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Robust Model-Based Methods for Analytic Surveys
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ABSTRACT

This paper reviews the idea of robustness for randomisation and model-based inference for descriptive
and analytic surveys. The lack of robustness for model-based procedures can be partially overcome by
careful design. In this paper a robust model-based approach to analysis is proposed based on smoothing
methods.
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1. INTRODUCTION

The concept of robustness in finite population inference from both the randomisation and
model-based viewpoints is examined. In his seminal paper on a unified theory of sampling from
finite populations Godambe (1955) not only proved his famous non-existence theorem but also
made suggestions for robust finite population inference. He proposed a superpopulation model
for the unit variables y; and suggested that strategies, that is the choice of both design and
estimator, should be based on the model expectation of the sampling variance. He then imposed
p-unbiasedness to obtain optimum strategies. These ideas were amplified in several papers
including Godambe (1982) and Godambe and Thompson (1977). The results obtained include
the apparent optimality of xps sampling and the Horvitz-Thompson (1952) estimator. But the
inefficiency of this strategy in multipurpose surveys is well known so we find these results on
optimality and robustness less convincing than the apparently negative results on the
foundations of inference.

The lack of robustness of many model-based procedures is well known, see Hansen et al.
(1983), and much of the work of Royall and his colleagues, for example Royall and Herson
(1973a,b) has been devoted to constructing robust model-based strategies. After reviewing this
work we propose a robust model-based method for estimating many complex statistics
employed in the multivariate analysis of survey data which adjusts for the effects of selection.
Our proposal is not a strategy but is a procedure which can be employed for the analysis of
survey data after the sample is drawn.

2. FORMAL STRUCTURE

In order to examine robustness we must first structure finite population inference in the
formal manner pioneered by Godambe (1955). We consider a population of N units with label
set U = {1,2, ..., NJ. Attached to unit / is a vector of values, y;, which will be measured
on the sample units, and y; = (yy, ..., yy) denotes the finite population matrix of values.
A sample, s, is a subset of U drawn according to some rule. We are concerned here with rules
based only on prior information, z;, available on all the units in the population. Let z;; denote
the prior information for the whole population, and let p(s | zy) denote the sampling rule.
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Since the rule does not depend on yy, it is uninformative. If p(s | zy) is a random sampling
rule then it determines a probability distribution over {, the set of all samples, which is the
basis for randomisation inference. The sample data comprises ds = { (i,y;): ies}. Let y;
denote the matrix of sample values, then an estimator is a function of the data, d;, and of the
prior information, zy, which includes auxiliary information. We denote by E,, ¥, expecta-
tions and variances with respect to the distribution p(s | zy).

In a model-based approach it is further assumed that the population values y,, are random
variables. A major problem with this approach is to specify a parametric probability model
for the joint distribution of all these random variables, which must be based on all the prior
information including that on the structures of, and relationships between, the units in the
population. So models must reflect hierarchical groupings (clusters) and block groupings
(strata), as well as correlations between the variables. This structure is potentially so complex
that attention is usually restricted to means and covariance matrices. In general let f(yy | zu3 D)
denote the conditional finite population distribution, where X is a vector of unknown
parameters. For predictive inference about finite population values, such as totals, this is a
sufficient specification. For analytic inference about parameters in the marginal distribution
of y we must additionally specify the marginal distribution of the prior values z. Let f(zy3¢)
denote this distribution, then the marginal distribution of yp is

Sl = § v | 2uMf(zus)dzu, 2.1

where § = g(\,¢) is the parameter of analytic interest.

Applying the sampling rule to the population generates the data, d;. The joint distribution
of the data, d,, and prior values, gy, is

Sdszushe) = p(s | zu) 1o | z2usMSf(Zu:8)dys
(2.2)

=p(s | z0) S | 2uM) f(2u39),

where § denotes units not in s. This distribution is the basis of a model-based approach to
inference. We let E,,, V,,, denote expectations and variances with respect to the model.

An implication of (2.2) is that the sampling rule, p(s | zy), must be completely known to
the person making the inference, as must the values of z,. Absence of knowledge may render
p(s | zy) informative about the unobserved values ys, see Scott (1977), Sugden and Smith
(1984), in which case it cannot be taken outside the integral in (2.2).

In this general set-up, embracing both random selection and modelling of values, randomisation
inference corresponds to the case where the values y;; are unknown constants and the model
distribution becomes degenerate at the point y;. The only probability remaining is that in
p(s | zu), and this distribution over the set { of all possible samples is the basis of randomisa-
tion inference. Note that the randomisation distribution is completely specified by knowledge
of the sampling rule and of the prior values, zy. It does not depend on any unknown
parameters or on the survey values, y; . This renders p (s | zy) uninformative because there
is less information in p(s | zy) than in gy itself. This accounts for the negative nature of
Godambe’s results about randomisation inference.

In contrast model-based inference depends solely on the model component of (2.2), since
p(s | zy) contains no information about y;. Predictive inferences about y;are made using the
conditional distribution, f(y, | ¥sZu;)), independent of the randomisation distribution,
p(s | zy). The sampling rule is still important at the design stage, for it affects efficiency and
robustness, but it has no réle to play at the inference stage. Random sampling also provides
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a guarantee that the sampling rule is in fact uninformative, providing a scientifically accep-
table sampling procedure. Model-based inferences may not be robust, however, because they
may depend strongly on the choice of model, as demonstrated by many authors including
Hansen et al. (1983).

A compromise solution is to employ both components of (2.2), the model and the
randomisation distribution, in the choice of estimator. This was proposed by Godambe (1955)
as a positive response to his negative results. He proposed using as a criterion the model
expectation of the randomisation variance, namely E,, V, (&), where f; is an estimator of a
finite population total 7. To find an optimum solution in a particular class of models Godambe
restricted the choice of £ to the class of p-unbiased estimators. This restriction has been much
criticized and subsequently several authors, including Brewer (1979), Sarndal (1980), Isaki and
Fuller (1982), Little (1983), have proposed replacing exact unbiasednesses by some form of
approximate unbiasedness. This is usually expressed in the form of asymptotic design
unbiasedness which requires the construction of a hypothetical sequence of finite populations
with sizes tending to infinity. Although one may feel unhappy with this mathematical
construction the suggestion that strategies, chosen before drawing the sample, should be based
on considerations of the average under a model of a repeated sampling procedure is perfectly
acceptable. The controversial issue is the choice of distribution for making inferences after
the sample has been drawn.

3. ROBUSTNESS

Robustness is not a well defined concept in statistics. The Encyclopedia of Statistical Sciences,
(Kotz and Johnson 1988), states that:

“‘a robust procedure performs well not only under ideal conditions but also under
departures from the ideal.””

It goes on to say that both the nature of departures from the ideal and the meaning of “‘performs
well”” must be specified. With this broad definition in mind we now examine robustness for
randomisation and model-based inference for finite population totals. The general perception
is that randomisation inference is robust and that model-based inference is not.

Godambe’s negative results can be interpreted to mean that randomisation inference is
impossible in general. This is certainly true for heterogeneous populations, such as Royall’s
axe, ass and box of horseshoes, or for populations with a few very extreme values, but for
homogeneous populations the evidence overwhelmingly shows that randomisation inference
is not only possible but also works in a well defined sense.

Employing randomisation inference implies abandoning certain statistical principles, such
as the likelihood principle, and replacing them by an appeal to the central limit theorem. The
assertion is that under repeated random sampling using the specified rule p(s | zy)

t. — T
s ~ N(0,1), 3.1
7 (0,1) 3.1

for any 7, which is approximately p-unbiased for 7, where both N and » are large, but n/N
is small. Although proved formally only under SRS and related schemes, empirical evidence
shows that the randomisation coverage properties of 95% confidence intervals of the form
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t, + 196V, (1), (3.2)
P

where I7p(ts) is a consistent estimator of ¥,(%), are approximately correct except for extreme
designs or heterogeneous populations.

Godambe and Thompson (1977) express their views about this approach in the following
terms.

““The use of such a confidence interval may be interpreted as follows:

I: We are fairly sure a priori that y belongs to that subset of RN for which the
interval covers T(y) for 95% of all possible samples.

II: There is no way that the sampled y-values, in conjunction with whatever other
information we may have about the population, have altered the conviction
in I. Thus even after sampling we believe that if the design were implemented
again and again on this population the interval would cover T (y) approximately
95% of the time.

The robustness of the interval arises of course from the fact that only very weak
and essentially informal conditions are required for the validity of its interpretation
in the sense of I and 11.”’

Very similar views are expressed by Hansen ef a/. (1983).

“For probability-sampling designs the computed confidence intervals, for samples
large enough, are valid in the sense that the randomization probability that the
confidence intervals contain the value being estimated is equal to or greater than
the nominal confidence coefficient, independent of the distribution of the charac-
teristics among the elements of the population from which the sample is drawn.”’

“Robustness is usually understood to mean that inferences made from a sample
are insensitive to violations of the assumptions that have been made. In principle,
and ordinarily in fact, robustness is achieved in probability-sampling surveys by
the use of sampling with known probabilities (i.e., randomization) and consistent
estimators, and using a large enough sample that the central limit theorem applies,
s0 that the estimates can be regarded as approximately normally distributed.”

Note that this concept of robustness does not appear to require any specification of ideal
conditions or of departures from the ideal. Random sampling and consistent estimation are
all that is required. Brewer and Sédrndal (1983) are quite explicit:

“Probability sampling methods are robust by definition; since they do not appeal
to a model, there is no need to discuss what happens under model breakdown.”

How can a statistical procedure be so robust?

The reason is that the entire procedure is under the control of the statistician, no attempt
is made to introduce ““nature’’ into the structure. The randomisation distribution has a known
form and does not depend on unknown parameters. There is no need to make an inference
about p(s | zy). Similarly the framework for inference is chosen by the statistician, it is
repeated sampling using p (s | zy). Different statisticians may use different sampling rules and
estimators but the procedure represented by (3.1) gives approximately correct coverage
properties in every case, and so is robust. This is an example of criterion robustness. However,
any given procedure may not be efficient for the totals of some variables. We have already
highlighted the well known inefficiency of the Horvitz-Thompson estimator which occurs when
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the survey variable is negatively correlated with the size variable. The search for efficiency
robustness over a wide range of variables leads frequently to the recommendation that the design
should be a stratified SRS design, see, for example, Godambe (1982), Hansen et al. (1983).

In model-based inference the statistician is playing the game of modelling ‘‘nature’’.
Probability distributions such as f(y; | zu;\) are chosen by the statistician but their true form
is unknown, as also are the values of the parameters. If an estimator, #, of T, is chosen then
its expected value and variance will depend on the choice of model. Deviations from the model
may lead to changes in the mean and variance and hence to changes in confidence intervals
based on applying the central limit theorem to the model residuals. In model-based inference
the robustness due to the central limit theorem is more limited than that in randomisation
inference since it applies only to the residuals. Some model deviations can be controlled by
choosing an appropriate design, as in Royall and Herson (1973a,b), but there can never be
complete robustness. The framework for inference is also completely different. Instead of
employing the unconditional distribution based on repeated sampling model-based inference
employs the conditional distribution given the selected sample s.

Can these two positions ever be reconciled? Before sampling, when choosing strategies, they
can. Both schools of thought have the same prior information, zy, and both use models to
suggest designs and estimators and choose strategies based on the overall mean squared error

E,E,(t; — T). (3.3)

Randomisers usually impose a constraint such as approximate p-unbiasedness while modellers
may impose approximate model unbiasedness and the two positions can be reconciled by
choosing a sample design such that the model-unbiased estimator is also p-unbiased. This
strategy utilizes the full structure of (2.2) and gets the best of both worlds.

After sampling there appears to be little hope of reconciliation. The two frameworks for
inference are quite different, one being based on an unconditional distribution the other on
a conditional distribution. Royall and Cumberland (1981) have demonstrated convincingly how
much difference this can make. Incidentally they have also demonstrated the lack of robustness
of some of the conventional model-based variance estimators.

One case where reconciliation is possible occurs in stratified sampling. Both randomisers
and modellers have converged on stratified sampling as a robust design, and for SRS within
strata model-based and p-based inferences coincide. This provides evidence for one of the few
positive results in sample surveys:

Theorem: Stratification is a good thing.

Proof: See Cochran (1977, Ch.5).

Stratification allows us to look at the problem of robustness more closely. If both a randomiser
and a modeller adopt the same stratification, and both also adopt the same SRS design within
strata, then for a given sample they will both make identical inferences. Now suppose on the
basis of further analysis or evidence it is agreed that an extra level of stratification should have
been used. How does this affect the respective inferences? The modeller now has to say that
the original model was misspecified and hence that inferences from that model would be biased.
Both the estimator and the variance of the original model would be wrong. The randomiser,
however, can say that the extra information is interesting, and could be used to post-stratify
the original results, but that it can also be ignored if necessary because the original inferences
are still valid in the sense defined in (3.2). All that has happened is a possible loss of efficiency.
In one case the original inference is condemned as not being robust, in the other case the same
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inference is apparently robust. The modellers bias, when averaged over repeated samples, is
transformed for the randomiser into a component of sampling variance, or a loss of efficiency.
So if initially randomisers and modellers start from the same position then deviations from
that position are interpreted differently. In one case it is a bias in the other case a variance.
Can this really be called robust in one case and not robust in the other?

4. ANALYTIC INFERENCE

In analytic inference the target for inference is no longer a known function of the finite
population values, yy, so that even if n = N there is still residual uncertainty in the inference.
Examples are tests of hypotheses, where the null hypothesis of no difference is meaningless
in a fixed finite population. Possible targets for inference are the parameters A, ¢, of the model
(2.2), or functions of them such as § in (2.1). Other targets are the parameters in finite popula-
tions related to the given finite population in some known way, perhaps through a spatial or
time series structure. Methods for analytic inference have recently been reviewed by Skinner
et al. (1989).

The starting point for analytic inference is the specification of the superpopulation model
which aims to show how the finite population is related to the superpopulation. A common
assumption is that the finite population is generated as IID random variables from a super-
population. Whether this can be justified for populations with structure, such as clustering
or stratification, is debatable. In this paper we assume that it is true, at least within broadly
defined strata. With this assumption a SRS from the finite population is itself an IID sample
from the superpopulation and inferences can be made directly from the sample to the
superpopulation. If the sample is not a SRS, but is drawn using a design p(s | gy) which uses
the information in g, then the achieved sample is no longer an IID sample from the super-
population. This is the problem of selection and the effect of selection must be taken into
account in the final inference.

The superpopulation model establishes a hierarchy,
superpopulation D finite population D sample.

If the finite population is IID from the superpopulation then finite population parameters,
such as means, are related to the corresponding superpopulation parameters by

Ju = E,(Jy) + O,(N™"). (4.1

Since N is usually very large an inference about j;, is a good approximation to an inference
about E, (J,). Inferences about y, using the p-weights associated with the sampling rule
p(s | zy) are the basis of the randomisation approach to analytic inference. Note that this
approach depends strongly on the IID assumption for the finite population.

For more complex analyses, such as logistic regression analysis, the pseudo-MLE approach
in Skinner et al. (1989, sec. 3.4.4.) and Binder (1983) can be used to define both the finite
population parameter of interest and the randomisation estimator. The finite population
parameter is usually defined through an estimating equation, see Godambe (1960) and Godambe
and Thompson (1986). As in Section 3 confidence intervals are based on the unconditional
distribution generated by repeated random sampling.

Model-based analytic inference is based on the complete model of the survey population yy,
the design variables z;;, and the sample selection rule p(s | zy/), that is
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Fu.zu.ssh,0) = fQu | zusN) f(zusd)p(s | zu) - 4.2)

For random sampling rules the selection scheme leaves the conditional distribution f(yy | zusN)
unchanged, but changes the marginal distribution of g, from f(z,;¢) before selection to

&s(zu39) = f(zus )0 (s | zv) 4.3)

after selection. Thus inferences about A are unaffected by selection but inferences about ¢,
and hence about 6§ = g(\,¢), the parameters of the marginal distribution f(yy;0), are
affected by selection. For these latter inferences the sample data cannot be treated as though
it were a SRS from the superpopulation model.

If we assume that the superpopulation distributions are multivariate normal then

(i) E(y | z) is linear in z, and

(i) V(y | z2) = K, independent of z.

Under these assumptions of linearity and homoscedasticity a model-based estimator of the
covariance matrix, Y, of y is given by

[ aoly

yy KJys + byz (Vi — .szs)..b};za 4.4)

as shown in Skinner ef al. (1989 Section 6.4), where V., V.., b, are sample covariance
matrices and a matrix of regression coefficients based on treating the sample data as I1D from
the conditional distribution f(yy | zy;\). We call (4.4) the Pearson adjusted estimator after
Pearson (1903).

Theoretical and empirical studies by Pfeffermann and Holmes (1985), Holmes (1987) and
Njenga (1990), have shown that model-based inferences from (4.4) are not robust to departures
from the assumptions of linearity and homoscedasticity. Nathan and Holt (1980) proposed
a p-weighted version of (4.4) as a more robust alternative. This estimator is formed by replacing
all the equally weighted sums in (4.4) by the corresponding p-weighted sums. The resulting
estimator is called the probability weighted maximum likelihood estimator (pwm/). The
properties of this estimator have been studied empirically and theoretically in Holmes (1987),
Njenga (1990) and in Skinner, Holt and Smith (1989, Ch.8). It was found to have similar uncon-
ditional properties to alternative p-weighted estimators, such as the Horvitz-Thompson
estimator of },,, and superior conditional properties. In the simulation study in Section 6 the
pwml estimator is taken to represent the entire class of p-weighted estimators. Since the
p-weighted version of ¥, in (4.4) is a design consistent estimator of V,;, the resulting
estimator is a design consistent estimator of },,. We now investigate a new robust model-
based procedure.

5. A NONPARAMETRIC MOMENT-BASED ESTIMATOR

In this section we attempt to overcome the lack of robustness of model-based estimators
such as (4.4) which depend strongly on assumptions of linearity and homoscedasticity. If the
finite population is realized as IID observations from the superpopulation and if interest centres
on the superpopulation parameters p,, ¥, in the marginal distribution of y, then the approach
we adopt uses the fact that the sample data are IID from the conditional distribution f(y | z)
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while the design variables z;; are an IID sample of size N from the marginal distribution of
z. For simplicity we assume that only one design variable has been used, such as a measure
of size, so that z is a scalar random variable.

We assume that the conditional mean and covariance matrix of y given z are smooth
functions of z of unknown form. Let

E(y|z) = p2), (5.1)

V(y | z) =L,(z). (5.2)

These parametric functions can be estimated using some form of nonparametric estimation
such as linear smoothing. Examples of linear smoothing methods are kernel estimation, see,
for example, Gasser and Muller (1979), local regression, see, for example, Cleveland (1979),
and smoothing splines, see, for example, Silverman (1985). We propose estimating the functions
in (5.1) term by term using the kernel estimator

iz) = Y W22y (5.3)

Jjes

We constrain the sum of the weights to be unity so that the estimator is a weighted average
and employ the Gaussian kernel with & being the bandwidth. These estimators have been
extensively studied and a recent review is Gasser and Engel (1990).

The structure in (5.1) and (5.2) implicitly assumes that we can write

Y= u(z) + ¢, Jes, (5.4
so that
& =y — blz), Jes. (5.5)
Thus
Gef = (- ) — a7 (5.6)

is an estimator of Loy (z). Applying a linear smoother to each term o,,(z;) of ¥,,(z;) gives

Gap(2) = E Wi (z,2;)é0€p 5.7

JEs

where W), (z,z;) is a kernel with band width 4 which will usually be wider than the band width
k chosen for the estimation of the conditional mean, (5.3).

The estimates of the marginal moments then employ the standard results that

wy = E(1(2)), (5.8)

Ly = E(£,,(2)) + V(r(2)). 5.9
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Now
wy = | p(2)f(2)dz,
and our proposed estimator is
iy, = | 1) f(z)dz. (5.10)
Since N is large we propose using the empirical p.d.f. (Parzen 1962), given by

df(z) = f(z) = /N, if z=2, j=1,...,N, (5.11)

I

0 , otherwise.

Substituting in (5.10) gives the estimator
N
by =N""Y a@z). (5.12)
j=1

To estimate L,, we adopt a similar procedure for the first term of (5.9). The second term
can be written

Vas(2) = § (u(2) ~ ) (1) — 1) f(2)dz. (5.13)
For our estimator we propose
. N
Vo) = N7 Y (az) — ) (&(5) — 2O T (5.14)
Jj=1

Thus the proposed estimator of is L,, is
A N A~
Ly = N“[ Y Ey@) + () - ) (ez) - ,;ey)ﬁ] : (5.15)
j=1

Njenga (1990) examines the asymptotic statistical properties of these estimators.

One of the main reasons for estimating L,, is to carry out some form of multivariate analysis,
such as a regression analysis between two or more of the components of y. In the next section
we report the results of a simulation study in which the simple regression coefficient between
two y-variables is estimated from stratified random samples with different sampling fractions.

6. ESTIMATING A REGRESSION COEFFICIENT
A SIMULATION STUDY

Let y = (¥,,y2)7 with mean g, = (u1,42)" and covariance matrix
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We are interested in estimating a function of },,, the simple linear regression coefficient,
2
By, = opp/05. (6.1)

The elements of },, will be estimated using:
(i) the Pearson adjusted estimator of L,y based on (4.4),
(ii) the probability weighted version of (4.4),

(iii) a kernel estimator based on (5.14).

The corresponding estimators of B,, or of its finite population equivalent B,,;, are denoted
Bia,mi> Biz pwmiand By, ,, respectively. The estimator By, ,,, is indexed by “ml*’ because it is
also the MLE under a multivariate normal model. The estimator By, ,,, is indexed ‘nw’’ after
Nadaraya (1964) and Watson (1964). The first two estimators were chosen because of their
good performance in previous simulation studies, see Skinner et al. (1989, Ch.8).

We carried out three types of simulation study. In the first simulation study we generated
a multivariate normal population to compare the performance of the new estimator with the
maximum likelihood estimator which is optimal for this population. In the second simulation
study we generated a quadratic homoscedastic population to compare the estimators when only
the linearity assumption is violated. In the last simulation study we compared the estimators
when the structure of the population is unknown, i.e. we used a ‘real’ population. In these
simulation studies we carried out both conditional and unconditional analyses. The former
allow us to assess whether a particular estimator is good in some samples and poor for others
whereas the latter averages over all possible samples for a particular design.

The new estimator uses the Gaussian Kernel
Wi(zi,g) = ciexp{— (z; — z))%/2k*}, ieU, jes,

where ¢; = 1/ ¥ jes exp{ — (z; — zj)2/2k2}. A simulation with different values of the band
width &k showed that the mean squared error was relatively constant for a wide range of values
of k and that this was achieved by trading off bias against variance. We selected values for
k that gave relatively small values for the bias for each stratified sample design.

Since the ‘real’ population available to us was 6,962 observations from the 1975 UK Family
Expenditure Survey we constructed all three populations to be of this size with mean vector
and covariance matrix

#1 01 012 0yz

_ _ 2
p=1m|, L= 03, Oy
2
Uz 0z

The actual values of Z are shown in Table 6.1.

The design variable is based on the expenditure on food, the independent variable is the
total income and the dependent variable is the total expenditure. This finite population was
stratified into five strata according to increasing values of the design variable, such that the first
stratum contains 1,393 units with lowest values of z, second, third, fourth contain 1,392 units
each and the fifth contains the last 1,393 units with the highest z values.
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Table 6.1
Parameter Values from the Real Population

Variable S.D. Correlation matrix
»;  Expenditure on all items 0.668 1
y, Total income 0.849 0.75 1
z  Expenditure on food 0.658 0.41 0.28 1

Table 6.2

Stratified Sample Designs

Sample design n ny ns ny ns Symbol
D1 Proportional allocation 20 20 20 20 20 A
D2 Increasing allocation 5 9 16 30 40 v
D3 U-shaped allocation 40 8 4 8 40 +

The sample designs used were based on those used by Holt, Smith and Winter (1980).
Denote a stratified random sampling design by (#n; ... ns) with n, units selected from the At
stratum, # = 1, ..., 5, then the designs are shown in Table 6.2, together with the symbols
used in the plots.

For the various stratified sample designs we selected 1,000 independent samples of size 100
from the finite population. The sampling distribution of the various statistics under investiga-
tion were estimated from these 1,000 repeated samples. We obtain the unconditional results
by averaging the statistics under investigation over all the 1,000 samples.

To assess the conditional properties of the estimators the 1,000 samples were divided into
20 groups of 50 samples each according to increasing values of AL = (S — Sy)/S, for the
nw and ml estimators where

il

Sz N_IEU(Z,' - ZU)Z, Sus = n~! Yslz; — z5)2’

Iy N_IZUZi, Zs =n_IZszi’
and of A*f = (8%, — S.)/S,, for the pwml estimators where
Ste = Lowi(z — 27, 2 = Lwz, wi= (Nm)~ and m

denotes the probability of including the /™ unit in the sample such that the first group
contained the 50 samples with the smallest values of AZ, (or A%f) and so on up to the 20th
group which contains the 50 samples with the largest values of AL (or A%f). We assume that
the variation in AL, (or A% within each group is small. The conditional distribution of the
various estimators given AL, (or A%#f) can then be plotted.

The biases, standard deviations and mean square errors reported in simulation studies 1 and 2
are computed around the value of B;,y in the finite population generated from the model. This
enables them to be compared with the values generated from the real finite population in
simulation study 3.
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Table 6.3

Unconditional Absolute Biases of the Three Estimators of By,
N = 6,962, n = 100 True Value Bj, = 0.595

Absolute biases of

Sample design

élZ,ml Blz,pwml éll,nw

D1 0.0003 0.0003 0.0185

D2 0.0007 0.0019 0.0269

D3 0.0026 0.0018 0.0159
Table 6.4

Unconditional Standard Deviation of the Three Estimators of B,

Standard deviations

Sample design

BlZ,ml Blz,pwml Blz,nw

D1 0.0500 0.0500 0.0507

D2 0.0522 0.0693 0.0531

D3 0.0486 0.0710 0.0503
Table 6.5

Unconditional Mean Square Errors of the Three Estimators of Bj,

Mean square errors

Sample design

élz,ml ElZ,pwmI élz,nw
D1 0.0025 0.0025 0.0029
D2 0.0027 0.0048 0.0035
D3 0.0024 0.0050 0.0028

Simulation Study 1

In the first simulation study the 6,962 finite population values were generated from a
multivariate normal distribution with correlation matrix given in Table 6.1. These data should
be favourable to the estimator By, .

The unconditional biases, standard deviations and mean squared errors are shown in Tables
6.3, 6.4 and 6.5.

As expected the estimator B12,m1 is best in terms of mean squared error. The new estimator
Elz,nw does surprisingly well, it has a large bias but a similar standard deviation. The size of
the bias for a very smooth (linear) population is consistent with the results in other studies,
see Gasser and Engel (1990). A very wide bandwidth is needed to capture a very smooth
function.
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The conditional plots are shown in Figures 6.1, 6.2 and 6.3. These plots show that there
is no additional pattern to the bias beyond the absolute level of bias shown in Table 6.3. Previous
studies have shown consistent patterns of bias for SRS estimators and simple p-weighted
estimators, see Skinner et al. (1989, Chs. 7 and 8).

Simulation Study 2

Repeated sampling from a quadratic homoscedastic population

This simulation study is similar to one carried out by Holmes (1987). We generated 6,962
finite population values of (¥y;,¥2,2;) i = 1 ... 6,962 by first generating a value of z; from
the uniform distribution U(0,10). Using this generated value of z; the corresponding values
of y;; and y,, are obtained from the relationships;

Yy = my + Hpz; + Rzl + €
and
yi=m + Hz + Rz} + ey,

where ¢,; and ¢;; are random variables from normal distributions with mean zero and constant
variance, and R, # 0, R, # 0. Following Holmes (1987) we chose the parameters in these
expressions so that the regressions of y; and y, on z are monotonically increasing functions
of z and the regression of y; on y, is approximately linear so that the regression coefficient
B, will be a meaningful parameter to estimate.
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Table 6.6
Unconditional Standard Deviation of the Three Estimators of By

N = 6,962, n = 100 True Value By, = 0.857

Absolute biases of

Sample design

élZ,mI élz,pwml ElZ,nw
D1 0.0119 0.0119 0.0171
D2 0.0923 0.0132 0.5556
D3 0.0124 0.0098 0.0104
Table 6.7
Unconditional Standard Deviation of the Three Estimators of Bj,
Standard deviations
Design — ~ —
Bio,m B pwmi Biz,nw
D1 0.0877 0.0877 0.0877
D2 0.0972 0.1230 0.1150
D3 0.0785 0.1110 0.0797
Unconditional Mean Square Errors of the Three Estimators of By,
Mean square errors
Sample design — — —
B]2,ml BlZ,pwml BlZ,nw
D1 0.0078 0.0078 0.0080
D2 0.0180 0.0153 0.0164
D3 0.0063 0.0124 0.0065

201

The unconditional results of the three estimators of the regression coefficient are given in

Tables 6.6, 6.7 and 6.8.

We see from the tables that the ml estimator is severely biased and very inefficient for the
increasing allocation design D2, but is approximately unconditionally unbiased and efficient
for the designs D1 and D3. The pwm/ estimator as expected is approximately unconditionally
unbiased across all the sample designs considered. Though more biased than the pwm/
estimator, the nw estimator is less biased than the m/ estimator for the unequal probability
designs. We also see that the nw estimator is more efficient than m/ for the design D2 and
approximately equally efficient for design D3. It is also more efficient than the pwm/ estimator

for the U-shaped design D3.
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The plots of the conditional analysis are shown in Figures 6.4, 6.5 and 6.6.

We see from Figure 6.4 that the m/ estimator is approximately conditionally unbiased for
the design D1 and D3, and has no additional conditional bias for the design D2. From Figure
6.5 we see that the pwm/ estimator has no additional conditional bias for any of the designs.
We see from Figure 6.6 that the nw kernel estimator has only a small additional conditional
bias within each of the three probability designs.

Simulation Study 3
Repeated sampling from a multivariate ‘Real’ population

In this simulation study we employ the 6,962 actual data points from the Family Expen-
diture Survey for the finite population. We consider the same variables as in section 3.1 and
sample repeatedly from this population to investigate the robustness properties of the three
regression estimators. We expect the real population to violate all the normality assumptions.

The unconditional results are shown in Tables 6.9, 6.10 and 6.11, and we see that the nw
kernel estimator is the most efficient and is approximately unconditionally unbiased across
all the probability designs. The m/ estimator is less biased and more efficient than the pwm!
estimator for the unequal probability designs.

The plots of the conditional analyses are shown in Figures 6.7, 6.8 and 6.9.

We see from Figure 6.7 that the m/ estimator is approximately conditionally unbiased for
the designs D1 and D2 but has a slight conditional bias for design D3. From Figure 6.8 we see
that the pwm/ estimator has no additional conditional bias for any of the designs. From Figure
6.9 we see that the nw kernel estimator is approximately conditionally unbiased for the three
probability designs.
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Table 6.9

Unconditional Absolute Biases of the Three Estimators of By,
N = 6,962, n = 100 True Value By, = 0.595

Absolute biases of

Sample design

élZ,ml élZ,pwml Blz,nw

D1 0.0245 0.0245 0.0056

D2 0.0260 0.0408 0.0060

D3 0.0128 0.0355 0.0072
Table 6.10

Unconditional Standard Deviation of the Three Estimators of Bj;

Standard deviation

Sample design

Blz,ml élz,pwml élZ,nw

D1 0.111 0.111 0.111

D2 0.106 0.132 0.108

D3 0.111 0.122 0.111
Table 6.11

Unconditional Mean Square Errors of the Three Estimators of By,

Mean square errors

Sample design

Blz,ml Blz,pwml glz,nw
D1 0.0130 0.0130 0.0121
D2 0.0120 0.0192 0.0117
D3 0.0125 0.0161 0.0123

We conclude from these simulation studies that the new estimator BlZ,nw has performed
well. When the assumptions of linearity and homoscedasticity are violated it appears to be
robust across a variety of designs, to have good efficiency and to have reasonable conditional
as well as unconditional properties. We know from previous studies that 312,pwm, performs as
well as more conventional p-weighted estimators unconditionally and has far better conditional
properties. The fact that in this study the new estimator ElZ,nw apparently has better properties
than the pwml estimator, which was chosen to represent the class of p-weighted estimators
because of its performance in other simulation studies, suggests that it is an approach that could
be considered in analytic studies of a small number of key parameters.
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