Survey Methodology, December 1992 209
Vol. 18, No. 2, pp. 209-217
Statistics Canada

Some Recent Work on Resampling Methods
for Complex Surveys
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ABSTRACT

Resampling methods for inference with complex survey data include the jackknife, balanced repeated
replication (BRR) and the bootstrap. We review some recent work on these methods for standard error
and confidence interval estimation. Some empirical results for non-smooth statistics are also given.
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1. INTRODUCTION

Standard sampling theory is largely devoted to estimation of mean square error (MSE) of
unbiased or approximately unbiased estimators Y of a population total Y. An estimator of
MSE, or a variance estimator, provides us with a measure of uncertainty in the estimator Y.
It is a common practice to assume that the estimator Y is approximately normally distributed
and then use a two-sided confidence interval ¥ + z,,,s(Y) or a one-sided confidence interval
(Y — z,5(¥),0)or (= ,¥ + z,5(¥)), where s(¥) is the standard error of Y (i.e., square
root of estimated MSE) and z,, is the upper a-point of a N(0, 1) variable. These intervals cover
the true total Y with a probability of approximately 1 — « in large samples, but the actual
coverage probability could be significantly lower than 1 — « in small samples or in highly
clustered samples. For nonlinear statistics, such as ratios, regression or correlation coefficients,
the well-known linearization (or Taylor expansion) method is often used (see Rao 1988 for
detailed applications). Resampling methods, such as the jackknife, balanced repeated replica-
tion (BRR) and the bootstrap, are also being used, and in fact several agencies in the U.S.A
and Canada have adopted the jackknife method of variance estimation for stratified multistage
surveys. An advantage of the linearization method is that it is applicable to general sampling
designs, but involves the derivation of a separate standard error formula, s(8), for each
nonlinear statistic, 8. On the other hand, resampling methods employ a single standard error
formula for all statistics 8. However, the jackknife and the BRR methods are strictly applicable
only to those stratified multistage designs in which clusters within strata are sampled with
replacement or the first-stage sampling fraction is negligible. The bootstrap method of Rao
and Wu (1987) works for more general designs, but it is computationally cumbersome and its
properties for complex designs have not been fully investigated.

This paper provides an account of some recent work on resampling methods for complex
surveys. Some empirical results on jackknife and bootstrap variance estimation for non-smooth
statistics, such as the median, under stratified cluster sampling and stratified simple random
sampling are also given.
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2. STRATIFIED MULTISTAGE SAMPLING

Large-scale surveys often employ stratified multistage designs with large numbers of strata,
L, and relatively few primary sampling units (clusters), n,(= 2), sampled within each stratum
A. In fact, it is quite common to select n;, = 2 clusters within each stratum to permit maximum
degree of stratification of clusters consistent with the provision of a valid variance estimator.
We assume that subsampling within sampled clusters is performed to ensure unbiased estimation
of clustertotals Yy, i = 1, ..., np; h =1, ..., L.

Let wy (> 0) be the survey weight attached to the £-th sample element (ultimate unit) in
the i-th sample cluster belonging to A-th stratum. Often, the basic weights wy;;, are subjected
to post-stratification adjustment to ensure consistency with known totals of post-stratification
variables. For example, the Canadian Labour Force Survey uses a generalized regression
estimator to ensure consistency. We shall, however, ignore this complication in the present
paper. An estimator of the population total Y is of the form

Y = E Whik Y ik » 2.1
(hik)es

where s denotes the sample of elements and y,; is the value of a characteristic of interest, y,
associated with the sample element (4ik)€s. We assume complete response on all items.

It is a common practice to sample the clusters with probabilities proportional to sizes (pps)
and without replacement to increase the efficiency of the estimators compared to pps sampling
with replacement and to avoid the possibility of selecting the same cluster more than once in
the sample. However, at the stage of variance estimation the calculations are greatly simplified
by treating the sample as if the clusters are sampled with replacement and subsampling done
independently each time a cluster is selected. This approximation leads to overestimation of
variance of Y, but the relative bias is likely to be small if the first stage sampling fraction is
small in each stratum.

Writing ¥ as
L
7 =Y 7, 2.2)
with
Tni = E (MpWhik) Vhike>»  Th = E Thi /Ny
k i
we note that the ry; are independent and identically distributed (iid) random variables with the

same mean, Yy, and the same variance in each stratum 4, under with replacement sampling
of clusters. It therefore follows that an unbiased estimator of variance of Y is given by

2 (0) =} si/nns 2.3)
h
with

ny
(ny — 1)sp, = E (rni — F)

i=1

Under without-replacement sampling of clusters, s?( ¥) will overestimate the true variance of ¥.
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We are also often interested in estimating the population distribution function, F(¢),
and the p-th quantile, § = F~'(p), 0 < p < 1; in particular, the population median
9 = F~1(1/2). The survey estimator of F(¢) is given by

F(r) = E Whik Qpik » 2.4
(hik)€s

where Wy, = w,,,-k/zswh,-k are the normalized weights (YW = 1) and apye = 1if ypue = 1,
apx = 0 otherwise. The sample p-th quantile is obtained as

6 = F(p). (2.5)

In practice, § is computed by first arranging the sampled values yy; in an ascending order, say
{¥ (i)} » and then cumulating the associated weights W until p is first crossed. The first y(uu,
encountered after crossing p is taken as the sample p-th quantile, 6. Woodruff (1952) obtained
confidence intervals for a quantile, and Rao and Wu (1987) obtained a simple variance estimator
using Woodruff’s interval (see also Kovar, Rao and Wu 1988, Francisco and Fuller 1991). Shao
(1991) considered general L-statistics, including the sample Lorenz curve and the Gini coeffi-
cient, which are examples of smooth L-statistics, and the sample quantiles which are examples
of non-smooth L-statistics.

Many nonlinear parameters of interest, such as population means, ratios, regression and
correlation coefficients, can be expressed as smooth functions, § = g(Y), of a vector of totals,
Y= (Y, ..., Y,)’, of suitably defined variates. An estimator of 6 is given by 6 = g(¥).
The linearization method may be used to estimate the variance of g(Y), under any complex
design (see Binder 1983 and Rao 1988).

3. RESAMPLING METHODS

Resampling methods, such as the jackknife and the bootstrap, are widely used in the iid
case. Suitable modification/extensions of these methods have also been developed to handle
survey data involving stratification and clustering. We now give a brief account of some recent
work on three such methods: jackknife, balanced repeated replication and bootstrap, in the
context of stratified multistage sampling.

3.1 Jackknife

For simplicity, assume 6 = g(Y¥), a smooth function of the estimated total Y. Let
0y = &( f’(gj)) be the estimator of 8 obtained from the sample after omitting the data from
the j-th sampled cluster in g-th stratum (j = 1, ..., n,; 8 = 1, ..., L), where

. n
Yigj) = E WhikVhie + E {n—j—lwgik}ygik- 3.1

(hik)yes (gikyes ™~ &
h#g i#j

Note that Y( ¢j) is obtained by changing the weight of (gik)-th element to ngwy/ (ng — 1),
i # j, but retaining the original weights, wy;, for A # g. A customary delete-1 cluster jack-
knife variance estimator of 6 is given by



212 Rao, Wu and Yue: Resampling Methods for Complex Surveys

Long — 108 .
s7(0) = )7 Y B — 02 (3.2)
g=1 Mg j=1
Two variations of s,(f)) are obtained by changing 6 in (3 2) to 0(g) = 210(gj)/ng and
0( )= zgza(g,)/n where n = Y ,n,. In the linear case, § = ¥, all the jackknife variance

estimators reduce to the ‘‘correct’’ variance estimator, s*(Y), given by (2.3). Rao and Wu
(1987) made a second order analysis of the resampling variance estimators when § is expressed
as a smooth function of totals, ¥. Their main results on the jackknife are: (1) Different jack-
knife variance estimators are asymptotically equal to higher order terms, as the number of
strata, L, increases. (2) In the important case of n, = 2 for all 4, the linearization variance
estimator, 57 (0), and any jackknife variance estimator are asymptotically equal to higher
order terms, indicating that the choice between the two methods should depend more on
operational considerations than on statistical criteria.

A drawback of the customary delete-1 jackknife method in the case of independent and
identically distributed (i.i.d.) observations is that, unlike the bootstrap, it fails to provide a
consistent variance estimator for non-smooth statistics, such as the median. Shao and Wu
(1989), however, have shown that this deficiency of the delete-1 jackknife can be rectified by
using a more general jackknife, called the delete-d jackknife, with the number of observations
deleted, d, depending on a smoothness measure of the statistic. In particular, for the sample
quantiles, the delete-d jackknife with d satisfying n"%d — Oandn — d — o asn — oo leads
to consistent variance estimators in the case of i.i.d. observations. This result suggests that
a similar effect might hold in the case of delete-1 cluster jackknife for stratified multistage
sampling since all the sampled elements in a sampled cluster (g/) are deleted in computing
s2(6) given by (3.2). At present we are studying this problem theoretically, but we performed
a limited simulation study which suggests that the delete-1 cluster jackknife variance estimator
s%(é) might perform quite well. We now report the results of the simulation study for the
median, § = F~1(1).

For the simulation study, we generated stratified cluster samples {y,u, k& = 1, , M,
i=1,. n,,, h=1,...,L} employmg the nested error model y,; = wp + @ + eni w1th
Qi M N (0 0%,) and eh,k N (0,0%,), where the cluster size, M is assumed to be equal for all
clusters (Ai), and the intra-cluster correlations, 0%,/ (62, + 0%,) = p;, are assumed to be equal
for all strata s (i.e., p,, = p). The normalized survey weights are given by Wy, with wy;, =
W,/ (n, M) and W), denotes the relative size of stratum /4. The number of strata L (= 32), strata
means, u;, variances o7 = o2, + o2, and sizes W}, were chosen to correspond to real populations
encountered in the US National Assessment of Educational Progress Study (Hansen and
Tepping 1985). We generated 1,000 independent stratified cluster samples with n, = 2 for
each selected combination (p,M) and then computed the bias and relative bias of the jackknife
variance estimator, s%(é), for the median: Bias [s%(é)] = Z,s%,(é)/l,OOO ~ MSE (),
where s%,(0) is the value of s3 (6) for the #-th simulated sample (¢ = 1, ..., 1,000) and Rel.
Bias [s%(é)] = Bias [s%(é) 1/MSE(6). We calculated MSE (§) from an independent set of
10,000 stratified cluster samples for each (p,M): MSE(d) = ¥, (4, — 6.)%/10,000, where
é, is the value of 6 for the #-th simulated sample, 6. = ¥ §,/10,000 and? =1, ..., 10,000.

Table 1 reports the simulated values of bias and relative bias (in brackets) of the jackknife
variance estimator for selected combinations of p and M. First, we note that for the special
case of stratified simple random sampling (p = 0, M = 1), the relative bias is very large
(116%) thus confirming the inconsistency of s3 (6) in this case. Second, we observe that both
the bias and relative bias decrease as M increases for a given p. Moreover, for a given cluster
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Table 1

Bias and % Relative Bias (in Brackets) of Jackknife Variance Estimator for
the Median Under Stratified Cluster Sampling (n;, = 2, L = 32)
and Selected Values of Equal Intra-Cluster Correlation, p,
and Equal Cluster Size, M

M
0
1 10 20 30 50

0 7.5(116) .28(41) .09(29) .04(15) .01(15)
0.05 - .22(27) .09(18) .05(12) .03 (8)
0.10 - .28(28) .10(14) .06 (9) .02 (3)
0.20 - .31(22) 11(10) .08 (8) .03 3
0.30 - .32(18) A1 () .07 (5) .01 (1)
0.50 - .44(17) .15 (6) 11 (5) .04 (2)

size M, the bias generally increases with p, but the relative bias in fact decreases because MSE )
is increasing faster than the bias as p increases. It is indeed gratifying that the relative bias is
no more than 10% for M = 30 andp = 0.10or M = 20 and p = 0.20.

3.2 Balanced Repeated Replication (BRR)

Balanced repeated replication (BRR) was proposed by McCarthy (1969) for the important
special case of n, = 2 clusters per stratum. A set of R balanced half-samples (replications)
is formed by deleting one cluster from the sample in each stratum. This set may be defined
bya R x L design matrix (8}),1 < r < R,1 < h < Lwithé, = + lor — 1 according
as whether the first or second sample cluster in the 4-th stratum is in the r-th half-sample, and
Y, 8,84 = Oforallh # h’, i.e. the columns of the matrix are orthogonal. A minimal set of
R balanced half-samples may be constructed from Hadamard matrices (L + 1 < R < L + 4)
by choosmg any L columns, excluding the column of + 1’s.

Let 8 be the estimator of 6 obtained from the r-th half-sample. Note that " is obtained
from 6 by changing the weight of (hik)-th element to 2wy or 0 according as the (hi)-th
cluster is selected or not selected in the half-sample. A BRR variance estimator of fis given by

x| —

skrr () =

R
) 6" — 2 (3.3)
r=1

Several variations of S%Rk(é ) are also available; for example, f may be changed to 6(-) =
v,6"/R. In the linear case, § = Y, all the BRR variance estimators reduce to the “‘correct”
variance estimator, s>( Y), as in the case of the jackknife.

Krewski and Rao (1981) established the consistency of s J(G) and SBRR(G) for smooth
statistics § = g( Y), as L increases. Rao and Wu (1985) made a second order analysis and
showed that sBRR(O) and s7 (§) are not asymptotically equivalent to second order terms,
unlike s 1(9) and 52 (6). Shao and Wu (1992) established the consistency of sixr (8) for the
quantiles, 6 = F~'(p).

The BRR method has been extended to the case of n, = p > 2 clusters per stratum for
p prime or power of prime (Gurney and Jewett 1975), but the number of replications, R,
needed is much larger than in the case of n;, = 2. In many survey designs n,’s are not equal.
To accommodate the general case of unequal n,, Gupta and Nigam (1987) and Wu (1991)
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advocated the use of mixed-level orthogonal arrays of strength two for drawing balanced
replicates, where s, is the number of symbols in the A-th column of the array. Orthogonality
of the array guarantees that the replicates drawn are balanced. Unlike the case of equal 7y,
the adjustment of survey weights is more complicated. A correct method was given by Wu
(1991). From his formula (6), two separate adjustments should be applied to the sampled and
unsampled units in each replicate. Simple algebra on Wu’s equation (6) shows that wy;, is
changed to i = [1 + (n, — 1) * 1w or wiy = [1 — (1, — 1) "] wy,; according as the
(hik)-th element is selected or not selected in the replicate. (Note that wy;, = 2and wj;, = 0
for n, = 2). The remaining calculation of § " and sigg () are the same as in (3.3). Further-
more, these modified survey weights can be applied to § = F~'(p) and more general § = T(F),
where T is a functional of F. All we need to do is to change wy; in (2.4) to W/ or wi
according as the (hik)-th element is selected or not selected in the -th replicate to get £ of
F for the r-th replicate, and § ¥ = T(F7). The calculation of the BRR variance estimator
is the same as in (3.3).

There are two problems with the use of mixed orthogonal arrays. First, the array size can
be large for general n,. Second, orthogonal arrays do not exist for any combination of n,,’s.
A practical solution is to group the 7, sample psu’s in stratum # into two to four groups of
psu’s and then apply the method to the groups by treating the groups as units in the BRR
method. This extension is called the grouped BRR method. As shown by Wu (1991), its effi-
ciency loss can be relatively small, compared to the full BRR, if the groupings are done
judiciously. For example, more groups are needed if #, is large and the units within the
stratum are more heterogeneous. For n; = 2, 3 or 4, many mixed orthogonal arrays have
been constructed (see, for example, Dey 1985 and Wang and Wu 1991). If », can only take
2 or 4, saturated orthogonal arrays for any combination can be easily constructed as in Wu
(1989). That is, the number of replications can be as small as possible. It is therefore possible
to compile a large collection of mixed orthogonal arrays for practical use if ny, is restricted to
2,3 or 4.

The BRR method and extensions considered thus far only take one unit (psu) per stratum
for each replicate. If n, is large, say more than 3, Sitter (1992) proposed the use of orthogonal
multi-arrays to allow the number of resampled units per stratum to be greater than one. It may
require fewer replicates and it can cover cases where orthogonal arrays of strength two are not
available; for example, n, = 6.

3.3 Bootstrap

The bootstrap method for the iid case has been extensively studied (Efron 1982). Rao and
Wu (1987) provided an extension to stratified multistage designs, but covering only smooth
statistics § = g(¥). They required that, in order to have valid variance estimation in the case
of small n,, some scale adjustment, similar to those in Section 3.2, is necessary. What they
did not realize is that the scale adjustment should be made on the survey weights wy;, rather
on the y,; values directly, which is what they proposed. As a result, their method cannot be
extended to cover the quantile § = F~!(p). We now present a general method that covers
smooth as well as non-smooth statistics for arbitrary sizes, 7. It works as follows: (i) Draw
a simple random sample of m1, clusters with replacement from the n, sample clusters,
independently for each 4. Let mj; be the number of times (4i)-th sample cluster is selected
(Y; m}; = my). Define the bootstrap weights

win = [{1 — (mu/(ny — 1)) + (my/ (= 1) *(np/mymig) whae. (3.4)
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If the (4i)-th cluster is not selected in the bootstrap sample, mj; = 0 and the second term of
(3.4) vanishes. If m,, is chosen to be less than or equal to n, — 1, then the bootstrap weights
wiy are all positive if wy; > 0 for all (hik)€s Calculate 6*, the bootstrap estimator of 6, using
the weights w;, in the formula for 6. The bootstrap median, for example, is calculated as
before using the normalized bootstrap weights Wi, = Wi/ ¥ Wiy, provided all wj, > 0.
(ii) Independently replicate step (i) a large number, B, of times and calculate the corresponding
estimates 07y, ..., 07s).

The bootstrap variance estimator s3oor (6) = Ex«(0* — E«0*)?, is approximated by
. 1 & .
Shoor(9) = 3 E (0% — 012 (3.5)
b=1

A variation of (3.5) is obtained by changing fto 02‘;) = Y ,0%,)/B. Inthe linear case, s%OOT(OA )
reduces to the “‘correct’’ variance estimator s%(Y).

Rao and Wu (1987) obtained bootstrap-¢ confidence intervals for smooth functions,
6 = g(Y), by approximating the distributionof t = (6 — 60)/s;(6) by its bootstrap counter-
part t* = (60* — 0)/s,(8*), where s3(6*) is obtained from(3.2) with wy; changed to wj,. A
two-sided (1 — «)-level confidence interval for 6 is then given by (4 — tgs L(6), 6 — ts J(é )},
where ¢} and f}; are the lower and upper «/2-points of ¢* obtained from the bootstrap
histogram of tfy,, ..., t{p). One-sided confidence intervals can also be obtained from the
bootstrap histogram. Empirical work by Kovar, Rao and Wu (1988) for smooth functions
indicates that the bootstrap-7 interval with my;, = n, — 1 tracks the error rates in both the
lower and upper tails better than the jackknife interval (0 — z, /28 (0),0 + z, 128 ;(6) 1, but
the total error rate is not distinguishable from the latter, i.e., for two-sided intervals, they exhibit
similar performance in terms of actual coverage probability. If a variance stabilizing transfor-
mation can be found, such as the tanh ~! transformation on the estimated correlation coeffi-
cient, then the problem of uneven error rates in the two tails for the jackknife interval seems
to be corrected. This suggests that the jackknife interval, or any other normal-theory interval,
based on such transformations can be useful when the transformations are known, while the
bootstrap provides an alternative when such transformations do not exist or are unknown.

We now present the results of a limited simulation study on the performance of the proposed
bootstrap method in the case of the median. Employing the Hansen-Tepping basic popula-
tion 1 with L = 32 strata (see Kovar ef al. 1988, Sections 3 and 6 for details), we generated
500 independent stratified simple random samples with n, = 5 and then computed the relative
bias and coefficient of variation (relative stability) of the Woodruff-based variance estimator
with o = 0.1 (see Kovar ef al. 1988, eq. (2.8)), the BRR variance estimator (3.3) and the
bootstrap variance estimator (3.5) and its variation obtained by changing fto 0¢.,. We used
my, = n, — land n, — 3and B = 500 bootstrap replicates for each sample, while the BRR
replicates were obtained from an orthogonal array with 250 runs. The true MSE of 6 was
approximated by selecting 10,000 independent stratified random samples. We also calculated
the error rates in each tail (nominal rate of 5% in each tail) and standardized lengths of the
normality-based confidence interval using the BRR variance estimator, the Woodruff interval
and the bootstrap interval obtained from the percentile method using the bootstrap histogram
of 8%y, ..., 0fg) for each sample.

Table 2 reports the simulated values of the relative bias, coefficient of variation, lower (L)
and upper (U) error rates, and standardized lengths. First, we note that the bootstrap variance
estimator (3.5) has a larger relative bias and a slightly larger coefficient of variation (CV) than
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Table 2

% Relative Bias and % CV of Variance Estimator and Error Rates
and Standardized Lengths of Confidence Intervals
(Nominal Level of 5% in Each Tail) for the Median Under Stratified
Simple Random Sampling L = 32, n, = 5)

Error Rate
Method % Rel. Bias % CV —_— St. Length
L U
Woodruff 4.2 47 4.2 5.6 0.997
BRR 3.1 31 5.0 5.0 1.004
Bootstrap*:
my = 4 12.6 52 5.0 5.2 0.987
(7.5) (48)
my =2 13.0 54 5.0 4.8 0.988
(7.8) (49)

* Results for the variation of the bootstrap variance estimator are given in the brackets.

its variation obtained by changing f to 6%.,: Relative bias of 12.6% vs. 7.5% and CV of 52%
vs. 48% for m;, = n, — 1 = 4. On the other hand, the BRR variance estimator has the
smallest relative bias (3.1%) and the smallest CV (31%), while the Woodruff-based variance
estimator has a smaller relative bias (4.2%) and a comparable CV (47%). Secondly, the lower
and upper error rates are close to the nominal level (5%) for the bootstrap and the BRR
intervals, while the error rates are slightly uneven for the Woodruff interval (L = 4.2% and
U = 5.6"). Finally, we note that the standardized lengths are roughly equal for all the
methods. Overall, the bootstrap variance estimator and the bootstrap intervals based on the
percentile method did not exhibit better performance relative to either the BRR variance
estimator and the associated normality-based interval or the Woodruff-based variance estimator
and the Woodruff interval.

ACKNOWLEDGEMENT

J.N.K. Rao’s work was supported by a grant from the Natural Sciences and Engineering
Research Council of Canada.

REFERENCES

BINDER, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys.
International Statistical Review, 51, 279-292.

DEY, A. (1985). Orthogonal Fractional Factorial Designs. New Delhi: Wiley Eastern.

EFRON, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: Society
for Industrial and Applied Mathematics.

GUPTA, V.K., and NIGAM, A .K. (1987). Mixed orthogonal arrays for variance estimation with unequal
numbers of primary selections per stratum. Biometrika, 74, 735-742.

GURNEY, M., and JEWETT, R.S. (1975). Constructing orthogonal replications for variance estimation.
Journal of the American Statistical Association, 70, 819-821.



Survey Methodology, December 1992 217

HANSEN, M., and TEPPING, B.J. (1985). Estimation for variance in NAEP. Unpublished
memorandum, Westat, Washington, D.C.

KOVAR, J.G., RAO, ].N.K., and WU, C.F.J. (1988). Bootstrap and other methods to measure errors
in survey estimates. Canadian Journal of Statistics, 16, 25-45.

KREWSKI, D., and RAO, J.N.K. (1981). Inference from stratified samples: properties of the linearization,
jackknife and balanced repeated replication methods. Annals of Statistics, 9, 1010-1019.

McCARTHY, P.J. (1969). Pseudo-replication: half-samples. Review of the International Statistical
Institute, 37, 239-264.

RAO, J.N.K. (1988). Variance estimation in sample surveys. In Handbook of Statistics, Vol. 6,
(Eds. P.R. Krishnaiah and C.R. Rao). Amsterdam: Elsevier Science, 427-447.

RAO, J.N.X., and WU, C.F.J. (1985). Inference from stratified samples: second-order analysis of three
methods for nonlinear statistics. Journal of the American Statistical Association, 80, 620-630.

RAO, J.N.K., and WU, C.F.J. (1987). Resampling inference with complex survey data. Journal of the
American Statistical Association, 83, 231-241.

RAO, J.N.K., and WU, C.F.J. (1987). Methods for standard errors and confidence intervals from sample
survey data. Bulletin of the International Statistical Institute.

SHAO, J. (1991). L-statistics in complex survey problems. Technical Report, University of Ottawa,
Ottawa.

SHAO, J., and WU, C.F.J. (1989). A general theory for jackknife variance estimation. Annals of
Statistics, 17, 1176-1197.

SHAO, J., and WU, C.F.J. (1992). Asymptotic properties of the balanced repeated replication method
for sample quantiles. Arnnals of Statistics, 20 (to appear).

SITTER, R.R. (1992). Balanced repeated replications based on orthogonal multi-arrays. Biometrika,
(to appear).

WANG, J.C., and WU, C.F.J. (1991). An approach to the construction of asymmetrical orthogonal
arrays. Journal of the American Statistical Association, 86, 450-456.

WOODRUFF, R.S. (1952). Confidence intervals for medians and other positional measures. Journal
of the American Statistical Association, 47, 635-646.

WU, C.F.J. (1989). Construction of 2’4" designs via a grouping scheme. Annals of Statistics, 17,
1880-1885.

WU, C.F.J. (1991). Balanced repeated replications based on mixed orthogonal arrays. Biometrika, 18,
181-188.



