij

Jj=0
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Vl‘Uz l=j,

cov(Y,Y) =
o {O else

where 8, is a zero-one indicator of whether the regressor x/is included in the model. The best
linear unbiased estimator under this model is denoted by T'(8y, ..., 6, : v). Thus our first
model was M (0, 1 : x), and T(0, 1 : x) is the ratio estimator.

Royall and Herson (1973) showed that 7(0, 1 : x) remains unbiased under M (8, ..., 6, : V)
for any vector (&g, - .., 6;) of zeroes and ones, and any v, ..., vy, if the sample is balanced

onx, x2, ..., x"

N
Ex,j/n= Ex,j/n j=12 ...,/
)

S

This means that in a balanced sample 7(0, 1 : x) is robust in the sense that it remains unbiased
under regression models that are much more general than the working model M (0, 1 : x).
Royall and Herson (1973, sec. 4.5) also detailed how approximate balance ensures the
approximate unbiasedness of 7°(0, 1 : x). Furthermore they showed that in a balanced sample
this estimator retains not only its unbiasedness but also its optimality under a wide variety of
polynomial regression models, including M(1 : 1), M(1, 1 : x), and M(0, 1, 1 : x?).
Specifically, the estimator is optimal under any polynomial regression model of degree J or
less, provided only that the model’s variance function is expressible as a linear combination
of the regressors.

The robustness of the ratio estimator in balanced samples is achieved at a high cost in
efficiency under the original working model M (0, 1 : x). Under this model the sample that
minimizes the variance consists of the » units whose x-values are largest, and the efficiency
of a balanced sample is only X/max,(X,). (Royall and Herson 1973).

For the linear regression estimator, theoretical results have been established that are quite
analogous to those sketched above for the ratio estimator, but with one important difference. The
estimator is T(1, 1: 1) = N[J, + b(x — %,)], where b = ¥ (x; — X)yi/ To(x; — %) 2 It
is the optimal (BLU) estimator under the constant variance linear regression model, M (1,1:1).
When the sample is balanced, this estimator is robust, remaining unbiased (and optimal) under
the same broad class of polynomial regression models as the ratio estimator. But unlike the
ratio estimator, the regression estimator achieves robustness in balanced samples at no cost
in efficiency - the variance under the working model M (1, 1 : 1) is minimized in balanced
samples, where ¥, = %. This phenomenon occurs because the error variance E( T - 1?is
the sum of a constant and a term proportional to (¥ — X,)? var(b). Minimizing var (b)
requires maximizing ¥ (x; — X,)2, but this term is eliminated altogether in samples with
X, = X.

Are there other models under which the same sample that minimizes the variance of the
BLU estimator can also protect against bias under a wide range of alternative models? In
particular, are there such models for problems requiring non-constant variance functions? We
show that the answer is positive, giving a theorem that characterizes a family of models with
the desired property and identifies the corresponding optimal samples. The results in this paper
integrate and generalize those of Kott (1984) and Tallis (1986). They are also closely related
to the work of Pereira and Rodrigues (1983) and Tam (1986), as well as that of Isaki and
Fuller (1982).



Survey Methodology, December 1992 181

2. BASIC RESULTS

It is convenient to shift to vector and matrix notation, in which Y is the population vector
(Y, Yy, ..., Yy) and the model M (X : V) specifies that E(Y) = XBandvar(Y) = Vo2,
where X is an N X p matrix of regressors, V is diagonal, and the vector 8 and the scalar o>
are unknown. For a given sample s of » units we list the sample units first, so that

y=(5), x=(%), v=("°
Y,)’ x,)’ o /)’

where Y, is the (N — n)-vector corresponding to the non-sample units, efc. We let 1;and 1,
denote vectors (1, ... 1)" of lengths n and (N — n).

The population total is T = 1Y, + 1,Y,. After the sample s is observed, the first
component, 1.Y;, is known. The BLU estimator of 7T is obtained by adding to this known
quantity the BLU predictor of 1,Y,:

TX:V) = 1Y, + ,X,8(X:V),
where B(X : V) = (XV71X,) ~' XV, 'Y,. The error variance is
var(T(X : V) = T) = 1J(X/A7'X, + V))1,02,

where A, = XV, 'X,. These formulas simplify when the vector ¥1 is in the linear manifold
generated by the columns of X, which we denote by I (X).

Lemma 1. If V1 € M (X) then
T(X:V) =1XB(X:V)
and under M (X : V)
var(T(X: V) = T) = (I'XA;7'X'1 — 1'V1)62

Proof: The estimator simplifies because V1 € M (X) means that ¥1 = Xc for some vector
¢, so that X/1;, = XV, ' X,c, from which we have 1,X,5 = ¢’ XV; 'Y, = 1JY;. The variance
formula follows from cov (T, T) = cov(1’XB, 1Y) = 1'XA;7 X1, = 1'Xc = 1’ V1.

Lemma 1 shows that for models with V1 € M (X), the sample affects the variance only
through A,~!. This simplifies both the study of how the variance depends on the sample and
the search for efficient samples.

The collection of samples that satisfy

W "X n = 1"X/1"W"1,

where Wisan N X N matrix, will be denoted by B(X : W). When W is the identity matrix,
I, B(X : I) is the collection of samples that are balanced on the columns of X. Royall and
Herson (1973) proved that BLU estimators under a wide family of polynomial regression models
are greatly simplified in balanced samples:

Theorem 1. Under M (X : V) with V1 € M(X), if s € B(X : I) then
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T(X:V) = (N/n)L)Y,
)]
var(T(X: V)) = [(N/n) — 111’ V1%

The next theorem shows that if ¥ = Ithen the variance in (1) is the minimum possible, i.e.
balanced samples B (X : I), are optimal if /1 € M (X); it also identifies optimal samples for
a class of models with more general variance structure.

Theorem 2. Under M (X : V) if both V1 and V"1 € M (X), then
var(T(X: V) = T) 2[(1’V'/21)2/n - 1'V1jo%;
the bound is achieved if and only if s € B(X : V), in which case
T(X: V) = (1'VA) (VS %Y, /n.

Proof: Since V1 € M (X), the quantity to be minimized is a’ A7 'a, where a = X'1
(Lemma 1). Now V"1 € 9 (X) implies that there is a p-vector ¢; for which V"1 = Xc, and,
since V is diagonal, this ensures that V21, = X,c, for every sample s. From this it follows
that ¢c[4,c; = n, and the desired inequality then follows from Schwarz’s:

(a'A'a) (c{Ag ¢) = (a’Ag ') - n o= (a'e)’

The necessary and sufficient condition for equality is a’ = kc{A,, where k = 1’ V”1/n. This
is equivalent tos € B(X : V) because c{A; = 1{ V™ " X.. The simple forms for the estimator
T(X : V) and its variance are then easily obtained algebraically.

The formulas in Theorem 2 are familiar in conventional (randomization-based) sampling
theory. The BLU estimator T'(X : V) takes the simple form of the Horvitz-Thompson estimator
Tyr = Ysyi/7;, when 7, the inclusion probability for unit 7, is proportional to v/*. And the
variance bound is the one established by Godambe and Joshi (1965, Theorem 6.1) for the model-
based expectation of the random sampling variance.

Suppose that we have, for a working model M (X : V) that satisfies the conditions of
Theorem 2, an optimal sample s and BLU estimator T. If we now consider a more general model
M (X, Z : V) with additional regressor(s) Z, the results of Theorem 2 continue to apply so long
as the sample belongs to B(Z : V) as well as to B(X : V). Our sample and estimator remain
optimal under the more general model, and the variance is unchanged. That is, we can maintain
optimality under our working model (minimum variance sample and BLU estimator) and also
protect against bias caused by the additional regressor(s) Z by imposing the additional constraint
B(Z : V) on the sample. This procedure not only protects our estimator from bias under
M(X, Z: V), it ensures that our sample and estimator both remain optimal under the more
general model. Of course unbiasedness is ensured under the even more general model
M(X, Z : W), where W is any covariance matrix.

3. EXAMPLES

Four models have been particularly prominant in finite population sampling theory. In the
polynomial regression model notation of section 1 theseare M (1: 1), M(1,1:1), M (0,1 :x),
and M (0,1 : x?). Optimal estimators under the first three models are the expansion,
regression and ratio estimators, respectively. The optimal estimator under the fourth model,
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7(0,1 : x*) =Y,y + (N — n)% YXs(yi/nx;), is approximated by the mean-of-ratios
estimator Ty = NxY¥,(v;/nx;) when the sampling fraction n/N is small.

One approach to finding a practical sampling and estimation strategy under one of these
four working models is to use the best linear unbiased estimator under the model, while ensuring
robustness by choosing a sample in which the estimator remains unbiased under more general
polynomial regression models. For the first two models, M(1: 1) and M (1, 1 : 1), we have
seen that this strategy produces bias-robustness for free, at no cost in efficiency under the
working model. Under both of these models bias protection requires simple (unweighted)
balance; but the models satisfy the conditions of Theorem 2 with V' = I, which implies that
simple balance is optimal.

For the other two models, however, there is tension between robustness and efficiency. In
section 1 we noted that under M (0, 1: x) the ratio estimator is optimal, and while the optimal
sample consists of the » units maximizing X%;, protection from bias under M (1, 1 : x) requires
a sample where X, is not maximized but set equal to the population mean, ¥. The situation
under M (0, 1 : x?) is similar: the optimal sample is again the one where the sample mean X,
is maximized, but protection of the optimal estimator against bias under polynomial regression
models requires an ‘‘overbalanced” sample, in which the sample mean equals X2/ Y,
(Scott, Brewer and Ho 1978).

Under both of these models, M (0,1 :x) and M (0, 1 : x?), robustness can be achieved at a
smaller cost in efficiency by starting with a more general working model. Theorem 2 shows the
way. Consider first the model M (0, 1: x?). If we use T(0, 1 : x?) in an over-balanced sample,
the error variance is { (NX)2/n — Lx? + ¥ (x; — xs)z}oz. But if we use the more general
working model M(0, 1, 1 : x?) and estimator T°(0, 1, 1 : x?), the theorem shows that any sample
in which %, = Yx?/ ¥ x, is optimal, yielding the minimum variance { (N%)%/n — ¥ xi}o’.
Now bias protection against even more general polynomial regression models can be obtained
at no cost in efficiency by imposing the additional constraints of Condition B(X : V) i.e.
Yoxi~Yn =Y Mxi/Y¥x; j = 0,3, ..., J. Under these constraints on the sample, collectively
called w-balance, T(0, 1, 1 : x?) is the mean-of-ratios estimator (Kott 1984). This sample and
estimator remain optimal under all models of the form M(5,, 1, 1, 83, ..., 6;: x?).

Balanced samples B(X : V) do not always exist. The above example illustrates this; when
n becomes so large that n/N > N (x%)/ ¥ x? there can be no w-balanced sample, because
otherwise the variance formula would become negative. Note that the condition n/N >
N(x?)/ ¥ x? implies that max (x;) > Nx/n, so that in such populations there is no probability
sampling plan with inclusion probability proportional to x.

To generalize the other model, M (0.1 : x), so that the theorem will apply we can add a
regressor, x %

E(Y) = Bipx" + Bix;

var(Y;) = o°x;.

According to Theorem 2 any sample satisfying

N N
) x;/z/n -y x,~/ ¥ @
1 1

N

is optimal under this model, yielding the best linear unbiased estimator Yx2Yxi Pyi/n
and the minimum variance, { (¥ x/*)%/n — Nx}o?. This variance compares favorably with
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that of the ratio estimator in a balanced sample, Nx(N/n — 1)¢%. Now optimality of the sample
and the estimator if in fact E(Y;) = 8y + 84 /zxi'/z + B81x; + B,x? can be maintained (with

no increase in variance) by imposing the additional conditions on the sample:

N
) x,-"/z/n = N/ Y«
I

N

3)

N N
¥ tefn= ¥ot]
1 1

N

These conditions, (2) and (3), give the BLU estimator the simple form:

N
Yo XY QX /n,
1 s

which is of course the Horvitz-Thompson estimator for a probability-proportional-to-x **
sampling plan.

4. PROBABILITY SAMPLING

The results in Section 2 are important in relation to an unobserved regressor Z. If Z were,
like X, known for all population units, then we could use M (X, Z : V) as the working model
and T(X, Z : V) as the estimator in the first place. But suppose that we are unaware of the
importance of Z and are using the working model M (X : V) and the estimator T(X : V) when
in fact M(X, Z : V) applies. In this context we will refer to a sample from B(X : V) as
“‘balanced on X.”’ Although we can choose a sample that is balanced on X, we cannot ensure
that it will be balanced on Z, and if it is not, then our estimator is biased:

E(T(X:V)y -T) = [(l/n)(l’Vl/zl)(ls’Vs_'/zZS) - 1'Zy.

where v is the Z-coefficient: EY = X3 + Zvy.

Random sampling can help to provide protection against biases like this. If we use a proba-
bility sampling plan with inclusion probabilities, =; = nv/*/1'V*1,i = 1,2, ..., N, then
we will have balance on Z in expectation:

E WV "Zyn = 1"Z/1' V"1,

the subscript 7 indicating that the expectation is with respect to the random sampling plan, not
a prediction model. Furthermore, if our sampling plan is one under which var, (1’ V" “Z./n)
approaches zero as n grows, then the probability that we will draw a sample that is
badly unbalanced, say one in which |1,V "*Z/n — 1'Z/1’ V1| > §, can be made small
by taking a large enough sample, n. That is, probability sampling can provide balance on Z
““in probability.”

The strength of this result is in its scope-it applies for any matrix Z of regressors whatsoever.
In particular it applies for the matrix X of regressors in our working model, as well as for
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overlooked regressors. The weakness of course is that it applies to the sample selection process,
not to a result of that process. The sample actually drawn will, with predictable frequency,
be badly unbalanced on the known regressors X. If balance on X is important in a particular
study, it should not be left to chance (This was documented empirically by Royall and
Cumberland 1981). Restricted random sampling plans which guarantee that the selected sample
will be balanced on X, such as Wallenius’s ‘‘basket method’’ (1980), might represent a
reasonable compromise strategy.

It sometimes happens that a regressor Z that is ignored when the sample is selected becomes
available afterwards, as in the case of post-stratification for example. If it is determined that
the selected sample is badly balanced on Z, then probability sampling has failed to provide
the expected protection against bias under M (X, Z : V); if it is too late to draw another sample,
then to protect against the bias we must use an estimator that is unbiased under this model.
That is, probability sampling does not guarantee approximate balance on Z; it only ensures
that we have a good chance at approximate balance. It justifies confidence that a given sample
is reasonably well balanced, in the absence of evidence to the contrary. It does not justify
ignoring evidence of imbalance when it occurs.

Note that under the above probability sampling plan the estimator (1’ V"1)(1,V, " Y,)/n,
which is (X : V) if both V1 and V"*1 belong to M (X) and sisin B(X : V), is unbiased with
respect to the probability distribution generated by the sampling plan. But if the sample actually
selected is not balanced on X (i.e. if sis not in B(X : V)) then this estimator is not unbiased
under M(X : V).
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