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ABSTRACT

Godambe and Thompson (1986) define and develop simultaneous optimal estimation of superpopula-
tion and finite population parameters based on a superpopulation model and a survey sampling design.
Their theory defines the finite population parameter, 6, as the solution of the optimal estimating
equation for the superpopulation parameter §; however, some other finite population parameter, ¢, may
be of interest. We propose to extend the superpopulation model in such a way that the parameter of interest,
6, is a known function of 8y, say ¢ = f(8x). Then ¢ is optimally estimated by f(6), where 6, is the
optimal estimator of 8, as given by Godambe and Thompson (1986), based on the sample s and the
sampling design.
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1. ESTIMATION OF A MEAN

The problem discussed in this paper is the estimation of a finite population parameter such
as the mean based on a sample survey. There is also a hypothesized superpopulation regression
model relating the variable of interest to some known covariables. The objective is an estimation
procedure which has good properties with respect to both the sampling design and the hypothe-
sized model. The approach here is based on the work of Godambe and Thompson (1986).

We suppose that we have a finite population of labeled individuals P = (iti = 1, ..., N}.
With each individual / is associated an unknown variable y; and a vector of covariables, x;.
The vector x; may be known for all i€P or only for / in the sample and the population mean
#vwould be known. Letting E,, denote expectation with respect to the superpopulation model,
the model assumptions are:

(i) »;and y; are independent for i # j
(i) E,(y;) = x!B for some unknown real vector 3

(i) E,(y; — x{8)%2 = o®v;,i = 1, ..., N, for known v; and some unknown o2

Following Godambe and Thompson (1986) we define a finite population parameter B as
the solution of the linearly optimal estimating equation

N
gt = E (yi — xIB)xi/v; = 0, €Y)

i=1
that is,

PN

By = (XZVR'Xn) T\ XAV N, @)
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where 1 = (1, ..., Yn), V is a diagonal matrix with entries v, ..., vy, and Xy is a
matrix with N rows, the ith row being x/.

Now 3y is unknown. Godambe and Thompson (1986) defined and developed simultaneous
optimal estimation of 8 and B based on the model and the sampling design. We will denote
the data from a sample survey by x, = { (i, y;), i€s}.

For simultaneous estimation of 8 and 8y we consider estimating functions 4 (x;, 8) such
that E,(h) = g* in (1), where E, denotes expectation with respect to the sampling design. A
function A* in this class is called optimal if for all other 4 in the class EmEp{hhT} -
E, E,(h*h* ™1 is non-negative definite. Theorem 1 of Godambe and Thompson (1986) shows
that the optimal function A* is given by

h*(x;, B) = E (i — x[B)xi/ 7y, 3)

i€s

where m; is the probability under the sampling design that individual / is included in the sample
5. We will denote the root of this function by 8,, that is,

By = (X, v X))~ XTI v 4)

where y, is the vector of y;s for i€s, II; and V; are diagonal matrices with entries «; and v;
respectively, i€s, and X is the matrix with rows x], ies.

So far we have discussed only estimation of 8 or Bx. Our problem was to estimate Jy, the
population mean of the y;s. One possibility is to use a generalized regression estimator,

Vorec = ¥aBs + LTI (ys — X,B5) /N, ©)

where 1, is a vector of 1’s whose length is the size of the sample s. This estimator is discussed,
for example, by Sidrndal, Swensson and Wretman (1992). The first part of the estimator
gives good model properties while the second part gives good design properties. However,
the model and design justifications of Pgrgg in (5) do not depend on the particular form of
B,, and there is no immediately apparent reason why BS in (5) could not be replaced by
a purely model based estimator of 3. The design optimality of BS is apparently irrelevant.

The estimator we will propose here more closely integrates the hypothesized model with the
finite population parameter y. Since By in (2) is optimally estimated by Bs in (4), functions
of By are optimally estimated by the same function of ;. If 75 = u7By for some vector u then
we would estimate 7 by u7B;. Such a u exists if and only if ¥, 1y is in the column space of
X\, in which case, with Vjly = Xya, we may take u = XL Vy'Xya/N = xn. The idea
then is that if W1y is not in the column space of Xy, we will add it. In doing so we lose
something of model efficiency, though the augmented model remains valid in light of the
original model. We relax model efficiency to gain some sort of finite population relevance.
As an interesting special case we note that when the model variances do not depend on i our
approach leads to including an arbitrary constant term in the regression model.

The approach taken here seems quite similar to that of Little (1983) who suggests model
based estimation restricting attention to models that yield asymptotically design consistent
estimators. Alternatively, Isaki and Fuller (1982) suggest restricting to designs for which the
model based estimator is asymptotically design consistent.
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2. COMPARISON TO THE GENERALIZED REGRESSION ESTIMATOR

Let W be the design matrix for the augmented model, that is
Wy = (Valn, Xn). 6)
For the discussion of this section we assume that Vyly is not in the column space of Xy.
Similarly, let W, be the augmented form of X;, and v, {~, and %, be the augmented forms of
8, Bn» and B, respectively.

For convenience, we will refer to our estimator of the population mean as the augmented
regression estimator,

FAREG = WA N

We first show that Jaggg is also a type of generalized difference estimator. From (6), if
u is a vector of appropriate length with the first entry equal to one and the rest zeros then
Wyt = Vylyand Wu = V1. Then

ISTHS_IVK'?S = uTWsTVs_lnsvlm’?s = uTWsTVS_IHs_ ]ys = lsTHs_lys
and it follows that the second part of the generalized regression estimator in (5) with 8
replaced by 4, is equal to 0.

Secondly, let us compare Jargg in (7) to Jorea in (5). A few tedious calculations give us that

FareG = XnBs + (/eI (v, — XB)/N,
where
¢ = 15(Valy — Xy (X7 VX)) ~ XTI ')

and

4} ISTHS_ ! ( V:;ls - XS(XSTVS_ IHS_ IXS) B IXSTHS_ lls) .

Written in this way Jsrec appears very similar to ygreg except for an adjusted weight for the
second part. It does not seem possible to give an heuristic explanation of the weight (¢,/¢;).
However, we note that ¢ is just the population sum of the residuals from a weighted regres-
sion of the v,’s onto the x;’s based on the sample s, and ¢, looks something like a Horvitz-
Thompson estimator of ¢;, except that the residuals also depend on the sample s. For large
samples from large populations we would expect (¢;/c;) to be close to 1.

In comparing yarpg With Jgreg We may say that yargg is more design based and ygreg 18
more model based. Of course, Jgreg is design consistent, but y4rgg has also a finite sample
design justification in that 4, is the solution of an estimating equation which is design unbiased
for the parameter defining equation of . Parameter defining equations are discussed by
Godambe and Thompson (1984, 1986).
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3. VARIANCE ESTIMATION AND CONFIDENCE INTERVALS

A method of confidence interval construction which would be consistent with the general
philosophy of estimating functions would be to construct an asymptotically multivariate normal
pivotal based on A* and an estimator of its variance. Approximate confidence regions for ¥
would then correspond to probability regions of the estimated multivariate normal distribu-
tion of this approximate pivotal. However, we are not interested in 4, but in a non-injective
function of 4. We will adopt the more straight-forward approach of estimating the variance
of Jarpg directly.

Sarndal, Swensson, and Wretman (1989) have investigated variance estimation for Jgreg
in (5) for the case that the second part is zero. As we have seen in section 2, our estimator
Jarec is precisely of that type. Their variance estimator may be written as

Vv, = E E A;j8isCisg)sCss ®

i€es  jes

where 5,-/- = (m; — mm)/my, w; is the design probability that both individuals / and j

are included in the sample s, g; is the ith element of the row vector wi (W Vv I ' W) ~!
wIV:!, and é, = (y; — x74,)/7;. See Sirndal, Swensson and Wretman (1989) for a detailed
discussion of the model and design properties of I7g in (8). Note that Jsrgg in (7) may be
Written as JAreG = Lies &is Vi/ ; and

JAREG — IN = E gisein = WE(¥s — AN) s

i€s

where & n = (y; — wi4n) /7. Now, with Wily = Wya, we have wl, = 1LVyVy ' Way/N =
aTWEVy "Wi/N, so that for large samples g;; will be near 1/N for i€s. The design variance
of Jareq I8 then approximately equal to

E E A;;8:nE N/ N7,

ieP jeP

where A;; = (m;; — m;7;), and this may be estimated by

I}l == E Z A,‘jéiséjs/Nz. (9)

i€s i€s

¥, in (9) was considered in early work on the general regression estimator, for example,
Sarndal (1981, 1982). Now V, in (8) may be thought of as a version of ¥ in (9) adjusted for
the realized values of g;,, i€s. Sarndal, Swensson and Wretman (1989) show that }, in (8), as
well as being design consistent for the design variance of J5rgg, is often model unbiased or
nearly model unbiased for the model mean squared error of yargg.

Now approximate confidence intervals for y5 could be constructed based on a standard
normal approximation to the distribution of (¥arec — Jn)/{ 178} 12 The justification of this
procedure, from both a design and a model point of view, is asymptotic and the question of
its appropriateness for particular finite samples must be addressed. One possibility is to compare
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a set of confidence intervals obtained by this procedure to a set of purely model based intervals
based on a further assumption of normality of errors and a #-statistic. If the two sets of intervals
are wildly different there may be reason to doubt the validity of the jointly model and design
based intervals, but more work is needed before this question can be answered satisfactorily.

An alternative approach to variance estimation in this framework is given by Binder (1983).
The design variance of A* as an estimator of g* at 4, could be estimated using standard design
based techniques substituting 4, for 4, and then the variance of 4, as an estimator of ¥
would be derived from a Taylor linearization of #* about 4. Taylor linearization could again
be used to derive an estimator of the variance of a function of 4, as an estimator of the same
function of Y.

4. AREAS FOR FURTHER RESEARCH

We have seen how the approach described here could be used for the estimation of finite
population means or, more generally, for functions of linear regression parameters. It is natural
to wonder whether and how the approach may be adapted to the estimation of other types of
finite population parameters such as distribution functions and quantiles or to estimation for
small areas.

Consider the special case of estimation of a distribution function at one point. There are
two possible approaches to incorporate covariate information into a model. The first is to model
the probability explicitly as a function of the covariates, an example is the logistic model. A
second approach, which is common in the context of estimating a distribution function, as
in Chambers and Dunstan (1986), Rao, Kovar and Mantel (1990), and others, is to model the
residuals from a regression of the observed variable onto the covariables as being independent
and identically distributed from some unknown distribution. The present approach requires
that the parameter of interest be a function of the finite population parameter. Can this
approach be adapted for the estimation of distribution functions or quantiles?

Another important problem in survey sampling is small area estimation, that is estimation
of totals, means or proportions for subsets of the finite population. A good review is given
in Platek, Rao, Sirndal and Singh (1987). An obvious adaptation of the approach of Section 1
is to apply it separately within each domain of interest, what might be described as post-stratified
generalized regression estimation. Note that this approach would require the totals of the
covariates for each domain of interest. A very common approach in small area estimation is
to borrow strength across areas via a model relating small areas to each other and to some
covariates. A good review is given in Singh, Mantel and Thomas (1991). A very fruitful
approach has been the empirical Bayes estimation based on random effects models which was
introduced by Fay and Herriot (1979). Liang and Waclawiw (1990) discuss estimating functions
for empirical Bayes models. Can the idea of modelling to borrow strength across small areas
be formulated in such a way that the parameters of interest become functions of a population
parameter?
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